Nifedipine-activated Ca(2+) permeability in newborn rat cortical collecting duct cells in primary culture. - Archive ouverte HAL
Article Dans Une Revue American Journal of Physiology - Cell Physiology Année : 2001

Nifedipine-activated Ca(2+) permeability in newborn rat cortical collecting duct cells in primary culture.

Résumé

To characterize Ca(2+) transport in newborn rat cortical collecting duct (CCD) cells, we used nifedipine, which in adult rat distal tubules inhibits the intracellular Ca(2+) concentration ([Ca(2+)](i)) increase in response to hormonal activation. We found that the dihydropyridine (DHP) nifedipine (20 microM) produced an increase in [Ca(2+)](i) from 87.6 +/- 3.3 nM to 389.9 +/- 29.0 nM in 65% of the cells. Similar effects of other DHP (BAY K 8644, isradipine) were also observed. Conversely, DHPs did not induce any increase in [Ca(2+)](i) in cells obtained from proximal convoluted tubule. In CCD cells, neither verapamil nor diltiazem induced any rise in [Ca(2+)](i). Experiments in the presence of EGTA showed that external Ca(2+) was required for the nifedipine effect, while lanthanum (20 microM), gadolinium (100 microM), and diltiazem (20 microM) inhibited the effect. Experiments done in the presence of valinomycin resulted in the same nifedipine effect, showing that K(+) channels were not involved in the nifedipine-induced [Ca(2+)](i) rise. H(2)O(2) also triggered [Ca(2+)](i) rise. However, nifedipine-induced [Ca(2+)](i) increase was not affected by protamine. In conclusion, the present results indicate that 1) primary cultures of cells from terminal nephron of newborn rats are a useful tool for investigating Ca(2+) transport mechanisms during growth, and 2) newborn rat CCD cells in primary culture exhibit a new apical nifedipine-activated Ca(2+) channel of capacitive type (either transient receptor potential or leak channel).
Fichier non déposé

Dates et versions

hal-00320848 , version 1 (11-09-2008)

Identifiants

  • HAL Id : hal-00320848 , version 1
  • PUBMED : 11287333

Citer

L. Valencia, M. Bidet, S. Martial, E. Sanchez, E. Melendez, et al.. Nifedipine-activated Ca(2+) permeability in newborn rat cortical collecting duct cells in primary culture.. American Journal of Physiology - Cell Physiology, 2001, 280 (5), pp.C1193-203. ⟨hal-00320848⟩
34 Consultations
0 Téléchargements

Altmetric

Partager

More