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Error Negativity Does Not Reflect Conflict:
A Reappraisal of Conflict Monitoring and
Anterior Cingulate Cortex Activity

Boris Burle, Clémence Roger, Sonia Allain, Franck Vidal,
and Thierry Hasbroucq

Abstract

W Our ability to detect and correct errors is essential for our
adaptive behavior. The conflict-loop theory states that the
anterior cingulate cortex (ACC) plays a key role in detecting
the need to increase control through conflict monitoring. Such
monitoring is assumed to manifest itself in an electroencepha-
lographic (EEG) component, the “error negativity” (N, or
“error-related negativity” |[ERN]). We have directly tested the
hypothesis that the ACC monitors conflict through simulation
and experimental studies. Both the simulated and EEG traces
were sorted, on a trial-by-trial basis, as a function of the degree

INTRODUCTION

In order to adapt to ever-changing environments, ani-
mals must continuously alter their behavior. Such flex-
ibility is often assumed to be mediated by “control”
mechanisms that adjust information processing to the
prevailing context. The way in which control mecha-
nisms are recruited, however, remains obscure. In the
last few vears, the “conflict-loop theory” (Botvinick,
Cohen, & Carter, 2004; Yeung, Botvinick, & Cohen,
2004; Bouvinick, Braver, Carter, Barch, & Cohen, 2001,
Cohen, Botvinick, & Carter, 2000; Botvinick, Nystrom,
Fissell, Carter, & Cohen, 1999; Carter, Botvinick, &
Cohen, 1999, Carter er al., 1998) has played an essential
role in this field by providing a unified model that aims
to account for both neurophysiological and behavioral
aspects of control implementation. This model intro-
duced a very simple, though very powerful, concept,
namely, “response conflict.” Response conflict, mea-
sured by the anterior cingulate cortex (ACC), is explicitly
defined as the product of the activation of the responses
weighted by the inhibitory connections between these
responses (Yeung et al., 2004; Botvinick et al., 2001, see
also Equation 2). In this type of neural network model,
“response activation” refers to the amount of neural
activity in the structures involved in response execution.
Conflict monitoring has been largely studied in the so-
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of conflict, measured as the temporal overlap between incor-
rect and correct response activations. The simulations clearly
show that conflict increases as temporal overlap between re-
sponse activation increases, whereas the experimental results
demonstrate that the amplitude of the N, decreases as tem-
poral overlap increases, suggesting that the ACC does not
monitor conflict. At a functional level, the results show that the
duration of the N, depends on the time needed to correct
(partial) errors, revealing an “on-line” modulation of control
on a very short time scale. [l

called flanker task (Eriksen & Eriksen, 1974), in which
participants must issue a right- or a left-hand response
as a function of a target letter (e.g., the letters S or H),
flanked by distractors that can be compatible (SSS) or in-
compatible (HSH) with the target. The implementation
of the conflict model for the flanker task has been ex-
tensively described by Yeung et al. (2004) and Botvinick
et al. (2001). Only the major aspects, and those directly
relevant for our purpose, will be described here.

The model is implemented as a three-layer neural net-
work (Cohen, Servan-Schreiber, & McClelland, 1992);
one perceptual layer codes for the target and both dis-
tractors, one response layer codes for the two compet-
ing responses, and an attentional layer biases processing
toward the rarget. All berween-layer connections are ex-
citatory (no between-layer inhibition), whereas all within-
layer connections are inhibitory. To this basic architecture,
the conflict modelers added a conflict-monitoring unit
that measures on-line the amount of conflict. Generally
speaking, the conflict is measured as the energy (Hopfield,
1982) in the response layer, defined as:

— Z Z adtuy (1)

where a represents the activity of each unit in the layer,
indices /7 and j the different units, and w;; the inhibitory
connection between the units 7 and J.
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In the flanker task, where only two possible responses
are present, conflict over time, Co(#), is computed as:

=2(acty(facts(r)(—3)) & acu(r) > 0,acts(r) > 0
Co(t) =

0 otherwise

where acty(f)—respectively acts()—is the activation level
of the unit coding for the H response—respectively the S
response—at time ¢, and —3 is the (constant) inhibitory
connection between the left and the right response units,

Conflict monitoring is assumed to be measurable with
functional magnetic resonance imaging (fMRI; Barch,
Braver, Sabb, & Noll, 2000; Botvinick et al., 1999; Carter
et al., 1998) and electroencephalography (EEG; West,
2004; Yeung et al., 2004; Rodriguez-Fornells, Kurzbuch,
& Minte, 2002; van Veen & Carter, 2002; Gehring &
Fencsik, 2001). In the present study, we will concentrate
on the EEG correlate: When participants commit an error,
one observes a negative component, maximal fronto-
centrally, called “error negativity” (NV.) (Falkenstein,
Hohnsbein, Hoormann, & Blanke, 1991), or “error-
related negativity” (ERN) (Gehring, Goss, Coles, Meyer,
& Donchin, 1993), starting about 30 msec and peaking
about 100 msec after the incorrect electromyographic
(EMG) activity. Simulations of the model have revealed
that conflict is maximal just after the incorrect response
activation; its timing is thus comparable to that of the

N.." This similarity led Yeung et al. (2004) and Botvinick
et al. (2001) to reinterpret the N, in terms of conflict;
conflict that results secondarily in error detection. Ac-
cording to these authors, the time course of the N,
should parallel the time course of the conflict. One way
of testing this view is to estimate conflict on a trial-by-
trial basis. Because conflict is defined as the degree of
coactivation of the responses, it amounts to estimating
the degree of overlap between correct and incorrect re-
sponse activations. One major difficulty is that response
activation is a covert process, not directly observable.
However, EMG recordings of the muscles involved in
responding have proved efficient in revealing such co-
vert activation (e.g., Burle, Allain, Vidal, & Hasbroucq,
2005; Burle, Possamai, Vidal, Bonnet, & Hasbroucq, 2002;
Hasbroucg, Possamat, Bonnet, & Vidal, 1999; Smid, Mulder,
& Mulder, 1990; Coles, Gratton, Bashore, Eriksen, &
Donchin, 1985): On some trials, although the correct re-
sponse was given, subthreshold EMG activity in the
muscles involved in the incorrect response (‘partial
error’’; see Figure 1A) can be observed. An N, has been
reported to occur just after such partial errors (Burle
et al., 2005; Masaki & Segalowitz, 2004; Vidal, Hasbroucg,
Grapperon, & Bonnet, 2000). Because these partial errors
are detectable on a trial-by-trial basis, they offer the
unique opportunity to directly evaluate the activation of
incorrect responses, not otherwise observable on overt
performance.*
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Figure 1. Examples of “partial errors™” obtained in the experiment and in the simulation. (A) The left part of the graph presents the EMG activity
as a function of time, in the muscles involved in the execution of the incorrect (black) and in the correct responses (gray). The time origin
corresponds to stimulus presentation. The vertical black dashed line corresponds ro the onset of the partial error, and the vertical gray dashed
line to the mechanical response. Although the correct response was given, one can observe an activation of the incorrect response whose amplitude
is, however, too low to trigger an overt error. The time interval between the incorrect EMG onset and the correct mechanical response is defined
as A, and will be used as an index of the temporal overlap between the two response activations. (B) The right part of the figure presents a
simulated trial, with the amount of activation (in arbitrary units) of the incorrect (black line) and of the correct (gray line) response as a function
of time. The time-zero corresponds to stimulus presentation, the vertical black dashed line corresponds to the onset of the partial error, and
the vertical gray dashed line to the timing of the response. The two horizontal long dashed lines correspond to the partial error threshold
(black) and to the correct response threshold (gray).
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Importantly, conflict is defined as the degree of co-
activation of the two responses (see Equation 2). We
thus reasoned that it should depend on the temporal
overlap between incorrect and correct response activa-
tions that is on the time separating the incorrect from
the correct response (A value on Figure 1). In order to
verify the validity of this reasoning, we first ran a
simulation study in which trials containing the equiva-
lent of partial errors were analyzed. Because, as the
results will show, this assumption was supported, the
A value was the main variable of interest. We then
compared the simulated data to real, experimental data
(see below). In order to compare the simulation results
with the experimental ones, we processed the simula-
tion and the EEG data in the same way. To this end, we
used the open-source software EEGLAB (Delorme &
Makeig, 2004), which allows single-trial dynamics to be
studied (Jung et al., 2001), and hence, reveals more pre-
cisely the impact of A value on conflict and N, amplitudes.

