Clment Dombry 
email: clement.dombry@math.univ-poitiers.fr
  
Christian Mazza 
email: christian.mazza@unifr.ch
  
Some remarks on Betti numbers of random polygon spaces

Keywords: Configuration space, Betti number, Poincaré polynomial, random polygonal linkage, random manifold AMS Subject classification. Primary: 60B05, 55R80

Polygon spaces like

) or they three dimensional analogues N ℓ play an important rle in geometry and topology, and are also of interest in robotics where the l i model the lengths of robot arms. When n is large, one can assume that each l i is a positive real valued random variable, leading to a random manifold. The complexity of such manifolds can be approached by computing Betti numbers, the Euler characteristics, or the related Poincaré polynomial. We study the average values of Betti numbers of dimension p n when p n → ∞ as n → ∞. We also focus on the limiting mean Poincaré polynomial, in two and three dimensions. We show that in two dimensions, the mean total Betti number behaves as the total Betti number associated with the equilateral manifold where l i ≡ l. In three dimensions, these two quantities are not any more asymptotically equivalent. We also provide asymptotics for the Poincaré polynomials

Introduction 1.Background

In this note, we consider a question raised by M.Farber in [START_REF] Farber | Topology of random linkages[END_REF]. We study closed planar n-gons whose sides have fixed lengths l 1 , • • • , l n where l i > 0 for 1 ≤ i ≤ n. The set of polygonal linkage in R 2 [START_REF] Farber | Topology of random linkages[END_REF] parametrizes the variety of all possible shapes of such planar n-gons with sides given by ℓ = (l 1 , • • • , l n ). The unit vector u i ∈ C indicates the direction of the i-th side of the polygon. The condition l i u i = 0 expresses the property of the polygon being closed. The rotation group SO(2) acts on the set of side directions (u 1 , • • • , u n ) diagonnaly.

M ℓ = {(u 1 , • • • , u n ) ∈ S 1 × • • • S 1 ; n i=1 l i u i = 0}/SO
Polygon spaces play a fundamental rle in topology and geometry, as illustrated for example by Kempe Theorem which states that "Toute courbe algébrique peut être tracée à l'aide d'un système articulé", see e.g. [START_REF] Lebesgue | Leons sur les constructions gomtriques, professes au Collège de France en 1940-1941[END_REF]. [START_REF] Farber | Topolgy of robot motion planning[END_REF] provides other examples of such universality results in topology. Polygon spaces generated an active research area in geometry (see e.g. [START_REF] Farber | Homology of planar polygon spaces[END_REF], [START_REF] Hausmann | Sur la topologie des bras articulés In Algebraic Topolgy Poznan[END_REF], or [START_REF] Thurston | The mathematics of the three-dimensional manifolds[END_REF]), but are also of strong interest in applications like robotics where each l i models the length or a robot arm (see e.g. [START_REF] Farber | Topology of random linkages[END_REF], [START_REF] Farber | Betti numbers of random manifolds Homology[END_REF], [START_REF] Farber | Homology of planar polygon spaces[END_REF] and [START_REF] Farber | Topolgy of robot motion planning[END_REF]).

We can also point out potential applications in polymer science where such polygons model proteins. In systems composed of a large number n > > 1 of components, the l i are usually only partially known, so that we can assume that each l i ∈ R + is random. We denote by µ n the distribution of ℓ. We will obtain our results under the following assumption:

(H) µ n is a product measure µ n = µ ⊗n with µ a diffuse measure on (0, ∞) such that e ηx µ(dx) < ∞ for some η > 0.

Notice that M tℓ and M ℓ are equal when t > 0, so that the measure µ n might be seen as a probability measure on the unit simplex △ n-1 .

To get some idea on the nature of the random manifold M ℓ , one can study the stochastic behavior of invariants like Betti numbers, the Euler characteristics or the total Betti number (see below). Here, we focus on the Betti numbers b p (M ℓ ), for dimensions p = p n growing with n. We recall the result of [START_REF] Farber | Homology of planar polygon spaces[END_REF] describing Betti numbers of planar polygon spaces as functions of the length vector ℓ. In what follows, 

[n] denotes the set {1, • • • , n}. A subset J ⊂ [n] is called short if j∈J l j < j / ∈J l j . It is called median if j∈J l j = j / ∈J l j . Let 1 ≤ i 0 ≤ n be such that l i 0 is maximal among l 1 , • • • , l n .
p (M ℓ ) = a p (ℓ) + ãp (ℓ) + a n-3-p (ℓ), (1) 
so that the Poincaré polynomial of the random manifold is given by

p M ℓ (t) = n-3 p=0 b p (M ℓ )t p = q(t) + t n-3 q( 1 t ) + r(t), (2) 
where

q(t) = n-3 k=0 a k t k and r(t) = n-3 k=0 ãk t k ,
see [START_REF] Farber | Topology of random linkages[END_REF]. The total Betti number B(M ℓ ) defined by

B(M ℓ ) = n-3 p=0 b p (M ℓ ) = p M ℓ (1),
provides ideas on the size or on the complexity of the manifold M ℓ . We will study the asymptotic behavior of B(M ℓ ) when n is large and ℓ is random. We first give some examples following [START_REF] Farber | Homology of planar polygon spaces[END_REF].

