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ABSTRACT 

XML data warehouses form an interesting basis for decision-support applications that exploit 
complex data. However, native XML database management systems currently bear limited 
performances and it is necessary to design strategies to optimize them. In this paper, we 
propose an automatic strategy for the selection of XML materialized views that exploit a data 
mining technique, more precisely the clustering of the query workload. To validate our 
strategy, we implemented an XML warehouse modeled along the XCube specifications. We 
executed a workload of XQuery decision-support queries on this warehouse, with and without 
using our strategy. Our experimental results demonstrate its efficiency, even when queries are 
complex. 
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1. Introduction          
Decision support applications nowadays 
exploit heterogeneous data from various 
sources. Furthermore, the development of 
the Web and the proliferation of 
multimedia documents contributed to the 
analysis of so-called complex data [8]. For 
instance, analyzing medical data may lead 
to exploit jointly information under various 
forms: patient records (classical database), 
medical history (text), radiographies, 
echographies (multimedia documents), 
physician diagnoses (texts or audio 
recordings), etc. 

In this context, we have used XML 
in the process of integrating and 
warehousing complex data for analysis [7]. 
However, decision-support queries are 
generally complex because they involve 
several join and aggregation operations. In 
addition, native XML database 
management systems (DBMSs) present 
poor performances when the volume of 
data is very large and the queries are 
complex. Thus, it is crucial to design XML 
data warehouses that guarantee the best 
performance when accessing data. 
Indexing and view materialization are the 
most frequently used optimization 
techniques for this sake [12]. 

Materialized views are physical 
structures that improve data access time by 
precomputing intermediary query results. 
Then, end-user queries can be processed 
efficiently from the data stored within 
these views and do not need access the 
original data any more. Nevertheless, the 
use of materialized views requires 
additional storage space and induces some 
refreshing process overhead. So it is 
crucial to select only pertinent views. 

In the context of relational data 
warehouses, several studies have been 
proposed to resolve the materialized view 
selection problem [1, 3, 4, 10, 11, 13, 18, 
22, 23, 24, 25, 27]. The views that are 
relevant to materialize are selected to 
minimize the processing time of a given 
workload. This optimization is achieved 
under maintenance cost or storage space 
constraints [16]. The existing studies differ 
in several points: 

1. the way of determining candidate 
views; 

2. the framework used to capture 
relationships between candidate 
views; 

3. the use of mathematical cost 
models vs. calls to the query 
optimizer; 



4. the selection of views in a 
relational or multidimensional 
context; 

5. multiple or simple query 
optimization; 

6. theoretical or technical solutions. 
The most recent approaches are 

workload-driven. They syntactically 
analyze the workload to enumerate the 
relevant candidate views [1]. By calling the 
query optimizer, they greedily build a 
configuration of the most pertinent views. 
A materialized view selection based on 
clustering has also been proposed [2]. This 
proposal exploits query clustering to 
determine a set of candidate views and cost 
models to choose pertinent views to 
materialize. 

To the best of our knowledge, no such 
view materialization approach exists in 
XML databases and XML data warehouses 
in particular. Hence, we propose in this 
paper an adaptation of the query 
clustering-based relational view selection 
approach [2] to the XML context. Our 
approach clusters XQuery queries (instead 
of SQL queries) and builds candidate XML 
views that can resolve multiple similar 
queries belonging to the same cluster. New 
XML-specific cost models are used to 
define the XML views that are pertinent to 
materialize. To validate our proposal, we 
implemented an XML data warehouse in a 
native XML DBMS. It is indeed interesting 
to check whether native XML DBMSs 
could someday be able to compete with 
XML-compatible, relational DBMSs. 
Then, we measured the execution time of a 
decision-support query workload with and 
without using our strategy. Our 
experimental results show that the use of 
our strategy greatly improves query 
performance. 

The remainder of this paper is 
organized as follows. We first present the 
context of this study in Section 2. Then we 
detail our materialized view selection 
strategy in Section 3. In order to validate 
our strategy, we present some experimental 
results in Section 4. Finally, we conclude 
and outline some research perspectives in 
Section 5. 