METHODS
Simulation Study
Sinmuation Parameters

The simulation was based on 10 runs (representing
10 participants) of 1000 trials each. All parameters used
in the simulation were those used previously in the
studies of Yeung et al. (2004) and Botvinick et al.
(2001),> except the threshold for “partial errors™ (which
were not previously considered). In the previous sim-
ulations, a response was recorded as soon as one of
the two response units reached an activation level of
0.18. Using this value, a pilot simulation study indicated
that a threshold of 0.10 for partial errors gives 10% to
15% partial errors, which is equivalent to the percentage
usually obtained in empirical studies (Burle et al., 2002;
Hasbroucq et al., 1999; Smid et al., 1990; Gratton, Coles,
Sirevaag, Eriksen, & Donchin, 1988). Importantly, chang-
ing this value modified the overall number of partial
errors, but did not affect the global performance pat-
tern, as the difference in partial errors rate between
compatible and incompatible trials remained constant
whatever this value (within realistic limits). Thus, the
results presented below are not specific to a well-tuned,
somewhat arbitrary, value that we have chosen for
partial errors threshold.

Data Preprocessing

Depending on whether the correct or incorrect re-
sponse unit reached the response threshold first, the
trial was classified as correct or erroneous, respectively.
Among the correct trials, we checked whether the
incorrect response unit reached the partial error thresh-
old before the correct response (it never happened that
the incorrect response layer reached the partial error

threshold after the correct response). If the incorrect
unit reached the predefined threshold of 0.10, the trial
was classified as a partial error trial. In order to have
enough trials available for analysis in both the simulation
and the experiment, we focused on incompatible trials
containing partial errors, as the number of partial errors
is higher in incompatible situations (Burle et al., 2002;
Smid et al., 1990; Gratton et al., 1988; Coles et al., 1985).

The individual partial error trials were thereafter im-
ported into EEGLAB (Delorme & Makeig, 2004) for fur-
ther analysis (see Single-trial Analysis section).

Experimental Study
Participants

Ten right-handed participants (3 women, 7 men, aged
20 to 31 years, mean age = 25 years) volunteered for this
experiment. They all had normal or corrected-to-normal
vision. Before the study, all the participants gave their
informed written consent according to the Declaration
of Helsinki. They were informed of the purpose and
procedure of the experiment before participating.

Experimental Task and Procedure

The participants performed an Eriksen's flanker task
(Eriksen & Eriksen, 1974) in which they had to respond
with a right or a left thumb keypress as fast as possible
as a function of a central target letter (S or H) flanked
by two distractors that could be compatible (e.g., SSS)
or incompatible (e.g., HSH). The stimuli were presented
by a seven-segment light-emitting-diodes display (Lex-
tronic, model SGN-S5, 33 x 14 mm), located 1.5 m in
front of the participant. The stimuli were extinguished
with the participants’ response. The participants held
vertical handgrips on top of which response buttons
were fixed.

Participants performed 20 blocks of 128 trials each. After
stimulus presentation, they had 1 sec to respond. The
next stimulus was delivered 1 sec after the response. All
types of trials (HHH, HSH, SHS, and SSS) were equi-
probable and presented in a pseudorandom order.

Data Acquisition and Preprocessing

EEG and EMG activity was recorded with Ag-AgCl elec-
trodes (BIOSEMI Active-Two electrodes, Amsterdam).
The sampling rate was 1024 Hz (filters: DC to 268 Hz,
3 dB/octave). For EEG, we used 64 channels (10-20
system positions). The vertical electrooculogram was
recorded by means of two electrodes (same type as
EEG) just above and below the left eye, respectively, and
the horizontal electrooculogram was recorded with two
electrodes positioned over the two outer canthi. EMG
was recorded by means of two pairs of electrodes glued
to the skin of the thenar eminence above the flexor
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pollicis brevis of each hand. The distance between the
two EMG electrodes was 2 cm.

After acquisition, the electrophysiological data were
filtered (EEG: high pass = 0.3 Hz, low pass = 100 Hz
and EMG: high pass = 10 Hz). Eye movement artifacts
were corrected by the statistical method of Gratton,
Coles, and Donchin (1983). All other artifacts were
rejected after visual inspection of individual traces. The
onset of the EMG activity was marked manually after
visual inspection. Indeed, although automated algo-
rithms can be useful, visual inspection remains the most
accurate technique against which all algorithms are com-
pared (Staude, Flachenecker, Daumer, & Wolf, 2001; van
Boxtel, Geraats, van den Berg-Lessen, & Brunia, 1993),
especially for detecting small changes in EMG activity
such as partial errors. Importantly, the experimenters
were not aware of the nature of the trial (compatible vs.
incompatible) being processed. Furthermore, the EEG
signals corresponding to the current EMG were not dis-
played when detecting EMG onset, Thus, the experi-
menter was completely blind regarding all the other
relevant parameters, and thus, could not, even unwit-
tingly, bias the results.

The trials were classified as correct or erroneous, de-
pending on whether the correct or the incorrect button
was pressed first. Among the correct trials, we separated
trials containing only one EMG activation on the correct
side from trials containing an EMG activation on the in-
correct side preceding the correct response ( partial error
trials; see Figure 1A). Laplacian transformation, as imple-
mented in BrainAnalyser (Brain Products, Munich), was
applied to each individual trial to increase the spatial
resolution of the EEG (Babiloni, Cincotti, Carducci,
Rossini, & Babiloni, 2001): First, the signal was interpo-
lated with the spherical spline interpolation procedure
(Perrin, Pernier, Bertrand, & Echallier, 1989), hence, the
second derivatives in two dimensions of space were
computed. We choose 3 for the degree of spline because
this value minimizes errors (Perrin, Bertrand, & Pernier,
1987), and the interpolation was computed with a maxi-
mum of 15 degrees for the Legendre polynomial. We
assumed a radius of 10 ¢m for the sphere representing
the head, rather than the unrealistic default radius of
1 m assumed by BrainAnalyser. With such a realistic
radius, the most suitable unit is pV/em?®. The individual
Laplacian transformed trials were imported in EEGLAB for
further analysis.