In the equilateral case where each l i is equal to some l > 0, it turns out that one can give exact formulas for the various Betti numbers, and therefore for B(Ml):

assume n = 2r + 1 odd. Then b k (Ml) = n-1 k when k < r -1, b k (Ml) = 2 n-1 r-1 when k = r -1 and b k (Ml) = n-1
k+2 when k > r -1. The related total Betti number is then given by p Ml (1) = 2 n-1 -n-1 r . For arbitrary large n, one has (see [START_REF] Farber | Homology of planar polygon spaces[END_REF])

p Ml (1) = B n = 2 n-1 (1 - 2 πn + o(n -1/2 )) , n → ∞. (3) 
For pentagons, that is when n = 5, the moduli space M ℓ is a compact orientable surface of genus not exceeding 4.

The vector length ℓ is said to be generic when n i=1 l i ε i = 0, for any ε = (ε i ) 1≤i≤n , where , ∀i ε i ∈ {-1, +1}. When n is even, equilateral weights with l i ≡ l are not generic. [START_REF] Farber | Homology of planar polygon spaces[END_REF] proved that for generic ℓ, the total Betti number B(M ℓ ) is bounded by 2B n-1 , so that the explicit formulas obtained for equilateral n-gons provide bounds for the maximum over ℓ of B(M ℓ ).

Results

[3] considered the special case where µ is the uniform probability measure on the unit interval with µ n = µ ⊗n , and the case where µ n is the uniform measure on the simplex ∆ n-1 . It was proven that for fixed p ≥ 0, the average p-dimensional betti number

µ n [b p (M ℓ )] = b p (M ℓ )µ n (dℓ)
is asymptotically equivalent to n-1 p , the difference going to zero at an exponential speed. The techniques use exact formulas for the volume of the intersection of a half space with a simplex. We will avoid such formulas to treat general diffuse probability measures using probabilistic techniques, since in fact such volume formulas do not exist for arbitrary measures. Next, [START_REF] Farber | Topology of random linkages[END_REF] consider both planar and spatial polygon spaces, and proved, under an admissibility condition on µ n similar results for mean Betti numbers and also for higher moments, again for fixed dimensions p. As an open question, the author raises the issue of computing the average total Betti number

µ n [B(M ℓ )] = B(M ℓ )µ n (dℓ).
We will consider more generally the mean Poincaré polynomial

pM ℓ (t) = µ n [p M ℓ (t)] = p M ℓ (t)µ n (dℓ), with pM ℓ (1) = µ n [B(M ℓ )].
As the author notices, the knowledge of the individual average Betti numbers µ n [b p (M ℓ )] for large n and fixed p can't help since the terms cannot simply be added up. We will therefore consider the asymptotic behavior of high dimensional Betti numbers µ n [b pn (M ℓ )], where p n goes to infinity when n → ∞ (see Proposition 3.1).

We will obtain our results for product measure µ n satisfying assumption (H) and assume throughout the paper that this hypothesis is satisfied. We prove in Proposition 4.1 that the mean total Betti number is such that

pM ℓ (1) = µ n [B(M ℓ )] ∼ 2 n-1 , (4) 
This shows that equilateral polygons (see [START_REF] Farber | Betti numbers of random manifolds Homology[END_REF]) are representative of the emerging average manifold as n >> 1, as suggested in [START_REF] Farber | Topology of random linkages[END_REF]. We will also consider the mean Poincaré polynomial as n is large, and show that pM ℓ (t) ∼ (1 + t) n-1 when 0 < t < 1, and that pM ℓ (t) ∼ (1 + t) n-1 t -2 when t > 1.

Further moments are also considered and their asymptotic is given in Proposition 4.3. We next consider spatial polygon spaces

N ℓ = {(u 1 , • • • , u n ) ∈ S 2 × • • • S 2 ; n i=1 l i u i = 0}/SO(3).
In this case, for generic length vector ℓ, [START_REF] Hausmann | Cohomology rings of polygon spaces[END_REF] proved that the even Betti numbers are given by

b 2p (N ℓ ) = p j=0 (â j (ℓ) -ân-j-2 (ℓ)), (5) 
where âj (ℓ) denotes the number of short subsets J ⊂ [n] of cardinality |J| = j + 1 containing n. The Betti number of odd dimensions vanish. Furthermore, [START_REF] Hausmann | Cohomology rings of polygon spaces[END_REF] proved that the related Poincaré polynomial is given by

p N ℓ (t) = 1 1 -t 2 J∈Sn t 2(|J|-1) -t 2(n-|J|-1) ,
where J ∈ S n if and only if {n} ⊂ J ⊂ [n] and J is median or short. If ℓ is generic, there is no median set and this is equivalent to

p N ℓ (t) = 1 1 -t 2 n-1 j=0 âj (t 2j -t 2(n-j-2) ) = 1 1 -t 2 q(t 2 ) -t 2(n-2) q(t -2 ) , (6) 
where

