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Summary This study is devoted to the overall response of nonlinear composites composed of phases which have a partly reversible and
partly irreversible behavior, typically elasto-viscoplastic constituents. Upon use of an implicit time-discretization scheme, the evolution
equations describing the constitutive behavior of the phases are reduced to the minimization of an incremental energy function. This
minimization problem is rigorously equivalent to a nonlinear thermoelastic problem with a nonuniform transformationfield. Two
different techniques for approximating the nonuniform eigenstrains by piecewise uniform eigenstrains and for linearizing the nonlinear
thermoelastic problem will be presented.

INCREMENTAL VARIATIONAL PRINCIPLES FOR DISSIPATIVE MATERIALS

Individual constituents
The composite materials considered in this study are composed of individual constituents exhibiting a dissipative behavior
which can be modelled in the general framework of constitutive relations deriving from two thermodynamic potentials.
The specification of the constitutive relations requires first the identification of a finite number ofinternal variablesα in
addition to the observable strainε (attention is limited here to infinitesimal strains). The correspondingdriving forcesA
and the stressσare derived, as usual, from thefree-energy functionw(ε, α) of the material which encompasses all the
energy available to trigger the material evolution:

σ =
∂w

∂ε
(ε, α), A = −

∂w

∂α
(ε, α).

These driving forces govern the evolution of the internal variablesα by derivation of the dissipation potentialϕ(α̇)

A =
∂ϕ

∂α̇
(α̇), or equivalently α̇ =

∂ϕ∗

∂A
(A), whereϕ∗ is the Legendre transform ofϕ,

Upon elimination ofA, it is seen that the history of the internal variables is obtained by solving a differential equation in
time, whereas the strain, which appears as a forcing term in this differential equation, is related to the stress by derivation
of the free-energy of the system

∂w

∂α
(ε, α) +

∂ϕ

∂α̇
(α̇) = 0, σ =

∂w

∂ε
(ε, α),

In the present study, the two potentialsw andϕ are convex functions of their arguments.

Incremental potential
The time interval of study[0, T ] is discretized into sub-intervalst0 = 0, t1, ...., tn, tn+1, ..., tN = T , σ andε denote the
stress and strain field at at timetn+1 andαn denotes the state variables at the previous time step. Aftertime-discretization
the integration of the differential equation for the internal variablesα reduces to the minimization with respect to all
possible internal variables of anincremental potentialJ , which defines in turn the condensed potentialw∆ from which
the stress can be obtained by derivation with respect to the strain

σ =
∂w∆

∂ε
(ε), w∆(ε) = Inf

α
J(ε, α), J(ε, α) = w(ε, α) + ∆t ϕ

(
α − αn

∆t

)
.

COMPOSITE MATERIALS

Reduction to a single potential
A representative volume element (r.v.e.)V of the composite consisting ofN different phases occupying domainsV (r)

with volume-fractionc(r). The thermodynamic potentials for phaser are denoted byw(r) andϕ(r). The r.v.e. V is
subjected to a path of macroscopic strainE(t) and the local fields of stress, strain, and internal variables are denoted by
σ(x, t), ε(x, t) andα(x, t) respectively. The effective response of the composite is the history of the overall stressΣ(t),
which is the volume average of the local stress field over the r.v.e., as a function of the overall strainE(t) .
After time-discretization, the determination of the localfields in the composite at timetn+1 is reduced to the determination
of the effective energỹw∆ of a composite material withone potentialw∆ in the r.v.e.

Σ =
∂w̃∆

∂E
(E), w̃∆ (E) = Inf

〈ε〉=E

〈w∆(ε)〉 = Inf
〈ε〉=E

〈
Inf
α

J(ε, α)
〉

.



Therefore the homogenization problem for composite materials with two potentials is reduced to a homogenization prob-
lem for materials with asinglepotential. There are however two important features of thisvariational problem which
should be highlighted.

1. First, the local condensed potentialw∆ is given as the minimum of the full incremental potentialJ with respect to
the internal variables and isnot explicitly known. Therefore it is easier to work with the full incremental potential
J rather than with the condensed potential itself. In addition J is nonquadratic and therefore it has to be handled
using anonlinearhomogenization theory. A linearization is needed in order to render the problem amenable to
analytical calculations. Several possible linearizations are possible (Ponte Castañeda and Suquet, 1998) and two of
them, the isotropic secant method and a new anisotropic second-order method (Lahellec and Suquet, 2007), have
been implemented.

2. Second, the condensed potentialw∆ depends onx not only through the characteristic functionsχ(r)(x) of the
individual phases, but also through the fieldsα(x) andαn(x). In other wordsw∆(ε) is not a uniformly defined
function over phaser.

Effective internal variables (EIV)
This second difficulty is closely related to the intra-phaseheterogeneity of the field of internal variables (typicallythe
plastic strain field). This difficulty can be overcome (in an approximate manner) by replacing the fieldαn(x) by an

effective internal variableα(r)
n which is a single tensor (instead of a field) representative of the whole field of internal

variables over the entire phaser.

A first natural guess for the effective internal variableα
(r)
n would be to consider the fieldsαn(x) andα(x) to be piecewise

uniform within each individual phase. This choice leads rigorously to the Transformation Field Analysis (TFA) which
overlooks the heterogeneitty of the plastic strain field andis known to yield too stiff predictions. Other propositionshave
been made (Lahellec and Suquet, 2007) making use of the first and the second moments of the internal variables in each
individual phases and leading to more accurate predictions.

Discussion
In order to assess the accuracy of the present model, its predictions have been compared to numerical simulations of
the response of a fiber-reinforced composite. Linear-elastic fibers are aligned in the third direction with characteristics
E(1) = 288889 MPa, ν(1) = 0.3. The matrix is elastoviscoplastic with the following constitutive relations

-500

-400

-300

-200

-100

0

100

200

300

400

500

11
[M

P
a]

0.0 0.02 0.04

E11

TOE (EIV+HS)Exact (FEM)

c
(1)

=0.4, m=0.2

ε̇ = ε̇
e + ε̇

vp, ε̇
vp =

3

2
ε̇

vp
eq

s

σeq
, ε̇

vp
eq = ε̇0

(
σeq

σ0

)1/m

,

and material characteristics

E(2) = 70000 MPa, ν(2) = 0.3, ε̇0 = 1, σ0 = 480 MPa.

The two thermodynamic potentialsw andϕ for the fibers and the
matrix are straightforward. The applied loading is an in-plane
shear

E = E11(t) (e1 ⊗ e1 − e2 ⊗ e2) .

The loading consists of 3 different regimes: loading, partial un-
loading and reloading.

The model is implemented using the (anisotropic) linearization proposed by Lahellec and Suquet (2007). The problem is
reduced to a thermoelasticity problem for an anisotropic linear composite. The effective energy of this comparison solid
is determined by the Hashin-Shtrikman (HS) theory. As can beseen from the figure, the model can handle both loading
and unloading conditions and its predictions compare well with the full-field simulations.
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