Temporal Overlap Estimation

In order to compare temporal overlap in simulated and
experimental data, we choose a functionally equivalent
measure for both. This measure, the A value depicted
on Figure 1, corresponds to the time berween the onset
of the partial error and the moment of the correct
response (Figure 1A) for the experimental data, and to
the “time" (represented in “cycles”) between the par-
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tial error threshold (0.10) and the correct response one
(0.18; Figure 1B) for the simulations, In both cases, a
greater A value indicates a longer time between the
incorrect response activation and the correct response,
revealing a lower temporal overlap. In the following, we
will use the A value as a measure of temporal overlap.

Single-trial Analysis

EEG signal analysis normally relies on averaging tech-
niques. Averaging, however, induces a considerable loss
in the dynamics of the process of interest (Jung et al.,
2001), as will also be exemplified below. We therefore
resorted to the event-related potential image (“ERP
image™) technique, implemented in the EEGLAB soft-
ware (Delorme & Makeig, 2004), allowing one to visual-
ize brain activity without averaging. This technique has
been detailed elsewhere (Jung et al., 2001), and will only
be briefly described here. Note that this technique was
applied not only to the Laplacian-transformed EEG data
but also to the simulated data. To construct the individ-
ual ERP images, the trials are first sorted based on a
relevant measure. In our case, for both the simulation
and the experimental data, the time-zero corresponds to
the onset of the partial error, and the trials are arranged
by increasing A values. The trials are then plotted as
parallel colored lines. The result is a “raster-like™ plot,
with the x-axis representing time, the y-axis representing
the arranged trials, and a color code indicating the
intensity of the signal for each trial and each time point.
On all figures, the vertical black line indicates the onset
of the partial error, and the S-shaped one indicates the
correct response. Below each raster-like plot, the aver-
age of the traces is represented as a function of time,
hence, giving an estimate of the activity under analysis.
For the simulation, the blue color indicates conflict
(positive values), whereas for the experimental data,
blue represents negative polarity. This was done to
improve the comparability between the conflict and
the N, both appearing in blue in the ERP images.

ERP images have been computed for each partici-
pants: For the experimental data, the ERP images are
based on the individual Laplacian-transformed trials. For
the simulation, this was performed on the individual
activation function and/or the computed conflict traces.
Besides individual subject representations, we sought
for a population-based representation of the data. One
way of doing so is to put all the trials of all the subjects in
the same ERP image. This approach has some strengths
and limitations. The main interest is that one can visu-
alize all trials of all subjects, However, the within-subject
variance, in amplitude and in A values, is confounded
with the between-subject variance: For example, sub-
jects with short A values will mainly contribute to the
lower part of the ERP image, whereas subjects with long
A values will mainly be present on the upper part. A
similar bias holds for amplitude. Finally, data represented
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in this way are not comparable to more traditional grand-
averaged representation. One alternative approach is to
built a “grand-averaged” ERP image by averaging the
individual ERP images (see Appendix A for further details).
In this case, all subjects have the same weight at every
points of the ERP image, allowing one to visualize the
impact of A values on the population without bias in-
duced by between-subject variability. One disadvantage,
however, is that we do not see, in this case, “real” indi-
vidual trials, but averaged ones for a given normalized A
value. Because these two methods have complementary
strengths and shortcomings, we present the two repre-
sentations along with individual ERP images. Because
these various approaches led to very consistent results,
despite their different strengths and drawbacks, we con-
sidered that the features expressed on these analyses
could not be artifacts induced by any of the methods.

As recommended by Jung et al. (2001), the ERP im-
ages have been smoothed, with a smoothing width set at
about 10% of the number of trials. One exception, how-
ever, is to be noted for the primary motor cortices ac-
tivations (Figure 7C and D): Because the activities of
interest were of small amplitude leading to a lower signal-
to-noise ratio, the smoothing step was set at about 20%.

Statistical Analysis

ERP images, although very informative, do not allow one
to statistically validate the observed features. To do so,
both the simulated and experimental trials were binned
into different classes depending on the A interval. The
classes were of equal width.

For the simulation, four classes of three cycles were
retained that contained the largest number of trials for a
reliable estimate of the conflict amplitude: Class 1 =
from 2 to 4 cycles, Class 2 = from 5 to 7 cycles, Class 3 =
from 8 to 10 cycles, and Class 4 = from 11 to 13 cycles.
The conflict signals obtained on each trial were then
averaged, time-locked to the partial error onset for each
class, and each run separately. The peak of conflict was
determined as the maximum value in a window starting
from the partial error onset and lasting 20 simulation
cycles. We measured the peak and latency of this peak.
Besides these “static” parameters, we investigated the
dynamic aspects of conflict by studying how conflict
develops. To do so, we analyzed the rising slope of the
conflict by fitting a linear regression to the conflict signal
in a window from the partial error onset to the fourth
cycle following the partial error onset.

For the EEG data, the same method was applied:
Individual trials were binned as a function of the time
separating the incorrect EMG onset from the correct
response. Four classes that contained the larger number
of trials (Class 1: from 101 to 150 msec, Class 2: from 151
to 200 msec, Class 3: from 201 to 250, and Class 4: from
251 1o 300 msec) were retained. The EEG activity was
averaged for each participant and for each class sepa-

rately. As for the simulation, the parameter used to
estimate the N,. was the amplitude of the peak of the
N, (defined as the difference between the positive peak
occurring just after the partial error—between 10 and
50 msec—and the following negative peak—between 50
and 150 msec). We also analyzed how the N, develops in
time by fitting  linear regression on the rising slope in a
time window from 50 to 100 msec.

The statistical analysis involved either Student’s 7 tests,
for comparisons between two means, or analyses of
variance (ANOVAs), for comparisons of more than two
means. When ANOVAs were performed, the error term
was always the interaction between the factor “partic-
ipants” and the factor under analysis. Percentages and
rates cannot be tested directly with parametric methods
because their mean and variances are closely related.
However, the arcsine transform (p' = asiny/p, with p
being the rate under analysis) has proved to be efficient
in stabilizing the variances (Winer, 1971), and was there-
fore used consistently for each analysis involving rates.

RESULTS
Behavioral Data

The overall percentage of errors was 5.2%. The number
of overt errors was higher in the incompatible condition
(7.5%) than in the compatible one (2.9%) [¢(9) = 6.55,
p < .001]. For correct trials, reaction time (RT) was
longer when the flankers were incompatible (416 msec)
than when they were compatible (386 msec) [#(9) =
15.36, p < .001].