q(t) = n-1 j=0 âj t j .
In the equilateral case where l i ≡ l, [START_REF] Klyachko | Spatial polygons and configurations of points in the projective line Algebraic geometry and its applications[END_REF] proved that the 2p-dimensional Betti number b 2p (Nl) is given by

b 2p (Nl) = p i=0 n -1 i ,
when n = 2k + 1 ≥ 3, so that the Euler characteristics or total Betti number is explicitely given as

p Nl (1) = k-1 i=0 2k i (k -i), with p Nl (1) ∼ n 2π 2 n-2 .
We will study the asymptotic behavior of the mean Poincaré polynomial

pN ℓ (t) = µ n [p N ℓ (t)] = p N ℓ (t)µ n (dℓ),
in the large n limit by providing large deviations estimates. We will see that

pN ℓ (1) = µ n [B(N ℓ )] ∼ n2 n-2 > > p Nl (1).
Furthermore, we will see in Proposition 4.2 that the mean Poincaré polynomial exhibits asymptotically a singular behavior in the neighborhood of t = 1, that is

pN ℓ (t) ∼ (1 + t 2 ) n-1 (1 -t 2 ) when 0 < t < 1,
and

pN ℓ (t) ∼ (1 + t 2 ) n-1 (t 2 -1)t 2 when t > 1.
This shows that equilateral configuration spaces are not representative of the random manifold in dimension 3 when n is large.

Preliminaries

We introduce here the main technical tool used in our analysis of the Betti numbers of random polygon spaces: a probabilistic interpretation of formulas ( 1) and ( 5) in terms of random permutations and stopping times. We first introduce some notations.

For any length vector ℓ ∈ (0, ∞) n , we define l obtained from ℓ by the following permutation of the coordinates : let i 0 be the minimal index such that l i 0 is maximal among the l i , 1 ≤ i ≤ n, and define l = ( l1 , • • • , l1 ) by ln = l i 0 , li 0 = l n , and li = l i if i / ∈ {i 0 , n}.

We denote by σ a random permutation of Σ n-1 with uniform distribution

U Σ n-1 .
The stopping time τ σ (ℓ) is defined by

τ σ (ℓ) = min 0 ≤ t ≤ n -1 ; t i=1 l σ(i) + l n - n-1 i=t+1 l σ(i) ≥ 0 .
We use also the notation τ (ℓ) = τ Id (ℓ) and τ (ℓ) = τ Id ( l). Please note that these stopping times are well-defined and that τ ≤ n -1 and τ ≤ n -2.

We denote by k a random variable with binomial distribution B n-1,q with parameters n -1 and q ∈ [0, 1].

First consider the planar case.

Lemma 2.1 The number a p (ℓ) of short sets is given by

a p (ℓ) = n -1 p U Σ n-1 [τ σ ( l) > p]
The number of median sets ãp (ℓ) vanishes µ n -almost surely. Hence, the planar Betti numbers are given µ n -almost surely by

b p (M ℓ ) = U Σ n-1 n -1 p 1 {τσ( l)>p} + n -1 p + 2 1 {τσ ( l)>n-p-3}
and have expected value

µ n [b p (M ℓ )] = µ n n -1 p 1 {τ (ℓ)>p} + n -1 p + 2 1 {τ (ℓ)>n-p-3}
In the spatial case, the following representation holds.

Lemma 2.2

The coefficients âp are given by

âp (ℓ) = n -1 p U Σ n-1 [τ σ (ℓ) > p]
Hence, the even spatial Betti numbers are given µ n -almost surely by

b 2p (N ℓ ) = 2 n-1 (U Σ n-1 ⊗ B n-1,1/2 ) 1 {τσ (ℓ)>k;0≤k≤p} -1 {τσ (ℓ)>k;n-p-2≤k≤n-2}
and have expected value

µ n [b 2p (N ℓ )] = 2 n-1 (µ n ⊗ B n-1,1/2 ) 1 {τ (ℓ)>k;0≤k≤p} -1 {τ (ℓ)>k;n-p-2≤k≤n-2}
Proof of Lemmas 2.1 and 2.2

We consider the planar case and prove the first lemma. The second lemma corresponding to the spatial case is proved with a very similar analysis.

From the definition of the coefficient a p (ℓ), we have

a p (ℓ) = J⊂[n-1] ; |J|=p 1 A J ( l)
where

A J = {ℓ ; j∈J l j + l n -j / ∈J l j < 0}. From the definition of τ σ , it is easily seen that ℓ ∈ A {σ(1),••• ,σ(p)} if and only if τ σ (ℓ) > p. Furthermore, for each subset J ⊂ [n -1] such that |J| = p, there are p!(n -1 -p)! permutations σ ∈ Σ n-1 such that J = {σ(1), • • • , σ(p)}. As a consequence, the coefficient a p (ℓ) rewrites a p (ℓ) = 1 p!(n -1 -p)! σ∈Σ n-1 1 {τσ ( l)>p} = n -1 p U Σ n-1 [τ σ ( l) > p].
From the definition of the coefficient ãp (ℓ), we have

ãp (ℓ) = J⊂[n-1] ; |J|=p 1 B J ( l)
where B J = {ℓ ; j∈J l j + l nj / ∈J l j = 0}. But it is easily seen that since µ is diffuse, the sum j∈J l j + l nj / ∈J l j is also diffuse and µ n (B J ) = 0 for any J ⊂ [n -1]. Hence ãp (ℓ) is almost surely equal to zero.

