
HAL Id: hal-00320632
https://hal.science/hal-00320632

Submitted on 11 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Materialized View Selection by Query Clustering in
XML Data Warehouses

Hadj Mahboubi, Kamel Aouiche, Jérôme Darmont

To cite this version:
Hadj Mahboubi, Kamel Aouiche, Jérôme Darmont. Materialized View Selection by Query Clustering
in XML Data Warehouses. 4th International Multiconference on Computer Science and Information
Technology (CSIT 2006), 2006, Amman, Jordan. pp.68-77. �hal-00320632�

https://hal.science/hal-00320632
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Materialized View Selection by Query Clustering
in XML Data Warehouses

Hadj Mahboubi, Kamel Aouiche and Jérôme Darmont

ERIC – University of Lyon 2
5 avenue Pierre Mendès-France

69676 Bron Cedex, France
{hmahboubi,kaouiche,jdarmont}@eric.univ-lyon2.fr

ABSTRACT

XML data warehouses form an interesting basis for decision-support applications that exploit
complex data. However, native XML database management systems currently bear limited
performances and it is necessary to design strategies to optimize them. In this paper, we
propose an automatic strategy for the selection of XML materialized views that exploit a data
mining technique, more precisely the clustering of the query workload. To validate our
strategy, we implemented an XML warehouse modeled along the XCube specifications. We
executed a workload of XQuery decision-support queries on this warehouse, with and without
using our strategy. Our experimental results demonstrate its efficiency, even when queries are
complex.

Keywords: Materialized views, XML, Data warehouses, Clustering, Complex data.

1. Introduction
Decision support applications nowadays
exploit heterogeneous data from various
sources. Furthermore, the development of
the Web and the proliferation of
multimedia documents contributed to the
analysis of so-called complex data [8]. For
instance, analyzing medical data may lead
to exploit jointly information under various
forms: patient records (classical database),
medical history (text), radiographies,
echographies (multimedia documents),
physician diagnoses (texts or audio
recordings), etc.

In this context, we have used XML
in the process of integrating and
warehousing complex data for analysis [7].
However, decision-support queries are
generally complex because they involve
several join and aggregation operations. In
addition, native XML database
management systems (DBMSs) present
poor performances when the volume of
data is very large and the queries are
complex. Thus, it is crucial to design XML
data warehouses that guarantee the best
performance when accessing data.
Indexing and view materialization are the
most frequently used optimization
techniques for this sake [12].

Materialized views are physical
structures that improve data access time by
precomputing intermediary query results.
Then, end-user queries can be processed
efficiently from the data stored within
these views and do not need access the
original data any more. Nevertheless, the
use of materialized views requires
additional storage space and induces some
refreshing process overhead. So it is
crucial to select only pertinent views.

In the context of relational data
warehouses, several studies have been
proposed to resolve the materialized view
selection problem [1, 3, 4, 10, 11, 13, 18,
22, 23, 24, 25, 27]. The views that are
relevant to materialize are selected to
minimize the processing time of a given
workload. This optimization is achieved
under maintenance cost or storage space
constraints [16]. The existing studies differ
in several points:

1. the way of determining candidate
views;

2. the framework used to capture
relationships between candidate
views;

3. the use of mathematical cost
models vs. calls to the query
optimizer;

4. the selection of views in a
relational or multidimensional
context;

5. multiple or simple query
optimization;

6. theoretical or technical solutions.
The most recent approaches are

workload-driven. They syntactically
analyze the workload to enumerate the
relevant candidate views [1]. By calling the
query optimizer, they greedily build a
configuration of the most pertinent views.
A materialized view selection based on
clustering has also been proposed [2]. This
proposal exploits query clustering to
determine a set of candidate views and cost
models to choose pertinent views to
materialize.

To the best of our knowledge, no such
view materialization approach exists in
XML databases and XML data warehouses
in particular. Hence, we propose in this
paper an adaptation of the query
clustering-based relational view selection
approach [2] to the XML context. Our
approach clusters XQuery queries (instead
of SQL queries) and builds candidate XML
views that can resolve multiple similar
queries belonging to the same cluster. New
XML-specific cost models are used to
define the XML views that are pertinent to
materialize. To validate our proposal, we
implemented an XML data warehouse in a
native XML DBMS. It is indeed interesting
to check whether native XML DBMSs
could someday be able to compete with
XML-compatible, relational DBMSs.
Then, we measured the execution time of a
decision-support query workload with and
without using our strategy. Our
experimental results show that the use of
our strategy greatly improves query
performance.