The number of partial error trials (see Figure 1) was
higher in the incompatible situation (21.7%) than in the
compatible one (14.3%) [£(9) = 5.78, p < .001, in line
with previously reported empirical data; Burle et al.,
2002; Smid et al.,, 1990; Coles et al., 1985) (more
behavioral data, and a deeper comparison between the
experimental and the simulated results on these issues,
are presented in Appendix B).

Comparison between Conflict and N, Timing as a
Function of A

In previous simulation studies (Yeung et al., 2004;
Botvinick et al., 2001), conflict was analyzed time-locked
to the stimulus and/or to the response. Since here we
introduce partial errors to the simulation, we first veri-
fied that a peak of conflict was indeed obtained just after
the partial error. Figure 2A presents the grand-averaged
N, time-locked to partial error onset. As already re-
ported (Burle et al., 2005; Allain, Carbonnell, Burle,
Hasbroucq, & Vidal, 2004; Masaki & Segalowitz, 2004;
Vidal et al.,, 2000), a clear N. was apparent just after
partial errors. Furthermore, the N, observed after partial
errors is clearly localized fronto-centrally (see Figure 8).
Figure 2B shows the grand-averaged conflict obtained in
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Figure 2. Comparison between grand-averaged N,. and conflict. (A) Amplitude of the Laplacian transformed N, induced by partial errors as a
function of time. The time-zero corresponds to the partial error onset. A clear N, can be observed starting about 30 msec after incorrect EMG
onset and peaking about 100 msec after it. Furthermore, its topography is well localized fronto-centrally (see Figure 8 for the topography of
this wave). (B) Grand-averaged conflict as a function of time. Time-zero corresponds to crossing of the partial error threshold. The conflict is
clearly maximal just after the partial error, and its timing nicely fits that of the N,.. This confirms that the N, on partial errors is a valid measure

for testing the conflict model predictions.

the simulations when time-locked to the partial error, As
anticipated, the conflict is maximal just after the partial
error, validating the comparison between N, and con-
flict on partial error trials.

Figure 3 show the single-trial dynamics of the N, and
of conflict. Panels A and C present the grand-averaged
ERP images, whereas Panels B and D present all trials of
all subjects plotted together. Panels E, F, and G present
single-subject ERP images (see above for a presentation
of these different approaches). Time-zero corresponds
to the partial error onset in all cases, and the S-shaped
black line indicates the occurrence of the correct re-
sponse. One striking feature that appears in the com-
parison of the two graphs is the difference in timing of
the conflict and the N.: Although the simulated conflict
shows an S-shape very similar to the correct response
one, the N, seems better time-locked to the partial error
onset. It seems, however, that the width of the N,
increases as A increases. To clarify these points, we
binned the trials into different classes varying in term of
A (see the Methods section).

The grand-average EEG data for each class is pre-
sented on Figure 4A. An ANOVA conducted on the peak
amplitude revealed an effect of A [F(3, 27) = 391,
p < .05]: The smaller the A, the smaller the V.. The
latency of the peak was also affected by A [F(3, 27) =

7.42, p < .001], with the peak occurring earlier for small
A than for large A, In contrast, no effect of A was
observed on the rising slope of the N, [F(3, 27) = 1.34,
p = .28]. Therefore, the latency effect is simply a con-
sequence of the fact thart, with the rising slope being the
same but the amplitude higher, the peak is reached later.

The same analysis was performed on conflict (Fig-
ure 4B). ANOVAs revealed a clear effect of A on the am-
plitude of conflict [F(3, 27) = 400.24, p < ,001]: The
smaller the A, the higher the peak of conflict. The la-
tency of the peak of conflict was also affected by A [F(3,
27) = 409.17, p < .001], with a peak of conflict occur-
ring later as A increased. Finally, the rising slope of the
conflict was also steeper when A was low than when
it was high [F(3, 27) = 20.72, p < .001]. It therefore
appears that the amplitude of conflict decreases as A
increases. The dynamics of the conflict are also affected
because the rising slope is sensitive to A.

Alternative Measure of Conflict

Although the sensitivity of the N. to A is opposite to
that of conflict as defined in the model, conflict seems
to last longer when A increases. We therefore evaluated
whether a slight modification of the conflict computa-
tion could account for the data: Instead of assuming that

Figure 3. ERP images of the N, and of the simulated conflict. The trials containing a partial error were sorted as a function of increasing A
values. The vertical black line indicates the onset of the partial error and the S-shaped black line indicates the moment of the correct response.
(A and B) Grand-average ERP images of N, and simulated conflict. (C and D) Grand-average ERP image containing all trials of all “subjects™

for the N, and the simulated conflict, respectively. (E, F, and G) Examples of individual ERP images. Whatever the representation, the conflict
appears more time-locked to the correct response, contrary to the N,., which appears more time-locked to the incorrect response activation,
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conflict at time ¢ is the degree of coactivation of the two
responses at time ¢, let us consider that it reflects the
integration of such coactivation over time, that is, con-
flict at time ¢ could be:

]

Co(t) =) —2(actu(t)acts(t)(~3))

0

(3)

As a matter of fact, this quantity is assumed to be used
for sequential adjustments (Botvinick et al., 2001; see,
however, Burle et al., 2005). We therefore estimated the
surface under the conflict curve for each simulated
participant and for each class. This analysis revealed no
change in conflict as a function of class (F < 1). There-
fore, even the integrated conflict does not increase as A
decreases, contrary to the N..

Conflict and the Dynamics of Incorrect and
Correct Response Activation

The above presented results are in clear disagreement
with the interpretation of the N, in terms of conflict. More
specifically, the amplitude of the N, does not parallel the
degree of conflict. To better understand where the dis-
crepancy comes from, we studied in more detail the
activation dynamics of the incorrect and correct responses.

Conflict and the Amount of Incorrect Response Activation

When referring to Equation 2, it appears that conflict
does not only depend on the temporal overlap between
the two responses but also on the amount of incorrect
response activation (see simulation 5 of Yeung et al.,
2004). Differences in incorrect response activations

might explain the observed discrepancy. To evaluate
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this, we averaged the simulated activation function of
the incorrect responses, time-locked to the partial error
onset for the four classes retained above. We processed
the experimental data in a similar way: We took the size
of the partial error EMG burst as an index of the
incorrect response activation. To do so, the EMG bursts
were rectified and then averaged separately for the same
four classes used for the N,.. Figure 5 presents the results
of this analysis. As one can see, for both the experimen-
tal (Figure 5A) and simulated (Figure 5B) data, the
amount of incorrect response activation was greater
when A was high. Indeed, the size of the partial error
(i.e., the amount of EMG) increased as the interval
between the incorrect and correct response activation
got larger [F(3, 27) = 24.43, p < .001]. The linear com-
ponent was also significant [F(1, 9) = 46.67, p < .001].
The simulation results were similar: The amount of in-
correct response activation increases as A increases [F(3,
27) = 7145, p < .001; linear component: F(1, 9) =
160.1, p < .001]. These results have two important con-
sequences. The first one is that, as anticipated, conflict
is more sensitive to temporal overlap than to the mere
amount of incorrect response activation. Indeed, the
maximum conflict was obtained in the situation where
the activation of the incorrect response was the lowest.
Second, because the same increase in incorrect re-
sponse activation is observed in the experimental and
simulated data, the difference between the N, amplitude
and conflict cannot be explained by a difference in re-
sponse activation.