The formula for the Betti number b p (ℓ) is then a reformulation of equation [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]. Thanks to the invariance of µ n under the action of the permutation group, the distribution of τ σ ( l) under µ n does not depend on σ ∈ Σ n-1 and hence is equal to the distribution of τ . The result for the expected value µ n [b p (M ℓ )] follows.

As will be clear in the sequel, the asymptotic behavior of the Betti numbers is strongly linked with the asymptotic behavior of the random variables τ (ℓ) and τ (ℓ). This is the point of the following lemma.

Lemma 2.3

The following weak convergences hold under µ n as n → ∞:

1. weak law of large numbers:

n -1 τ ⇒ δ 1/2 ,

central limit theorem:

n -1/2 τ - n 2 ⇒ N (0, σ 2 τ ),
where σ τ = σ 2m , m = IE(l) and σ 2 = Var(l).

large deviations: for any

ε > 0, lim sup n -1 log µ n (|n -1 τ -1/2| ≥ ε) < 0
The same results also hold for τ instead of τ with the same variance σ τ = σ τ .

The proof is postponed to the appendix.

3 High dimensional Betti numbers

Planar polygons

The following proposition gives the asymptotic of average high dimensional Betti numbers.

Proposition 3.1 Let (p n ) n≥1 be a sequence of integers.

1. If lim sup n -1 p n < 1/2, then µ n [b pn (M ℓ )] ∼ n-1 pn as n → ∞. 2. If lim inf n -1 p n > 1/2, then µ n [b pn (M ℓ )] ∼ n-1 pn+2 as n → ∞. 3. If lim n -1/2 (p n -n/2) = α, then µ n [b pn (M ℓ )] ∼ 2 πn e -2α 2 2 n-1 as n → ∞.
Applying Proposition 3.1 with a specific choice of the sequence p n , we deduce the following corollary. The asymptotic of the binomial coefficient is obtained with Stirling's formula. 

µ n [b pn (M ℓ )] = n -1 p n µ n (τ > p n ) + n -1 p n + 2 µ n (τ > n -3 -p n ).
When lim sup n -1 p n < 1/2, the weak law of large numbers provided in Lemma 2.3 implies that

µ n (τ > p n ) → 1 and µ n (τ > n -3 -p n ) → 0
as n → ∞, and from large deviations estimates, the convergence speed to zero is exponential. The first point in Proposition 3.1 follows since

b pn (n, µ n ) = n -1 p n µ n (τ > p n ) + (n -p n -1)(n -p n -2) (p n + 1)(p n + 2) µ n (τ > n -3 -p n ) ∼ n -1 p n .
Similarly, when lim inf n -1 p n > 1/2,

µ n (τ > p n ) → 0 and µ n (τ > n -3 -p n ) → 1
as n → ∞ where the convergence to zero is exponentially fast. The second point in Proposition 3.1 follows.

Finally, in the case lim n 1/2 (p nn/2) = α, the central limit Theorem from Lemma 2.3 yields that as n → ∞

µ n (τ > p n ) → 1 -F N (α/σ τ ) and µ n (τ > n -3 -p n ) → 1 -F N (-α/σ τ ),
where F N is the repartition function of the standard normal distribution. Furthermore, from the local limit theorem for the binomial distribution,

n -1 p n ∼ n -1 n -3 -p n ∼ 2 πn e -2α 2 2 n-1 ,
as n → ∞. These estimates yield the last point in Proposition 3.1 since

1 -F N (α/σ τ ) + 1 -F N (-α/σ τ ) = 1.

Spatial polygons

We perform a similar study in the spatial case. The asymptotic behavior of average high dimensional Betti numbers is given by the following Proposition.

Proposition 3.2 Let (p n ) n≥1 be a sequence of integers.

1. If lim sup n -1 p n < 1/2, then µ n [b 2pn (N ℓ )] ∼ pn k=0 n-1 k
as n → ∞.

If lim inf n

-1 p n > 1/2, then µ n [b 2pn (N ℓ )] ∼ n-pn-3 k=0 n-1 k as n → ∞. 3. If lim n -1/2 (p n -n/2) = α, then µ n [b 2pn (N ℓ )] ∼ C(α)2 n-1 as n → ∞, with C(α) = ∞ 2|α| e -u 2 2 √ 2π P(|Z| < um σ )du,
where m = µ(l), σ 2 = Var(l), and Z is standard normal.