 
2. Study context 
 
2.1 XML data warehouse specification 
Several studies have been proposed for 
designing and building XML data 
warehouses. For instance, Pokorny 
modeled a star schema in XML by defining 
dimension hierarchies as a set of logically 
connected collections of XML data, and 
facts as XML data elements [20, 21]. 

Park et al. also proposed an XML 
multidimensional model in which each fact 
is described by a single XML document 
and dimension data are grouped into a 
repository of XML documents [19]. 

Finally, Hummer et al. designed 
XCube, a family of templates allowing the 
description of a multidimensional 
structure, dimension and fact data for 
integrating several data warehouses into a 
virtual or federated data warehouse [14]. 
The federated templates are not directly 
related to XML warehousing, but they can 
be used to represent XML star schemas. 
XCube is organized as a set of modules or 
formats: XCube Schema, XCube 
Dimensions and XCube Facts, which 
respectively formalize the schema, the 
dimensions and the facts according to a 
star schema. 

These studies use XML documents 
to manage or represent the facts and 
dimensions of an XML data warehouse. 
They actually help logically modeling a 
data warehouse. This allows the native 
storage of documents and their easy 
interrogation based on XML languages. 

In this paper, we selected the 
XCube specification to model a reference 
XML data warehouse and apply our 
strategy. Indeed, in XCube, the authors 
proposed a simple structure for 
representing facts and dimensions in a star 
schema. They use one XML document to 
represent dimensions and one XML 
document to represent facts. In addition, 
they use another XML document 
representing warehouse metadata. The 
other proposals do not use XML 
documents for representing warehouse 



schema. However, we need these metadata 
to compute our cost models. 

Thus, our data warehouse is composed 
of the following XML documents: 

• Schema.xml specifies the data 
warehouse metadata; 

• Dimensions.xml defines all the 
dimensions characterized by their 
attributes and values; 

• Facts.xml specifies the facts, i.e., 
the identifiers of dimensions and 
the description of measures. 

 

 
Figure 1. XCube warehouse 

specification 
 
2.2 XML data warehouse interrogation 
We selected the XQuery language [5] to 
formulate our decision-support queries 
because, unlike simpler languages such as 
XPath, it allows complex queries, 
including join queries over multiple XML 
documents, to be expressed with the 
FLWOR syntax. However, in our 
implementation, we had to extend FLWOR 
expressions with explicit Group by clauses 
to be able to formulate the decision-
support queries we needed. Thus, we 
added the functions Group by (attribute 
list) and Aggregation (aggregation 
operations, measure list) to the XQuery 
syntax. Figure 2 provides an example of 
decision-support query with a multiple 
Group by clause. 
 
 

 

 
Figure 2. Decision-support XQuery 

example 
 
3. XML materialized view 
selection strategy 
The architecture of our materialized view 
selection strategy is depicted in Figure 3. 
We assume that we have a workload 
composed of representative queries for 
which we want to select a configuration of 
materialized views in order to reduce their 
execution time. The first step is to build, 
from the workload, a clustering context. 
Then we define similarity and dissimilarity 
measures that help clustering together 
similar queries. 

For each cluster, we build a set of 
candidate views. The last step exploits cost 
models that evaluate the cost of accessing 
data using views and the cost of their 
storage to build a final materialized view 
configuration. 
 

 
Figure 3. Materialized view selection 

strategy 
 



 
Figure 4. Workload snapshot 

 
3.1 Query workload analysis 
The workload that we consider is a set of 
selection, join and aggregation queries. 
Figure 4 gives a snapshot of this workload. 
The first step consists in extracting from 
the workload the representative attributes 
for each query. We mean by representative 
attributes those are present in Where 
(selection predicate attributes) and 
Group by clauses. 