Dynamics of Correct and Incorrect Responses Activations
We further explored the discrepancy between conflict
and the N, by investigating the “‘empirical conflict”
present in the experimental data, that is, the degree of
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coactivation of the alternative responses. We first ana-
lyzed the dynamics of response activation as estimated
at the EMG level. Indeed, EMG seems a consensual
measure of response activation because, according to
Yeung et al. (2004, p. 937), “Gehring and Fencsik (1999)
have reported |[...] that the ERN coincides with periods
of coactivation of the correct and incorrect responses as
measured through electromyography (EMG)."” A similar
argument was also put forward by Botvinick et al. (2001,

p. 635). To evaluate the “empirical conflict” we applied
Equation 2 to the averaged EMG traces, time-locked to
the incorrect EMG onset (Figure 6A).

The two averaged EMG activities overlap around
100 msec after partial error onset, which replicates
previous results (Masaki & Segalowitz, 2004; Gehring
& Fencsik, 1999). Figure 6B presents the estimated
conflict, after applying Equation 2 to these averaged
EMG data. The estimated “conflict’ starts just after the
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Figure 6. Empirical coactivation and conflict measured on the averaged traces. (A) Temporal overlap of incorrect and correct response activation
as measured with averaged EMG. The two responses appear to be coactivated around 100 msec after partial error onset. (B) Empirical conflict
obtained by applying Equation 2 to the averaged EMG activities. The empirical conflict nicely fits the prediction of the model, with conflict
occurring shortly after the incorrect response activation, and peaking around 100 msec. This similarity, however, is an artifact due to averaging.
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partial error onset and peaks about 100 msec after it.
This timing almost perfectly fits the one of the N, re-
ported on Figure 2A. This replicates the data of Gehring
and Fencsik (1999). This apparent similarity is, how-
ever, an averaging artifact (Callaway, Halliday, Naylor, &
Thouvenin, 1984), as demonstrated below.

The first row of Figure 7 presents the ERP images for
the incorrect (Panel A) and correct (Panel B) EMG. A
striking effect emerges from these ERP images: Although
the duration of the EMG burst is longer when the
interval between the incorrect and the correct response
increases (see Figure 5), the degree of overlap between
the two EMG activities is virtually null, except maybe
when the interval is very small. Thus, as long as response
activation is evaluated at the EMG level (Yeung et al.,
2004), the incorrect and correct response activations did
not overlap in any of the trials, and the conflict is null in
this dataset. The apparent overlap observed on Figure 6
stems from the fact that the slowest incorrect activations
occur later than the fastest correct ones, but not on the
same trials. This exemplifies the hazards of averaging
procedures because, although we do observe “conflict”
on averaged data that very nicely fit the predictions of
the model, there is no “conflict” (as defined in the
model. ..) at all, on any of the trials, in this dataset.

One may argue, however, that even if coactivation
does not occur at the EMG level, it might well be present
at the central level. We thus analyzed the activity of the
primary motor cortices contralateral to the incorrect
and correct responses. Indeed, thanks to Laplacian esti-
mation, it recently became possible to estimate the acti-
vation of the two primary motor cortices separately in
choice RT tasks (Praamstra & Seiss, 2005; Tandonnet,
Burle, Vidal, & Hasbroucq, 2003; Vidal, Grapperon,
Bonnet, & Hasbroucq, 2003; Taniguchi, Burle, Vidal, &
Bonnet, 2001; see Burle, Vidal, Tandonnet, & Hasbroucq,
2004 for an overview).

The second row of Figure 7 presents the cortical
activation of the incorrect response, that is, the activity
of the primary motor cortices contralateral to the partial
error (left column) and the cortical activation of the
correct one, that is, the activity of the primary motor
cortices contralateral to the correct response. The to-
pographies of these activities, along with that of the N,
are presented in Figure 8.

Because the signal-to-noise ratio of EEG is much lower
than that of EMG, the results have to be interpreted with
some caution. Some systematic patterns emerge none-
theless: The incorrect response activation, as measured
at the primary motor cortices contralateral to the incor-
rect response, starts just before incorrect EMG onset
(blue strip on Figure 7C), peaks shortly after EMG
onset, and then decreases back to baseline, or slightly
below. It seems that the incorrect response activation is
over about 30—40 msec after incorrect EMG onset. The
correct response activation (Figure 7D) follows the A
value and starts later as this value increases. More im-
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portantly, the activation of the correct response clearly
starts after the end of the incorrect response activation,
and there seems to be virtually no overlap between the
incorrect and correct response activation. Thus, here
again, no conflict, as defined in the model, seems to
emerge at the primary motor cortices level. We shall
return to this absence of “conflict” in the Discussion.

Another interesting aspect is to be noted: When com-
paring the dynamics of the incorrect response activation
and of the N, (see Figure 3A), it appears that the N,
invariably starts around the end of the incorrect response
activation. Because it starts affer the end of the incorrect
activation, the N, cannot be responsible for the interrup-
tion of the incorrect response activation, as this incorrect
response activation had necessarily been detected earlier
in order to be stopped. Thus, the N, cannot reflect the
detection of this incorrect response activation, invali-
dating a simple error-detection mechanism (see Gehring
& Fencsik, 1999 for similar arguments on EMG).

For the sake of comparison, we also plotted the ERP
images of the incorrect and correct response simulated
activations. The third row of Figure 7 presents the single-
trial dynamics of the incorrect (Panel E) and correct
response (Panel F) activations obtained in the simulation.
The incorrect response starts being activated just before
the partial error onset and lasts almost until the correct
response. The incorrect response starts being deactivated
when the correct response starts being activated. The
conflict, depicted on Figure 3B, thus peaks just before the
correct response, when the two responses are still acti-
vated and are maximally competing.

DISCUSSION

In the last few years, the conflict-loop theory (Botvinick
et al., 1999, 2001, 2004; Yeung et al., 2004; Cohen et al.,
2000; Carter et al., 1998, 1999) has played a key role in
cognitive control research since it proposed a unified
model that aimed to account for both behavioral and
neurophysiological data. The model introduced a very
simple, although elegant, concept: Response conflict is
defined as the degree of coactivation of the possible
responses. It has been argued that monitoring conflict
allows, without any “clever’ cognitive system, to detect
failures in ongoing processing, and to adjust subsequent
behavior. The model explicitly relates conflict monitor-
ing with ACC activity as observed with metabolic mea-
sures, and through specific EEG components. The main
EEG component related to conflict is the N.. We will first
discuss the relationship between the N, and conflict,
and then discuss the very concept of conflict as a
relevant notion for cognitive control.