Proof of Proposition 3.2:

Recall from Lemma 2.2 that the expected Betti number µ n [b 2p (N ℓ )] is given by

µ n [b 2p (N ℓ )] = 2 n-1 (µ n ⊗ B n-1,1/2 ) 1 {τ >k;0≤k≤pn} -1 {τ >n-1-k;1≤k≤pn+1}
(we use here the fact that k and n -1k have the same distribution under B n-1,1/2 ). Consider first the case lim sup n -1 p n < 1/2 and write

µ n (τ > p n )B n-1,1/2 (0 ≤ k ≤ p n ) ≤ (µ n ⊗B n-1,1/2 ) 1 {τ >k;0≤k≤pn} ≤ B n-1,1/2 (0 ≤ k ≤ p n ).
Using the weak law of large numbers n -1 τ → 1/2 under µ n and the asymptotic for p n , wee see that µ n (τ > p n ) → 1 as n → ∞. Hence the equivalent

(µ n ⊗ B n-1,1/2 ) 1 {τ >k;0≤k≤pn} ∼ B n-1,1/2 (0 ≤ k ≤ p n ).
In the same way,

0 ≤ (µ n ⊗B n-1,1/2 ) 1 {τ >n-1-k;1≤k≤pn+1} ≤ µ n (τ > n-1-p n )B n-1,1/2 (1 ≤ k ≤ p n +1))
and a large deviations argument shows that µ n (τ > np n ) converges exponentially fast to zero, so that this last term is of smaller order than

B n-1,1/2 (0 ≤ k ≤ p n ).
This proves the first point.

Consider now the case lim inf n -1 p n > 1/2. It appears that many terms cancel out and we have for large n

µ n [b 2pn (N ℓ )] = 2 n-1 (µ n ⊗ B n-1,1/2 ) 1 {τ >k;0≤k≤pn} -1 {τ >k;n-pn-2≤k≤n-2} = 2 n-1 (µ n ⊗ B n-1,1/2 ) 1 {τ >k;0≤k≤n-3-pn} -1 {τ >k;pn+1≤k≤n-2} ∼ B n-1,1/2 (0 ≤ k ≤ n -3 -p n ),
where the equivalent is proved just as above.

Finally, consider the case p n = n/2 + α n √ n with α n → α. We use the central limit Theorem and write

µ n [b 2pn (N ℓ )] = 2 n-1 µ n ⊗ B n-1,1/2 ) 1 {τ >k;k≤pn} -1 {τ >k;n-pn-2≤k≤n-2} = 2 n-1 µ n ⊗ B n-1,1/2 ) 1 {n -1/2 (τ -n/2)>n -1/2 (k-n/2);n -1/2 (k-n/2)≤αn} -1 {n -1/2 (τ -n/2)>n -1/2 (k-n/2);-αn-2n -1/2 ≤n -1/2 (k-n/2)≤n -1/2 (n/2-2)} ∼ 2 n-1 E[1 {στ G 1 >G 2 /2;G 2 /2<α} -1 {στ G 1 >G 2 /2;G 2 /2>-α} ]
with G 1 and G 2 independent standard Gaussian random variables. The constant C(α) corresponds to the expectation in the last line. Using symetry properties for the distribution of (G 1 , G 2 ), we easily verify the announced formula for C(α). This ends the proof of Proposition 3.2

Asymptotic behavior of the Poincaré polynomial 4.1 Planar polygons

We will here consider the random Poincaré polynomial p M ℓ (t) as given in (2) in the large n limit. We first give a representation of this invariant in terms of random permutations and stopping times. 

p M ℓ (t) = (1 + t) n-1 (U Σ n-1 ⊗ B n-1, t 1+t ) 1 {τσ( l)>k} + t -2 1 {τσ( l)>n-1-k} .
As a consequence,

pM ℓ (t) = (1 + t) n-1 (µ n ⊗ B n-1, t 1+t ) 1 {τ >k} + t -2 1 {τ >n-1-k} .
Thanks to this lemma, we prove the following Proposition giving the asymptotic of the average Poincaré polynomial. Proposition 4.1 Let pM ℓ (t) be the mean Poincaré polynomial. When t > 0,

1. If 0 < t < 1, then pM ℓ (t) ∼ (1 + t) n-1 . 2. If t > 1, then pM ℓ (t) ∼ (1 + t) n-1 t -2 .
3. If t = 1, then the mean total Betti number satisfies pM ℓ (1) ∼ 2 n-1 .

Proof of Lemma 4.1 Equation (2) together with Lemma 2.1 yield

q(t) = n-1 k=0 n -1 k t k U Σ n-1 (τ σ ( l) > k) = (1 + t) n-1 n-1 k=0 n -1 k t 1 + t k 1 1 + t n-1-k U Σ n-1 (τ σ ( l) > k) = (1 + t) n-1 (U Σ n-1 ⊗ B n-1, t 1+t ) τ σ ( l) > k .
Please note that in the sum the terms corresponding to k = n -2 and k = n -1 vanish. Finally, Lemma 4.1 follows from the relation p M ℓ (t) = q(t) + t n-3 q(t -1 ) + r(t), with r(t) µ n -almost surely vanishing and from the fact that the distribution of k under

B n-1, 1 1+t is equal to the distribution of n -1 -k under B n-1, t 1+t .
We use once again the invariance property of µ n under the action of the symetric group to simplify the expression of the average Poincaré polynomial µ n [p M ℓ (t)].