We store the relationships between 
the query workload and the extracted 
attributes in a “query-attribute” matrix. 
The matrix lines are the queries and the 
columns are the extracted attributes. A 
query iq  is then seen as a line in the matrix 
that is composed of cells corresponding to 
representative attributes. The general term 

ijq of this matrix is set to one if extracted 
attribute ia  is present in query iq , and to 
zero otherwise. This matrix represents our 
clustering context. Table 1 shows the 
query-attribute matrix that is built from the 
workload snapshot from Figure 4. 
 
3.2 Building the candidate view 
configuration 

In practice, it is hard to search all the 
syntactically relevant views (candidate 
views) because the search space is very 
large [1]. To reduce the size of this space, 
we propose to cluster the queries. Hence, 
we group in a same cluster all the queries 
that are similar. Similar queries are the one 
having a close binary representation in the 
query-attribute matrix. Two similar queries 
can be resolved by using only one 
materialized view. We define similarity 
and dissimilarity measures that ensure that 
queries within a same cluster are strongly 
related to each others whereas queries from 
different clusters are significantly different. 
 
3.2.1 Similarity and dissimilarity 
measures 
A query is described by the attributes 
extracted in the query analysis phase. We 
thus describe a query iq  by a 
vector { }piiii qqqq ,...,, 21= , where p  is the 
number of attributes in the matrix. This 
description allows query comparison.  
We define similarity (respectively, 
dissimilarity) between two queries iq  and 

jq  regarding attribute )..1( pkak =  in 
Formula 1 (respectively, Formula 2). 
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Two queries iq  and jq  are similar 
regarding attribute ka  if and only 
if 1== kjki qq , i.e., ka  is present in both 
queries. They are dissimilar if and only 
if kjki qq ≠ , i.e., one of the two queries does 
not contain attribute ka .  

These measures can be extended to 
a set A  composed of p  attributes such 
that we get the degree of global similarity 
and dissimilarity between two queries. We 
thus define the similarity (respectively, 
dissimilarity) between two queries iq  and 

jq  according to all the matrix attributes ka  
in Formula 3 (respectively, Formula 4).  
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Thus, the closer ),( ji qqsim  

(respectively, ),( ji qqdissim ) is to p , the 
more iq  and jq  are considered similar 
(respectively, dissimilar).  

We also define similarity 
(respectively, dissimilarity) measures 
between two query sets and within a query 
set. These measures are defined by 
Formulas 5, 6, 7 and 8. 
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3.2.2 Clustering  
Clustering consists in determining a so-
called natural partition natP  composed of 
objects (here, queries) that reflects the 
internal structure of data. This partition 
must be such as its clusters are composed 
of objects with high similarity and objects 
from different clusters present a high 
dissimilarity.  

Based on the previously defined 
functions, a clustering quality measure 

)( hPQ  can be built, formula 9.  
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This measure permits to capture the 

natural aspect of a partition. Hence, )( hPQ  
measures simultaneously similarities 
between queries within the same cluster of 
partition hP  and dissimilarities between 

queries within different clusters. Thus, we 
can define )( hPQ  as an homogeneity 
function for the same class and an 
heterogeneity function for different classes. 
Therefore, the partitions presenting a high 
intra-cluster homogeneity and a high inter-
cluster disparity have a weak value of 

)( hPQ and thereby appear as the most 
natural.  

We have selected the Kerouac 
algorithm [15] for the clustering phase. 
This algorithm indeed bears several 
interesting properties:  

1. its computational complexity is 
quite low (log linear regarding the 
number of queries and linear 
regarding the number of attributes);  

2. it can deal with a high number of 
objects (queries);  

3. it can deal with distributed data;  
4. it allows to integrate constraints 

within the clustering process. 
This last characteristic is particularly 

interesting, since it provides us with a way 
to integrate constraints concerning the 
view merging process. 
 
3.3 Cost models  
The number of candidate views is 
generally as high as the input workload is 
large. Thus, it is not feasible to materialize 
all the proposed views because of storage 
space constraints. To circumvent this 
limitation, we propose to use cost models 
allowing to keep only the most pertinent 
views.  