N, and Conflict

The N, has played an essential role in the development
of the conflict model (Botvinick et al., 2001, 2004; Yeung
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have been taken between —500 and —100 msec. (A) Laplacian (CSD) map obtained at incorrect activation time (9 msec after EMG onset). One
observes a clear activity localized over C4, that is at the level of the primary motor cortex involved in the incorrect response. (B) Laplacian

map obtained at the peak of the V.. The topography is clearly fronto-central, compatible with source(s) in the ACC and/or in the SMA. (C) Laplacian
map at the time of the correct response activation, One can observe a clear activity nicely localized over C3, that is, over the primary motor
cortices contralateral to the correct response. Note that, because of the positivity starting just before partial error onset (likely reflecting an
inhibition; see Burle et al., 2004), the baseline was taken between —50 and 50 msec for the map. (D) Time courses of the above-described activities

et al., 2004). Reciprocally, the conflict model has been
extremely influential in the N, literature because a lot
of studies have used the conflict model as a general
framework for interpreting their results. However, al-
though several studies have tested the conflict interpre-
tation of ACC activity observed in metabolic research
(Brown & Braver, 2005; Egner & Hirsch, 2005), few
studies have explicitly addressed the conflict model
hypothesis on the N, apart from the conflict modelers
themselves (Yeung et al., 2004; Botvinick et al., 2001; see
Carbonnell & Falkenstein, 2006 for an exception). Here,
we directly tested the conflict interpretation of the N, by
estimating the amount of conflict on a trial-by-trial basis
by analyzing partial error trials (Figure 1) that allow, on a
single-trial basis, to track the activation of incorrect and
correct responses. According to the definition of con-
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flict, we reasoned that conflict should depend on the
temporal overlap between the two response activations
that we measured through the A value. A simulation
confirmed that the amount of conflict depends on the
A between the two response activations: The smaller
the A between the incorrect and correct response ac-
tivations, the larger the conflict. However, the present
experiment shows that the N, decreases as the A de-
creases, therefore demonstrating that the N. evolves
in a way opposite to the conflict. The mandatory con-
clusion that derives from the present study is that the
N, does not reflect conflict. A note concerning the
model’s prediction regarding metabolic signal is in or-
der. Indeed, it is important to note that fMRI, because
of its low temporal resolution, provides information of a
different nature compared to EEG: The measured signal
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represents a temporal integration of brain activity. In
this respect, the blood oxygenation level-dependent
signal should not be compared to the peak amplitude
of the conflict, but more likely to the overall conflict,
that is, the surface under the conflict curve (ie., the
integral of the conflict over time). That is actually what
Botvinick et al. (2001) did in their first simulations that
sought to compare the conflict predictions with ACC
activations obtained with fMRI. Integrated conflict was
measured and analyzed in the section “Alternative mea-
sure of conflict,” and the results show that the integrated
conflict is the same whatever A. Thus, interestingly,
the model would predict no change in ACC blood oxy-
genation level-dependent response, as a function of A,
despite the fact that conflict is clearly affected by A. This
confirms that timing is essential for an appropriate test
of the model.

The main hypotheses of the conflict model were: (1)
the amount of conflict is monitored by ACC, (2) the
electrophysiological correlate of conflict monitoring is
the N., (3) conflict triggers cognitive control which
results in subsequent adjustments in behavior. The
present data clearly invalidate Prediction 2. Recently,
Prediction 3, namely, that sequential effects depend on
conflict, has been put into test by Burle et al. (2005).
The results demonstrated that conflict, as assessed by
incorrect response activation and reflected by the N, is
not sufficient to account for sequential adjustments.
Concerning Prediction 1, one may argue that the ACC
indeed measures conflict, but that the N. does not
reflect such a conflict monitoring. Although this consid-
erably weakens the model, this view could save (a part
of) it. This is, however, unlikely. Indeed, several source
localization studies have pointed out that the N, has a
source in the ACC (van Veen & Carter, 2002; Dehaene,
Posner, & Tucker, 1994), although other areas, includ-
ing the supplementary motor area, might also contrib-
ute to the N, (Herrmann, Rommler, Ehlis, Heidrich,
& Fallgatter, 2004; Stemmer, Vihla, & Salmelin, 2004;
Dehaene et al., 1994). Furthermore, recent coregistra-
tion of EEG and fMRI provided a strong argument in
favor of the idea that the ACC is at least involved in the
genesis of the N. (Debener et al., 2005). Hence, ACC
activity, as assessed by fMRI, and N, are likely to be
strongly related.

A recent report, in light of other studies, further sug-
gests that the ACC does not monitor response con-
flict: di Pellegrino, Ciaramelli, and Ladavas (2007)
showed that the ACC is mecessary for sequential ad-
justments to occur (see also Kerns et al., 2004), whereas
Burle et al. (2005) showed that response conflict is not
sufficient to trigger those adjustments. Taken together,
those two studies clearly dissociate the ACC and re-
sponse conflict monitoring.

Considering the above arguments, the most parsimo-
nious position is to assume that, although the ACC seems
clearly involved in detecting the need for more cogni-

tive control, it does not do so through conflict monitor-
ing (Egner & Hirsch, 2005; Nakamura, Roesch, & Olson,
2005).

Response Coactivation, Conflict,
and Behavioral Interference

Besides the interpretation of the N, and ACC activity in
terms of conflict, the present data also question the very
notion of response conflict—or response competition—
as a universal explanation for both behavioral interfer-
ence and ACC activity, Indeed, the EMG data clearly
indicate that there was no coactivation of the responses
at such a peripheral level, and the same conclusion
seems to hold also at the level of the primary motor
cortex. Even for trials in which the incorrect response
was undoubtedly activated, the correct and incorrect
responses are never activated at the same time, casting
some doubt on the general idea that the responses are
competing. Before we go further in this direction, a
comment is in order: The fact that there was no
coactivation in the present dataset does not imply that
coactivation is never obtained. As a matter of fact,
Carbonnell and Falkenstein (2006) did observe overlap
berween response force traces on a trial-by-trial basis.
Thus, the presence of overlap between response acti-
vations might well depend on the specific parameters
of the task. In any case, the important point is that,
even without coactivation, the present data set clearly
shows an interference effect on RT. Thus, if coactivated
responses compete, inducing an interference, the pres-
ent data show that response competition is not neces-
sary for interference to occur. Coactivation seems also
lacking at the primary motor cortices (MI) level. Note
that, although they are not the only areas involved in
actual response activation, there is general agreement
that MI plays an essential role in the implementation of
the motor command. Thus, if behavioral interference is
due to a competition between mutually exclusive repre-
sentations, such a competition does not occur at the
motor execution level (Burle et al., 2002; Rosler &
Finger, 1993), but more likely upstream in the informa-
tion processing chain, contrary to what is often assumed
(Gratton et al., 1988; Coles et al., 1985; see, however,
Valle-Inclan & Redondo, 1998). This may sound at odds
with a rather large amount of data, empirical and
theoretical, suggesting that response competition is at
the core of interference effects. However, it is to be
noted that (almost) all arguments for motor coactiva-
tion come from EEG data, employing averaging pro-
cedures. Importantly, our averaged data also seem, at
first sight, in agreement with motor coactivation (see
Figure 6). However, as described above, the apparent
coactivation stems from an artifact introduced by aver-
aging and when one looks at the same data with methods
that avoid the production of such an artifact, the ob-
served pattern leads to the opposite conclusion. One may
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thus wonder whether similar artifacts are present in the
literature (see Meyer, Osman, Irwin, & Yantis, 1988 for
similar concerns) and the arguments for coactivation of
motor components may need to be re-evaluated.