Proof of Proposition 4.1

We use the representation of the average Poincar polynomial given in Lemma 4.1 together with weak convergence for (τ , k) under µ n ⊗ B n-1, t 1+t to study the asymptotic behavior .

The weak law of large number for τ (see Lemma 2.3) and a standard weak law of large numbers for binomial distribution imply that (n -1 τ , n -1 k) converges weakly under µ n ⊗ B n-1, t 1+t to (0, t 1+t ). The continuous mapping theorem implies that for 0 < t < 1 or t > 1, the following weak convergence holds under µ n ⊗ B n-1, t 1+t :

1 {τ >k} + t -2 1 {τ >n-1-k} ⇒ 1 { 1 2 > t 1+t } + t -2 1 { 1 2 >1-t 1+t } = min(1, t -2 ).
Integrating this (bounded) convergence yield the result for t = 1.

For t = 1, the continuous mapping theorem does not hold no longer since the map (τ , k) → 1 {τ >k} is not continuous at point (1/2, 1/2). We need here the central limit Theorem. From Lemma 2.3 and standard results for binomial distribution, (n -1/2 (τn/2), n -1/2 (kn/2)) converges weakly under µ n ⊗ B n-1,1/2 to N (0, σ 2 τ ) ⊗ N (0, 1/4). The continuous mapping Theorem yields

1 {τ >k} + 1 {τ >n-1-k} = 1 {n -1/2 (τ -n/2)>n -1/2 (k-n/2)} + 1 {n -1/2 (τ -n/2),n -1/2 (n/2-1-k)} ⇒ 1 {σ τ G 1 >G 2 /2} + 1 {σ τ G 1 >-G 2 /2}
with G 1 and G 2 independent standard Gaussian random variables. We integrate this (bounded) convergence and remark that E(

1 {σ τ G 1 >G 2 /2} ) = E(1 {σ τ G 1 >-G 2 /2} ) = 1/2.
Remark: we can use large deviations results to estimate the speed of convergence in Proposition 4.1 when t = 1. For example for 0 < t < 1, write

µ n (1 + t) -(n-1) p M ℓ (t) -1 = (µ n ⊗ B n-1, t 1+t ) 1 {τ >k} -1 + t -2 1 {τ >n-1-k} = (µ n ⊗ B n-1, t 1+t ) 1 {n -1 (τ -k)≤0} + t -2 1 {n -1 (τ +k)≥1} . Now large deviations for n -1 (τ , k) under (µ n ⊗ B n-1, t 1+t
) will give the speed of convergence to 0 in a logarithmic scale. For t > 1, we have

µ n (1 + t) -(n-1) (p M ℓ (t)) -t -2 = (µ n ⊗ B n-1, t 1+t ) 1 {n -1 (τ -k)>0} + t -2 1 {n -1 (τ +k)<1} ,
and we can use the same method.

Spatial polygons

We use the same strategy in the spatial case and use formula [START_REF] Hausmann | Sur la topologie des bras articulés In Algebraic Topolgy Poznan[END_REF] giving the Poincar polynomial for generic vector length. Since µ is diffuse, µ n -almost every vector length is generic and equation ( 6) holds. The related total Betti number is obtained by taking the t → 1 limit in ( 6)

p N ℓ (1) = lim t→1 1 1 -t 2 q(t 2 ) -t 2(n-2) q(t -2 ) = (n -2)q(1) -2q ′ (1) = (n -2) n-1 j=0 âj -2 n-1 j=0 jâ j (7) 
We use the following representations for the Poincar polynomial:

Lemma 4.2
The Poincar polynomial is given µ n -almost surely by

p N ℓ (t) = (1 + t 2 ) n-1 1 -t 2 (U Σ n-1 ⊗ B n-1, t 2 1+t 2 
) 1 {τσ(ℓ)>k}t -2 1 {τσ (ℓ)>n-k} , for 0 < t < 1 or t > 1, and by

p N ℓ (1) = n2 n-1 (U Σ n-1 ⊗ B n-1,1/2 ) ( n -2 n - 2k n )1 {τσ (ℓ)>k} for t = 1.
Proposition 4.2 Let pN ℓ be the mean Poincaré polynomial associated with random spatial polygons. When t > 0,

1. If 0 < t < 1, then pN ℓ (t) ∼ (1+t 2 ) n-1 1-t 2 .
2. If t > 1, then pN ℓ (t) ∼ (1+t 2 ) n-1 t 2 (t 2 -1) . 3. If t = 1, then the total Betti number satisfies pN ℓ (1) ∼ n2 n-2 .

Remark: In the case of spatial polygons, the Poincar polynomial is an even function. Hence its asymptotic mean behavior for t < 0 follows directly from Proposition 4.2.

Proof of Lemma 4.2

The proof is very similar to the proof of Lemma 4.1. Equation ( 6) together with Lemma 2.2 yield

q(t) = (1 + t) n-1 (U Σ n-1 ⊗ B n-1, t 1+t ) [τ σ (ℓ) > k] .
The case t = 1 follows from the relation

p N ℓ (t) = 1 1 -t 2 q(t 2 ) -t 2(n-2) q(t -2 )
and from the fact that the distribution of k under

B n-1, 1 1+t 2 is equal to the distribu- tion of n -K under B n-1, t 2 1+t 2 . Hence µ n (n -1/2 ln > ε) = (1 -F µ (εn 1/2 )) n ,
and the exponential Markov inequality implies 1 -F µ (εn 1/2 ) ≤ exp(-ηεn 1/2 ) e ηx µ(dx), η > 0.