The remainder of this paper is
organized as follows. We first present the
context of this study in Section 2. Then we
detail our materialized view selection
strategy in Section 3. In order to validate
our strategy, we present some experimental
results in Section 4. Finally, we conclude
and outline some research perspectives in
Section 5.

2. Study context

2.1 XML data warehouse specification
Several studies have been proposed for
designing and building XML data
warehouses. For instance, Pokorny
modeled a star schema in XML by defining
dimension hierarchies as a set of logically
connected collections of XML data, and
facts as XML data elements [20, 21].

Park et al. also proposed an XML
multidimensional model in which each fact
is described by a single XML document
and dimension data are grouped into a
repository of XML documents [19].

Finally, Hummer et al. designed
XCube, a family of templates allowing the
description of a multidimensional
structure, dimension and fact data for
integrating several data warehouses into a
virtual or federated data warehouse [14].
The federated templates are not directly
related to XML warehousing, but they can
be used to represent XML star schemas.
XCube is organized as a set of modules or
formats: XCube Schema, XCube
Dimensions and XCube Facts, which
respectively formalize the schema, the
dimensions and the facts according to a
star schema.

These studies use XML documents
to manage or represent the facts and
dimensions of an XML data warehouse.
They actually help logically modeling a
data warehouse. This allows the native
storage of documents and their easy
interrogation based on XML languages.

In this paper, we selected the
XCube specification to model a reference
XML data warehouse and apply our
strategy. Indeed, in XCube, the authors
proposed a simple structure for
representing facts and dimensions in a star
schema. They use one XML document to
represent dimensions and one XML
document to represent facts. In addition,
they use another XML document
representing warehouse metadata. The
other proposals do not use XML
documents for representing warehouse

schema. However, we need these metadata
to compute our cost models.

Thus, our data warehouse is composed
of the following XML documents:

• Schema.xml specifies the data
warehouse metadata;

• Dimensions.xml defines all the
dimensions characterized by their
attributes and values;

• Facts.xml specifies the facts, i.e.,
the identifiers of dimensions and
the description of measures.

Figure 1. XCube warehouse

specification

2.2 XML data warehouse interrogation
We selected the XQuery language [5] to
formulate our decision-support queries
because, unlike simpler languages such as
XPath, it allows complex queries,
including join queries over multiple XML
documents, to be expressed with the
FLWOR syntax. However, in our
implementation, we had to extend FLWOR
expressions with explicit Group by clauses
to be able to formulate the decision-
support queries we needed. Thus, we
added the functions Group by (attribute
list) and Aggregation (aggregation
operations, measure list) to the XQuery
syntax. Figure 2 provides an example of
decision-support query with a multiple
Group by clause.

Figure 2. Decision-support XQuery

example

3. XML materialized view
selection strategy
The architecture of our materialized view
selection strategy is depicted in Figure 3.
We assume that we have a workload
composed of representative queries for
which we want to select a configuration of
materialized views in order to reduce their
execution time. The first step is to build,
from the workload, a clustering context.
Then we define similarity and dissimilarity
measures that help clustering together
similar queries.

For each cluster, we build a set of
candidate views. The last step exploits cost
models that evaluate the cost of accessing
data using views and the cost of their
storage to build a final materialized view
configuration.

Figure 3. Materialized view selection

strategy

Figure 4. Workload snapshot

3.1 Query workload analysis
The workload that we consider is a set of
selection, join and aggregation queries.
Figure 4 gives a snapshot of this workload.
The first step consists in extracting from
the workload the representative attributes
for each query. We mean by representative
attributes those are present in Where
(selection predicate attributes) and
Group by clauses.

We store the relationships between
the query workload and the extracted
attributes in a “query-attribute” matrix.
The matrix lines are the queries and the
columns are the extracted attributes. A
query iq is then seen as a line in the matrix
that is composed of cells corresponding to
representative attributes. The general term

ijq of this matrix is set to one if extracted
attribute ia is present in query iq , and to
zero otherwise. This matrix represents our
clustering context. Table 1 shows the
query-attribute matrix that is built from the
workload snapshot from Figure 4.