Note, however, that the absence of coactivation of
responses does not preclude the possibility of coactiva-
tion of mutually exclusive representations upstream
from the primary motor cortices. Indeed, competition
might well occur at more abstract (or central) levels. In
this case, this would mean that interference does not
occur at the motor level (Burle et al., 2002; Valle-Inclan
& Redondo, 1998; Rosler & Finger, 1993), but at other
stages of information processing. Thus, the present
results might remain compatible with “competition™
views, but push the location of such a competition
upstream in the information processing chain.

Relations to Other Models of ACC/N,. Function

The present data clearly invalidate the interpretation of
the N, in terms of conflict, defined as the coactivation of
two responses. Some alternative models of ACC function
and of the N, have been proposed recently. We shall
now discuss the implication of the present data for these
models.

The Reinforcement Learning Theory of the N,

Holrovd, Yeung, Coles, and Cohen (20035) and Holroyd
and Coles (2002) proposed an alternative formal model
of the N. and ACC function.* This model is based on
reinforcement learning theory (Sutton & Barto, 1998)
that implements the so-called temporal difference er-
ror. It is beyond our scope to describe the model in
detail. We will briefly present the features that are
relevant for evaluating the impact of the present results
for this model. The most recent version of the model
(Holroyd et al., 2005) for (a modified version of) the
Eriksen task is made of two components: a task module
and a monitor module. The task module implements the
operations necessary to solve the task. It is composed of
three lavers: an input layer (coding for the letters
presented at each position, i.e., “H"” on left position,
or “S" on the center position etc...), a category layer
(representing a decision concerning the nature of the
central—i.e., the target—letter) and a response layer
(representing the two possible responses).” The catego-
ry and the response layers continuously send their level
of activity to the monitor module. The monitor module
is also composed of several layers, but we will present
only the relevant ones. One set of units, so-called
conjunction units, receive activation from the category
and response units and code for the conjunction of the
two (i.e., the HL unit receives activation from the
stimulus unit H and the response unit L. Its activation
thus indicates that the target H and the response L have
been activated). There are thus four conjunction units (2
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targets x 2 responses), and each of these units is
associated with a value, that can be positive if the
conjunction corresponds to a correct response, or neg-
ative in the opposite case. For example, if the instruction
is to give a left response when the target is “H,” the
value of HL will be positive, whereas the value of HR
(“H" rarget and right response) will be negartive. A
temporal difference unit (TD) receives inputs from the
conjunction units, integrates them, and issues a tempo-
ral difference signal that will be an error signal in the
case of incorrect response. More formally, because no
more than one unit can be active at any time (Holroyd
et al., 2005, p. 179), the activation @iy, of the TD at time
amounts to:

ar = SiVs (4)

where S, is the present state of the system (the level
of activity of the conjunction unit, if any) and V; is the
value of this state (note that this corresponds to basic
definition of conditioning learning processes; see Sutton
& Barto, 1990). The temporal difference signal at time ¢,
whose amplitude corresponds to the N, is defined as:

t_ r=1
8 =a, —dp (

N
-

that is, the difference between two successive time steps
(represented as cycles in the model).

Can this model account for the present data? Al-
though the simulations reported by Holroyd et al.
(2005) were only concerned with overt errors, one can
easily assume that an error signal could be generated by
partial errors.” Thus, in principle, partial error could
certainly induce an N, in this model. Furthermore,
according to the way the error signal is generated, it is
likely that the predicted N. would be much more time-
locked to the partial error onset than would the conflict
(cf. Figure 3B), hence, would be more similar to the
experimental N. (cf. Figure 3A), although some simu-
lations are certainly needed to better confirm this hy-
pothesis. However, without significant modification, the
model does not seem able to account for the relation-
ship between N, amplitude and A values. Indeed, as
clearly stated by Holroyd et al. (p. 178) “[...] the first
unit of each pair |of task state units] 1o be activated
remains active until the end of the trial. Critically, if the
task module generates a second response following an
error (an error correction), the response detection unit
activated by the initial response remains active, and the
response detection unit associated with the second
response remains inactive. [...]". Thus, even if the task
module could correct an error, the monitor module would
be blind to such a correction, hence, the error signal could
not be sensitive to the timing of such a correction,

If we relax this constraint, one may wonder whether a
modified version of the reinforcement learning hypoth-
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esis could account for the data. Given that the value of
a given state is constant during a trial (even if it can
vary during learning), it appears from Equation 4 that
the evolution of the N, will only depend on the time
course of §,. If one accepts that, after initial activation
of an incorrect conjunction unit (triggering an error
signal, represented as a negative TD signal, see Holroyd
et al., 2005), a correct conjunction unit can later be
activated, the activation of this correct unit will trigger
a positive TD signal that will counteract the negartive
one (i.e., interrupt the error signal). Interestingly, in this
case, there will be a monotonic relationship between the
end of the error signal and the correction: the later
the correction, the longer the duration, and probably
the greater the activation, of the error signal. This would
correspond to the N, results (Figure 3C). Obviously, such
a possibility needs to be implemented and tested in fu-
ture simulations.

On-line Control of Control?

Besides the invalidation of the conflict account, the
present results also provide insights that may help in
deciphering the functional significance of the N..

In the present dataset, the latency and dynamics of
the N, onset are independent of the interval between
incorrect and correct response activations, suggesting
that the N, induced by the partial error initially develops
in the same way whatever the timing of the correction.
The N., however, lasts longer and reaches a higher
amplitude when this interval increases (Figure 3A and
C). After this initial development, the N, seems inter-
rupted. This interruption correlates with the timing of
the correct response activation: the later the correction,
the later the interruption, in agreement with data ob-
tained by Fiehler, Ullsperger, and von Cramon (2005),
who observed that the N, on overt errors peaks later
when the correction of the error is slow.

The N, initial development is similar whatever the
timing of the correction, suggesting that the N, is a
priori the same, and thus, that the observed differences
occur later in time. This indicates that the N. can be
modulated *“on-line,” that is, during the course of a
trial. Furthermore, the N, interruption being directly
linked to the correction, it seems that the N, is sup-
pressed once the remediation process has started. This
suggests that ACC activity is used as an “‘alarm signal,”
which lasts until remediation processes take place,
making such an alarm signal useless. In this case, this
would indicate that the need for control is also moni-
tored and adjusted on-line, during the course of a trial.
In the above discussion of the reinforcement learning
model of the N, we have seen some possible directions
on how this model could implement such an idea.
Whatever the exact nature of this signal, because it is
highly dynamic and flexible, this opens new perspectives

and adds constraints on possible modeling of the eval-
uation processes.