Figure 5 shows the typical structure 
of an XML view. In our context, it is 
composed of Cell elements. Each Cell is 
itself composed of dimension elements that 
contain Group by attributes and fact 
elements corresponding to the aggregate 
results. We propose cost models that 
estimate the size and storage cost of a 
given XML view. 
 

 
Figure 5. XML view structure 



 
We estimate the size of a view by 

its number of elements. The number of 
Dimension and Fact elements in each Cell 
is the same. Indeed, the number of 
elements in a given view is estimated by 
the number of Cell elements. To compute 
it, we first estimate the maximum number 
of Cell elements (Formula 10).  

(10)                   )(
1
∏
=

=
d

i
idCellms  

id  is the cardinality of the dimension 
characterizing the Cell element. d  is the 
number of dimensions in the document 
Dimensions.xml.  

Let )(vms  be the maximum size of 
view v  that is composed of dimensions 

kdd ,...,1 , where k is the number of 
dimensions in the view and id  the 
cardinality of dimension id . )(vms  is 
expressed in Formula 11.  
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1
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k

i
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Golfarelli et al. [9] proposed to 
estimate the number of tuples in a given 
view v by using Yao’s formula [26]. We 
also use this formula to estimate the 
number of Cell elements in v (Formula 12).  
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Cellms  is large enough, 

this formula is well approximated by 
Cardena’s formula [6]. Hence, we obtain 
Formula 13. 
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Cardenas and Yao’s formulas are 
based on the assumption that data are 
uniformly distributed. The size, in bytes, of 
a view v is equal to the number of Cell 
elements multiplied by the average size 
needed to store one element. Thus, we 
estimate the size of a view as shown in 
Formula 14. 

(14)              )()(
1
∑
=

×=
k

i
idsizevvsize  

)( idsize  represents the size, in bytes, of 
dimension id  from v and k the number of 
dimensions.  
 
3.4 Objective functions  
We describe in this section three objective 
functions that help evaluating the variation 
of query execution cost induced by adding 
a new view. The query execution cost is 
assimilated to the number of Cell elements 
in the document Facts.xml, if no view is 
used; or to the number of Cell elements in 
the view(s) if they are exploited. The 
workload execution cost is obtained by 
adding the execution costs of each query 
within this workload.  

The first objective function 
advantages the views providing more profit 
while executing queries. The second one 
advantages the views providing more 
benefit while occupying the smallest 
storage space. The third one combines the 
first two in order to first select all the 
views providing more profit and then 
retain only those occupying less storage 
space when this resource becomes critical. 
The first function is useful when the space 
storage is not limited, the second one is 
useful when storage space is small and the 
third one is interesting when storage is 
reasonably large. 
 
3.4.1 Profit objective function  
Let { }mvvV ,...,1=  be the candidate view 
set, S  the final view set and { }nqqQ ,...,1=  
a query set (workload). The profit 
objective function, noted P, is defined in 
Formula 15. 

S)(v
vCQCQCvP

j

jupdatevjSSjS

∉

−−= ∪ (15)   )()()()( /// β  

)(/ QC S  denotes the query execution 
cost when all the views in S  are used. If 
this set is empty, FQQC ×=)(Ø/  because 
all the queries are resolved by accessing 
fact F . When a view iv  is added to S , 

∑ =∪ =
Q

k jkViS vqCQC
0/ ),()(  denotes the 

query execution cost for the views that are 
in ivS ∪ . If query kq  exploits iv , cost 

),( ji vqC  is then equal to vjC  (number of 



tuples in jv . Otherwise, ),( ji vqC  is equal 
to the maximum value between F and 
value of ),( vqC i  (executing cost of iq  
exploiting Sv∈  with jvv ≠ ).  

Coefficient )( ivpQ=β  estimates 
the number of updates for views iv . The 
update probability )( ivp  is equal 

to
query
update

spacestorage %
%1

−
, where the ratio 

query
update

%
%  represents the proportion of 

updating vs. querying the data warehouse.  
 

)( jupdate vC  represents the 
maintenance cost for view jv . 
 