3.2 Building the candidate view
configuration

In practice, it is hard to search all the
syntactically relevant views (candidate
views) because the search space is very
large [1]. To reduce the size of this space,
we propose to cluster the queries. Hence,
we group in a same cluster all the queries
that are similar. Similar queries are the one
having a close binary representation in the
query-attribute matrix. Two similar queries
can be resolved by using only one
materialized view. We define similarity
and dissimilarity measures that ensure that
queries within a same cluster are strongly
related to each others whereas queries from
different clusters are significantly different.

3.2.1 Similarity and dissimilarity
measures
A query is described by the attributes
extracted in the query analysis phase. We
thus describe a query iq by a
vector { }piiii qqqq ,...,, 21= , where p is the
number of attributes in the matrix. This
description allows query comparison.
We define similarity (respectively,
dissimilarity) between two queries iq and

jq regarding attribute)..1(pkak = in
Formula 1 (respectively, Formula 2).

(1)
 0

1 1
),(

⎩
⎨
⎧ ==

=
otherwise

qqif
qq kjki

kjkisimδ

(2)
 0

 1
),(

⎪⎩

⎪
⎨
⎧

≠

=
=

kjki

kjki
kjkidissim qqif

qqif
qqδ

Two queries iq and jq are similar
regarding attribute ka if and only
if 1== kjki qq , i.e., ka is present in both
queries. They are dissimilar if and only
if kjki qq ≠ , i.e., one of the two queries does
not contain attribute ka .

These measures can be extended to
a set A composed of p attributes such
that we get the degree of global similarity
and dissimilarity between two queries. We
thus define the similarity (respectively,
dissimilarity) between two queries iq and

jq according to all the matrix attributes ka
in Formula 3 (respectively, Formula 4).

pqqsim

qqqqsim

ji

p

j
ljkisimji

≤≤

= ∑
=

),(0

(3)),(),(
1

δ

pqqdissim

qqqqdissim

ji

p

j
ljkidissimji

≤≤

= ∑
=

),(0

(4)),(),(
1

δ

Thus, the closer),(ji qqsim

(respectively,),(ji qqdissim) is to p , the
more iq and jq are considered similar
(respectively, dissimilar).

We also define similarity
(respectively, dissimilarity) measures
between two query sets and within a query
set. These measures are defined by
Formulas 5, 6, 7 and 8.

pCcardCcardCCsim

qqCCsim

aaba

CqCq
lksimba

blak

××≤≤

= ∑
∈∈

)()(),(0

(5)),(),(
,
δ

pCcardCcardCCdissim

qqCCdissim

aaba

CqCq
lkdissimba

blak

××≤≤

= ∑
∈∈

)()(),(0

(6)),(),(
,
δ

2
)()(

)(0

(7)),()(
,,

pCcardCcard
Csim

qqCsim

aa
a

lkCqCq
lksima

blak

××
≤≤

= ∑
<∈∈

δ

2
)()(

)(0

(8)),()(
,,

pCcardCcard
Cdissim

qqCdissim

aa
a

lkCqCq
lkdissima

blak

××
≤≤

= ∑
<∈∈

δ

3.2.2 Clustering
Clustering consists in determining a so-
called natural partition natP composed of
objects (here, queries) that reflects the
internal structure of data. This partition
must be such as its clusters are composed
of objects with high similarity and objects
from different clusters present a high
dissimilarity.

Based on the previously defined
functions, a clustering quality measure

)(hPQ can be built, formula 9.

∑ ∑
<== =

+=
bazbza

z

a
abah CdisimCCsimPQ

,...1,...1 1
(9)))(),(()(

This measure permits to capture the

natural aspect of a partition. Hence,)(hPQ
measures simultaneously similarities
between queries within the same cluster of
partition hP and dissimilarities between

queries within different clusters. Thus, we
can define)(hPQ as an homogeneity
function for the same class and an
heterogeneity function for different classes.
Therefore, the partitions presenting a high
intra-cluster homogeneity and a high inter-
cluster disparity have a weak value of

)(hPQ and thereby appear as the most
natural.