This implies the weak convergence n -1/2 ln to zero. Conditionnaly to ln = u, the other components (l i ) 1≤i≤n-1 are i.i.d. with conditional distribution given by

µ n ( li ≤ x | ln = u) = F µ (x ∧ u) F µ (u) .
Denote by m(u) and σ 2 (u) the related conditionnal expectation and variance. From the central limit theorem for independent variables, conditionnaly to ln = u, the quantity n -1/2 ( pn i=1 lin-1 i=pn+1 li ) converges weakly to a gaussian distribution of mean 2αm(u) and variance σ 2 (u). Hence the conditionnal probability

µ n   n -1/2 ( pn i=1 li - n-1 i=pn+1 li ) ≥ 0| ln = u   converges to F N (2αm(u)/σ(u))
as n → ∞. We now have to integrate this with respect to ln . Taking into account that ln converges weakly to l max = inf{x ∈ R; F µ (x) = 1} ∈ (0, +∞] as n → ∞ and that (m(u), σ(u)) → (m, σ) as u → l max , we see that

µ n   n -1/2 ( pn i=1 li - n-1 i=pn+1 li ) ≥ 0   → F N (2αm/σ).
This proves the central limit theorem for τ .

We now prove the large deviation estimate. Since

µ n (τ ≤ (1/2 -ε)n)) = µ n  l n + [(1/2-ε)n] i=1 li - n-1 i=[(1/2-ε)n] li ≥ 0   ,
we will provide large deviations estimates for the random sum

S n = ln + [(1/2-ε)n] i=1 li - n-1 i=[(1/2+ε)n]
li .

For t ∈ R, the logarithmic moment generating function is defined by

Λ n (t) = log(µ n (exp(tS n ))).
Using Laplace method, we see that as n → ∞, n -1 Λ n (t) converges to Λ(t) = (1/2ε) e ty µ(dy) + (1/2 + ε) e ty µ(dy).

Using Grtner-Ellis theorem, see e.g. [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], we deduce a large deviations principle for the sum n -1 S n of speed n and of good rate function I being the Fenchel-Legendre transform of Λ. The exact form of I is irrelevant here but it is important to see that I is strictly positive on [0, ∞). Standard arguments from large deviations theory (see [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]) give that I vanishes only at (1/2ε)m -(1/2 + ε)m = -2εm < 0, and hence the action I is negative on [0, ∞). As a consequence, the large deviations principle states that lim sup n -1 log µ n (τ

≤ (1/2 -ε)n) ≤ -inf [0,∞) I < 0.
The same technique is used to deal with µ n (τ ≥ (1/2 + ε)n) and this proves the Lemma.

Lemma 4. [START_REF] Farber | Betti numbers of random manifolds Homology[END_REF] The following bivariate Central Limit Theorem holds under µ n ⊗U ⊗2 Σ n-1 :

n -1/2 (τ σ 1 (ℓ)n/2, τ σ 2 (ℓ)n/2) ⇒ N (0, σ 2 τ ) ⊗2 .

It also holds for τ

Proof of Lemma need a bivariate central limit Theorem for (τ σ 1 ( l), τ σ 2 ( l)) under Let p n,i = n 2 + α n,i √ n with α n,i → α as n → ∞ for i = 1, 2. By the definition of τσ i , We know from the proof of Lemma 2.3 that n -1/2 ln converges weakly to zero. It remains to check that n -1/2 ( p n,i j=1 lσ i (j) -n-1 j=p n,i +1 lσ i (j) ) i=1,2 satisfies a bivariate central limit theorem. Let θ i , i = 1, 2 be real numbers, and consider the linear combination (θ 1 ε n,1 (j) + θ 1 ε n,2 (j)) lj , where we set ε n,i (j) = 21 {σ i (j)≤p n,i } -1. Conditionnaly to ln = u, the components lj are i.i.d. with mean m(u) and variance σ(u), and hence the above sum is a linear triangular array of independent variables with random coefficients (θ 1 ε n,1 (j) + θ 1 ε n,2 (j)) 1≤j≤n-1 . The coefficients are almost surely bounded and satisfy a weak law of large numbers under U ⊗2

(µ n ⊗ U ⊗2 Σ n-1 ) (τ σ i ≤ p n,i ; i = 1..2) = (µ n ⊗ U ⊗2 Σ n-1 )   n -1/2 ln + n -1/2 (
Σ n-1 n -1 n-1 j=1 (θ 1 ε n,1 (j) + θ 1 ε n,2 (j)) 2 → θ 2 1 + θ 2 2 .
(note that the empirical distribution 1 n-1 n-1 j=1 δ (ε n,1 (j),ε n,1 (j)ε n,2 (j)) converges weakly to the uniform distribution on {(±1, ±1)}). As a consequence, conditionaly to ln = u, the above sum converges to a gaussian random variables of mean 2(α 1 θ 1 + α 2 θ 2 )m(u) and variance (θ 2 1 + θ 2 2 )σ 2 (u). Integrating with respect to ln we obtain that the sum converges weakly to a gaussian random variables with mean 2(α 1 θ 1 + α 2 θ 2 )m and variance (θ 2 1 + θ 2 2 )σ 2 . This proves the bivariate central limit theorem with asymptotic independent components.