3.4.2 Profit/space ratio objective 
function  
If view selection is achieved under a space 
constraint, the profit/space objective 
function from Formula 16 is used. This 
function computes the profit provided by 

jv  in regard to the storage space )( jvsize  
it occupies.  
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3.4.3 Hybrid objective function  
The constraint on storage space may be 
relaxed if this space in relatively large. The 
hybrid objective function H does not 
penalize space-greedy views if the ratio 

spacestorage
spaceremaining

−
−  is lower or equal than 

a storage-space given 
threshold 10  , ≤< αα , where remaining-
space and storage-space are respectively 
the remaining space after adding iv  and 
the allotted space needed for storing all the 
views. This function is computed by 
combining the two functions P and R as 
shown in Formula 17.  
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3.5 View selection algorithm  

Our view selection algorithm 
(Algorithm 1) is based on a greedy search 
within the candidate view set V. The 
objective function F must be one of the 
functions P, R or H described in the 
previous section. If R is used, we add to the 
algorithm’s input the storage space M 
allotted for views. If H is used, we also add 
threshold α as input.  
 

 
 

In the first algorithm iteration, the 
values of the objective function are 
computed for each view within V. The 
view maxv  that minimizes F, if it exists 
( 0)( max/ >vF S ), is then added to S. If R or 
H is used, the whole storage space M is 
decreased by the amount of space occupied 
by maxv .  

The function values of F are then 
computed for each remaining view in 

SV − , since they depend on the selected 
views present in S. This helps taking into 
account the interactions that probably exist 
between the views.  

We repeat these iterations until 
there is no improvement ( 0)(/ ≤vF S ) or 
until all the views have been selected 
( Ø=− SV ). If functions R or H are used, 
the algorithm also stops when storage 
space is full.  
 
4. Experiments  
In order to validate our approach for XML 
materialized view selection, we generated 
an XML data warehouse, modeled 



according to the XCube specifications. 
This classical test data warehouse is 
composed of sales facts characterized by 
the amount and quantity measures. The 
facts are stored in the document Facts.xml 
(4,92 MB). They are described by five 
dimensions: channels, promotions, 
customers, products and times that are 
stored in the document Dimensions.xml 
(3.77 MB). This data warehouse has been 
implemented within the eXist native XML 
DBMS [17], which is a free tool that 
allows the storage of large documents and 
supports the XQuery language. We ran our 
tests on a Pentium 2 Ghz PC with 1 GB 
main memory and an IDE hard drive.  
 

 
Figure 7. Experimental results 

 
We executed on our data warehouse 

a workload composed of ten XQuery 
decision-support queries, with and without 
using our strategy. The selected views are 
stored in an independent collection. This 
collection is targeted by rewritten queries 
according to view data. We plotted in 
Figure 7 the execution time of our query 
workload on the original XML documents 
and on the materialized views we 
generated. The X-axis represents the ten 
queries and the Y-axis the corresponding 
execution time. The Y-axis is represented 
in logarithmic scale to highlight the 
difference between the execution costs. On 
an average, our XML view materializing 
strategy improves response time by a 
factor 24,700.  
 
5. Conclusion and perspectives  

In this paper, we have presented a 
strategy for materialized view selection in 

XML data warehouses. Our strategy 
exploits the results of clustering applied on 
a given workload to build a set of 
syntactically relevant candidate views. 
With the help of cost models we 
specifically designed for the XML model, 
we retain only the most advantageous 
candidate views. These models estimate 
data access cost using materialized views 
and storage cost for these views.  
We have also proposed three objective 
functions: profit, profit/space ratio and 
hybrid that exploit our cost models to 
evaluate the execution cost of the 
workload. These functions are themselves 
exploited by a greedy algorithm that 
recommends a pertinent configuration of 
materialized views. This allows our 
strategy to respect the storage space 
constraint.  

Finally, note that our strategy is 
independent from the warehouse model 
and the DBMS it is stored in. Though we 
used an XCube-based reference data 
warehouse, our strategy could easily be 
applied on any other model. In the same 
way, any DBMS could be used instead of 
eXist, including relational, XML 
compatible DBMSs.  