APPENDIX A
Single-trial Dynamics

In order for all the participants to have the same weight
on all the “trials” of the ERP images, we have computed
the ERP images for each participant separately, and then
averaged the ERP images. ERP images are, in fact, matrices
of size number of points x number of trials.
The value of number_of_trials, however, is not constant
across subjects because it depends on the number of par-
tial errors. Thus, the matrices for the various subjects did
not exactly have the same size, precluding direct averaging
of the matrices, and thus, of the ERP images. In EEGLAB,
the number_of trials value in the matrix can be reduced
by applying an intertrial smooth (Jung et al., 2001). One
can thus theoretically reduce the dimensions of all the
matrices of all the subjects to the same value. This, how-
ever, necessitates large smoothing values for the subjects
presenting a lot of tials, given the large differences in
number of trials (see Table Al). We therefore choose a
balanced option, both by decreasing the dimension of the
matrices containing the largest number of trials by apply-
ing an appropriate smooth implemented in EEGLAB, and
by increasing the size of the matrices presenting a low
number of trials, by applying an interpolation of the image
across the trials. Note that the interpolation does not
change anything to the image but its size. The information
conveyed by the ERP image is thus kept constant, as ex-
emplified in Figure Al. The smoothing/interpolation pro-
cedure applied to each individual participant is presented

Table Al. Summary of the Number of Partial Errors and
of the Smoothing/Interpolation Procedure Applied to the
Individual Data

Subject  Partial Errors  Smooth  Interpolation  Final
1 216 - - 216
2 92 - 124 216
3 236 20 - 216
4 146 - 70 216
5 279 63 - 216
6 268 52 - 216
7 173 - 43 216
8 277 61 - 216
9 267 51 - 216

10 216 - - 216

The final number of “trials” (ie., rows in the matrix) was set to 216
because (i) two participants had this number of trials, and (ii) it
seemed a good compromise between smoothing (reducing dimen-
sion) and interpolation (increasing dimension).
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Figure Al. Impact of
interpolation on the time
course of activity of interest:
The top figure represents the
ERP image of EMG activity for
Subject 4, before interpolation
(number of trials = 146),

and the bottom figure
represents the same data
after interpolation (number
of “trials” = 216). As one
can see, the interpolation did
not introduce any distortions
or remove any obvious
properties of the signal.

Color bars are in pV.

140
350
120 +
300
100 |
250
@ 80
o 200
= 60
5 150
5 40}
w
100
20 +
50
175
2 0
=175
-100 0 100 200 300 400
Time from partial error onset (msec)
200
350
180 |
160 300
140 250
w 120 F
e i 200
= 100
E 8o 150
3 eof
40 ¢ i 100
20 r 50
175
= 0
175 |
-100 0 100 200 300 400
Time from partial error onset (msec)

Table A2. Summary of the Number of Partial Errors and of

the Smoothing/Interpolation Procedure Applied to the

Simulation

Subject  Partial Errors  Smooth — Interpolation  Final
1 68 1 - 67
2 67 - - 67
3 63 - 4 67
4 57 - 10 67
& 71 1 - 67
6 74 7 - 67
¥ 57 - 10 67
8 49 - 18 67
9 85 18 - 67

10 67 - - 67

The final number of “trials” (i.e.,

rows in the matrix) was set to 67.
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in Table Al. The smoothing/interpolation procedure ap-
plied to the simulation is presented in Table A2.

APPENDIX B
Chronometry of Partial Errors

In the experimental data, the latency of the partial er-
ror onset decreased from Class 1 (A values from 101 to

Table B1. Mean Chronometric Indices (msec) Obtained in

the Experiment for the Partial Error Trials

Partial Error Onset  Response Time A Value
Class 1 277 410 133
Class 2 260 440 180
Class 3 246 481 235
Class 4 237 505 267
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Table B2. Mean Chronometric Indices Obtained in the
Simulation for the Partial Error Trials

Partial Error Onset  Response Time A Value
Class 1 6.21 9.79 3.58
Class 2 4.42 10.61 6.18
Class 3 2.94 12.12 9.18
Class 4 2.14 14.13 11.99

All the values are given in number of cycles.

150 msec) to Class 4 (from 251 to 300 msec) [F(3, 27) =
21.2, p < .001; linear component: F(1, 9) = 34.05;
p < .001]. Symmetrically, the latency of the correct
response increased [F(3, 27) = 59.81, p < .001; linear
component: F(1, 9) = 86.13, p < .001]. Thus, the
increase in the A values is due to both earlier partial
errors and later correct responses (see Table B1). A sim-
ilar pattern was obtained in the simulation: The latency
of the partial error onset decreased from Class 1 (from 2
to 4 cycles) to Class 4 (from 11 to 13 cycles) [F(3, 27) =
77.97, p < .001; linear component, F(1, 9) = 188.12,
p < .001]. Symmetrically, the latency of the correct re-
sponse increased [F(3, 27) = 70.87, p < .001; linear
component: F(1, 9) = 169.27, p < .001] (see Table B2).
Thus, as for the experimental data, the increase in the
A values is due to both earlier partial errors and later
correct responses. More importantly, the partial error
recorded experimentally and simulated behaves in the
same way, making the two highly comparable.
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Notes

1. According to the conflicc model, conflict is maximal after
the incorrect response on erroneous trials, but peaks just
before the correct response on correct trials (see Yeung et al.,
2004, Figure 14). This is due to the fact that, on correct trials,
the incorrect activation precedes the correct activation. It has
been argued that, in this case, the electrophysiological corre-
lates of the conflict is to be found on an “N2" component,
either time-locked to the stimulus (Yeung et al., 2004, Fig-
ure 15), or response-locked (Yeung et al., 2004, Figure 13). As
the simulations presented below will clearly show, this N2 in
fact reflects an N, time-locked to the incorrect response acti-
vation, as predicted by the conflict model.

2. Note that, although EMG—fMRI coregistration is now start-
ing to become feasible, detecting such small incorrect EMG

activations during fMRI acquisition is still beyond current tech-
nical capabilities, as those partial errors are of small amplitude,
and the frequency components of EMG largely overlap the
frequencies of the noise induced by the echo-planar imaging.
It is therefore currently technically impossible to measure the
degree of response coactivation in the scanner. For this reason,
EEG is more appropriate than fMRI to test this aspect of the
model.

3. Botvinick et al. implemented two versions of the model:
one with a feedback on the attentional layer, one without. The
version used here implements the feedback.

4. Brown and Braver (2005) proposed a modified version
of Holroyd and Coles (2002)'s model: the so-called error-
likelihood model. It aims mainly at accounting for metabolic
data, and a recent test of the model for electrophysiological
data invalidates some of its main predictions (Nieuwenhuis,
Schweizer, Mars, Botvinick, & Hajcak, 2007). We will thus not
further discuss this model here.

5. An attentional layer is also present in the task module,
biasing stimulus and response processing. However, because
the impact of the attentional layer is not relevant here, we will
not discuss it further.

6. In a way similar to that conducted for the conflict model.
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