  Denote by a p (ℓ) the number of short subsets J ⊂ [n] of cardinality |J| = p + 1 and containing i 0 . Denote by ãp (ℓ) the number of median subsets J ⊂ [n] of cardinality |J| = p + 1 and containing i 0 . Then one has for p = 0, 1, . . . , n -3 b
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 31 Let p ∈ (0, 1) and p n = [np]. Then, lim n→∞ n -1 log µ n [b pn (M ℓ )] = -p log p -(1p) log(1p) Proof of Proposition 3.1: From Lemma 2.1, the average Bett numbers is given by
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 41 For any t > 0, the Poincar polynomial is given µ n -almost surely by

2 i=1θ

 2 i n -1/2 ( p n,i j=1 lσ i (j) -n-1 j=p n,i +1 lσ i (j) = n -1/2 n-1 j=1

In the case t = 1, equation [START_REF] Hausmann | Cohomology rings of polygon spaces[END_REF] and Lemma 2.2 imply

Proof of Proposition 4.2 The case 0 < t < 1 and t > 1 are easily deduced from Lemma 4.2 using the following law of large numbers: under

n -1 (k, τ ) converges weakly to (1/2, t 2 1+t 2 ) as n → ∞. Details are omitted since they are as in the proof of Proposition 4.1.

In the case t = 1, the central limit Theorem from Lemma 2.3 states that (n

whith G 1 and G 2 independent standard Gaussian random variables.

Remark: In order to estimate the speed of convergence in Proposition 4.2 when t = 1, we can use for 0 < t < 1 the expression

)

and for t > 1

)

Large deviations results for n

) would give the speed of convergence in a logarithmic scale.

Higher moments

We consider here the higher moments of the Poincar polynomial and prove that their asymptotic behavior is given by the first moment. To this aim, we prove a weak law of large numbers for the renormalized Poincar polynomial.

We begin with the case of planar polygon.

Proposition 4.3 For any t > 0, the following weak convergence holds under

As a consequence, for any t > 0 and ν ∈ N,

Proof of Proposition 4.3 Proposition 4.1 states that the expectation under µ n of (1 + t) -(n-1) p M ℓ (t) converges to min(1, t -2 ) as n → ∞. Hence, weak convergence will be proved as soon as we show that the variance under µ n of (1 + t) -(n-1) p M ℓ (t) goes to zero. We use the representation of the Poincar polynomial from Lemma 4.1 and the replica trick to compute the second moment

We need to show that the two factors of Prod are asymptotically independent in the limit n → ∞. This would yield

and hence the variance of p M ℓ (t) (1+t) n-1 would converge to zero as n → ∞. We now prove asymptotic independance of the two factors. When 0 < t < 1 or t > 1 the aymptotic independence follows from the weak law of large numbers obtained in Lemma 2.3, both factors converging weakly to min(1, t -2 ) (note that the distribution of τ σ ( l) under µ n ⊗ U Σ n-1 is equal to the distribution of τ (ℓ) under µ n ). When t = 1, we use the bivariate central limit Theorem stated in Lemma 4.3 in the Appendix. Weak convergence is proved.

The convergence of the moments is a direct consequence of the weak convergence once we remark that the renormalized Poincar polynomial (1 + t) -(n-1) p M ℓ (t) is µ n almost surely bounded by 1 + t -2 (this is clear from the representation given in Lemma 4.1).

We consider now the higher moments of the Poincar polynomial for spatial polygons spaces. The results and methods are very similar to one of the planar case and are based on Lemma 4.2. Hence we give only the main lines of the proof. Proposition 4. [START_REF] Farber | Homology of planar polygon spaces[END_REF] The following weak convergence holds under µ n as n → ∞,

As a consequence, for any t > 0 and ν ∈ N,

Proof of Proposition 4.4

The proof is similar to the proof of Proposition 4.3 with the following expression of the renormalized Poincar polynomial deduced from Lemma 2.2: for 0 < t < 1 or t > 1

) 1 {τσ (ℓ)>k}t -2 1 {τσ(ℓ)>n-k} , and for t = 1

Convergence of the expectation was proved in Proposition 4.2. The variance is computed using thanks to the replica trick and is shown to converge to zero because of the asymptotic independence of

Appendix

Proof of Lemma 2.3

The weak law of large number is a consequence of the central limit theorem that we prove now. Let We now prove that n -1/2 ln converges weakly to zero and that n -1/2 ( pn i=1 lin-1 i=pn+1 li ) satisfies a central limit theorem. To see this, we denote by F µ the repartition function of µ, and remark that the distribution of ln is given by µ n ( ln ≤ x) = F µ (x) n .