The first experimental results we 
achieved are very encouraging, and show 
that our strategy guarantees a substantial 
gain in performance. However, our first 
perspective is to complement these results 
with other tests, possibly on other systems 
than eXist, and to assert in each 
configuration the gain in performance vs. 
the overhead for generating and refreshing 
the materialized views.  

This work also opens two other 
axes of research perspectives. First, it is 
blatantly crucial to adapt or develop highly 
efficient optimization techniques in native 
XML DBMSs if they are to approach the 
performances of relational systems. XML 
indices are getting more and more 
efficient, but there is still room for 
improvement (e.g., multidocument join 
indices). The generalized exploitation of 
materialized views could also be very 
beneficial. Thus, a rewriting query engine 



and refreshing strategies should be 
devised.  

Our second research axis is even 
more specific to XML data warehouses. 
Decision-support queries bear specific 
needs in terms of operators. For instance, 
we had to extend XQuery to allow multiple 
Group by clauses to be able to implement 
our decision-oriented workload within 
eXist. Similar extensions do exist already, 
but it could be interesting to further extend 
XQuery to support OLAP operators such 
as Cube, Rollup or Drill down. 

 
References: 
  
[1] S. Agrawal, S. Chaudhuri, and V. R. 

Narasayya. Automated selection of 
materialized views and indexes in SQL 
databases. In 26th International 
Conference on Very Large Data Bases 
(VLDB 2000), Cairo, Egypt, 2000, pp. 
496–505. 

 
[2] K. Aouiche, P. E. Jouve, and J. 

Darmont. Selection of views to 
materialize based on query clustering. 
Technical report, University of Lyon 2, 
2005.  

 
[3] E. Baralis, S. Paraboschi, and E. 

Teniente. Materialized views selection 
in a multidimensional database. In 23rd 
International Conference on Very 
Large Data Bases (VLDB 1997), 
Athens, Greece, 1997, pp. 156–165.  

 
[4] X. Baril and Z. Bellahsene. Selection of 

materialized views: a cost-based 
approach. In 15th International 
Conference on Advanced Information 
Systems Engineering (CAiSE 2003), 
Klagenfurt, Austria, 2003, pp. 665–
680.  

 
[5] S. Boag, D. Chamberlin, M. Fernandez, 

D. Florescu, J. Robie, and J. Simeon. 
XQuery 1.0: An XML Query 
Language. W3C Working Draft, 
http://www.w3.org/TR/xquery/, April 
2004.  

 

[6] A. F. Cardenas. Analysis and 
performance of inverted data base 
structures. Communications of the 
ACM, Vol. 18, No. 5, 1975, pp. 253–
263.  

 
[7] J. Darmont, O. Boussaid, F. Bentayeb,  

S. Rabaseda, and Y. Zellouf. Web 
multiform data structuring for 
warehousing, volume 22 of Multimedia 
Systems and Applications, 2003, pp. 
179–194.  

 
[8] J. Darmont, O. Boussaid, J.C. Ralaivao, 

and K. Aouiche. An architecture 
framework for complex data 
warehouses. In 7th International 
Conference on Enterprise Information 
Systems (ICEIS 05), Miami, USA, 
2005, pp 370–373.  

 
[9] M. Golfarelli and S. Rizzi. A 

methodological framework for data 
warehouse design. In 1st ACM 
international workshop on Data 
warehousing and OLAP (DOLAP 
1998), New York, USA, 1998, pp 3–9.  

 
[10] H. Gupta. Selection of views to 

materialize in a data warehouse. In 6th 
International Conference on Database 
Theory (ICDT 1997), Delphi, Greece, 
1997, pp 98–112.  

 
[11] H. Gupta and I. S. Mumick. Selection 

of views to materialize in a data 
warehouse. IEEE Transactions on 
Knowledge and Data Engineering, Vol. 
17, No. 1, 2005, pp24–43.  

 
[12] R. Gupta, G. Shuqiao, and Y. Zhen. A 

report on XML data indexing 
techniques. Technical report, National 
University of Singapore.  

 
[13] V. Harinarayan, A. Rajaraman, and J. 

D. Ullman. Implementing data cubes 
efficiently. In ACM SIGMOD 
International Conference on 
Management of data (SIGMOD 1996), 
Montreal, Canada, 1996, pp 205–216.  

 



[14] W. Hummer, A. Bauer, and G. Harde. 
XCube: XML for data warehouses. In 
6th ACM International Workshop on 
Data warehousing and OLAP (DOLAP 
03), New Orleans, USA, 2003, pp 33–
40.  

 
[15] P. Jouve and N. Nicoloyannis. 

Kerouac: An algorithm for clustering 
categorical data sets with practical 
advantages. In International Workshop 
on Data Mining Learning for 
Actionable Knowledge (DMAK 2003), 
2003.  

 
[16] Y. Kotidis and N. Roussopoulos. 

Dynamat: A dynamic view 
management system for data 
warehouses. In ACM SIGMOD 
International Conference on 
Management of Data (SIGMOD 
1999), Philadelphia, USA, 1999, pp 
371– 382.  

 
[17] W. Meier. eXist: An Open Source 

Native XML Database. In Web, Web 
Services, and Database Systems, 
NODe 2002 Web and Database 
Related Workshops, Erfurt,Germany, 
volume 2593 of LNCS, 2002, pp. 
169–183.  

 
[18] T. P. Nadeau and T. J. Teorey. 

Achieving scalability in OLAP 
materialized view selection. In 5th 
ACM International Workshop on 
Data Warehousing and OLAP 
(DOLAP 2002), McLean, USA, 
2002, pp. 28–34.  

 
[19]  B.K. Park, H. Han, and I.Y. Song. 

XML-OLAP: A Multidimensional 
Analysis Framework for XML 
Warehouses. In 7th International 
Conference on Data Warehousing 
and Knowledge Discovery (DaWaK 
2005), Copenhagen, Denmark, 2005, 
pp. 32–42.  

 
[20]  J. Pokorny. Modelling Stars Using 

XML. In 4th ACM International 
Workshop on Data Warehousing and 

OLAP (DOLAP 2001), Atlanta, 
USA, 2001, pp. 24–31.  

 
[21]  J. Pokorny. XML Data Warehouse: 

Modelling and Querying. In 5th 
International Baltic Conference 
(BalticDB&IS 2002), Tallin, Estonia, 
2002, pp. 267–280.  

 
[22]  A. Shukla, P. Deshpande, and J. F. 

Naughton. Materialized view 
selection for multicube data models. 
In 7th International Conference on 
Extending DataBase Technology 
(EDBT 2000), Konstanz, Germany, 
2000, pp. 269–284.  

 
[23]  J. R. Smith, C.S. Li, and A. Jhingran. 

A wavelet framework for adapting 
data cube views for OLAP. IEEE 
Transactions on Knowledge and Data 
Engineering, Vol. 16, No. 5, 2004, 
pp. 552–565.  

 
[24] H. Uchiyama, K. Runapongsa, and T. 

J. Teorey. A progressive view 
materialization algorithm. In 2nd 
ACM International Workshop on 
Data warehousing and OLAP 
(DOLAP 1999), Kansas City, USA, 
1999, pp. 36–41. 

  
[25] S. R. Valluri, S. Vadapalli, and K. 

Karlapalem. View relevance driven 
materialized view selection in data 
warehousing environment. In 13th 
Australasian Database Technologies 
(ADC 2002), Melbourne, Australia, 
2002, pp 187–196.  

 
[26] S. Yao. Approximating block accesses 

in database organizations. 
Communication of the ACM, Vol. 20, 
No. 4, 1977, pp 260–261.  

 
[27] C. Zhang, X. Yao, and J. Yang. An 

evolutionary approach to materialized 
view selection in a data warehouse 
environment. IEEE Transactions on 
Systems, Man, and Cybernetics, Vol. 
31, No. 3, 2001, pp. 282–294. 