We have selected the Kerouac
algorithm [15] for the clustering phase.
This algorithm indeed bears several
interesting properties:

1. its computational complexity is
quite low (log linear regarding the
number of queries and linear
regarding the number of attributes);

2. it can deal with a high number of
objects (queries);

3. it can deal with distributed data;
4. it allows to integrate constraints

within the clustering process.
This last characteristic is particularly

interesting, since it provides us with a way
to integrate constraints concerning the
view merging process.

3.3 Cost models
The number of candidate views is
generally as high as the input workload is
large. Thus, it is not feasible to materialize
all the proposed views because of storage
space constraints. To circumvent this
limitation, we propose to use cost models
allowing to keep only the most pertinent
views.

Figure 5 shows the typical structure
of an XML view. In our context, it is
composed of Cell elements. Each Cell is
itself composed of dimension elements that
contain Group by attributes and fact
elements corresponding to the aggregate
results. We propose cost models that
estimate the size and storage cost of a
given XML view.

Figure 5. XML view structure

We estimate the size of a view by

its number of elements. The number of
Dimension and Fact elements in each Cell
is the same. Indeed, the number of
elements in a given view is estimated by
the number of Cell elements. To compute
it, we first estimate the maximum number
of Cell elements (Formula 10).

(10))(
1
∏
=

=
d

i
idCellms

id is the cardinality of the dimension
characterizing the Cell element. d is the
number of dimensions in the document
Dimensions.xml.

Let)(vms be the maximum size of
view v that is composed of dimensions

kdd ,...,1 , where k is the number of
dimensions in the view and id the
cardinality of dimension id .)(vms is
expressed in Formula 11.

(11))(
1
∏
=

=
k

i
idvms

Golfarelli et al. [9] proposed to
estimate the number of tuples in a given
view v by using Yao’s formula [26]. We
also use this formula to estimate the
number of Cell elements in v (Formula 12).

(12)
1)(

1)(1)(
1 ⎥

⎦

⎤
⎢
⎣

⎡
+−
+−×

−×= ∏ =

Cell

i iCellms
icCellmsvmsv

.
)(

11
vms

c −= If
)(

)(
vms

Cellms is large enough,

this formula is well approximated by
Cardena’s formula [6]. Hence, we obtain
Formula 13.

(13)
)(

111)(
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−×=

Cell

vms
vmsv

Cardenas and Yao’s formulas are
based on the assumption that data are
uniformly distributed. The size, in bytes, of
a view v is equal to the number of Cell
elements multiplied by the average size
needed to store one element. Thus, we
estimate the size of a view as shown in
Formula 14.

(14))()(
1
∑
=

×=
k

i
idsizevvsize

)(idsize represents the size, in bytes, of
dimension id from v and k the number of
dimensions.

3.4 Objective functions
We describe in this section three objective
functions that help evaluating the variation
of query execution cost induced by adding
a new view. The query execution cost is
assimilated to the number of Cell elements
in the document Facts.xml, if no view is
used; or to the number of Cell elements in
the view(s) if they are exploited. The
workload execution cost is obtained by
adding the execution costs of each query
within this workload.

The first objective function
advantages the views providing more profit
while executing queries. The second one
advantages the views providing more
benefit while occupying the smallest
storage space. The third one combines the
first two in order to first select all the
views providing more profit and then
retain only those occupying less storage
space when this resource becomes critical.
The first function is useful when the space
storage is not limited, the second one is
useful when storage space is small and the
third one is interesting when storage is
reasonably large.

3.4.1 Profit objective function
Let { }mvvV ,...,1= be the candidate view
set, S the final view set and { }nqqQ ,...,1=
a query set (workload). The profit
objective function, noted P, is defined in
Formula 15.

S)(v
vCQCQCvP

j

jupdatevjSSjS

∉

−−= ∪ (15))()()()(/// β

)(/ QC S denotes the query execution
cost when all the views in S are used. If
this set is empty, FQQC ×=)(Ø/ because
all the queries are resolved by accessing
fact F . When a view iv is added to S ,

∑ =∪ =
Q

k jkViS vqCQC
0/),()(denotes the

query execution cost for the views that are
in ivS ∪ . If query kq exploits iv , cost

),(ji vqC is then equal to vjC (number of

tuples in jv . Otherwise,),(ji vqC is equal
to the maximum value between F and
value of),(vqC i (executing cost of iq
exploiting Sv∈ with jvv ≠).

Coefficient)(ivpQ=β estimates
the number of updates for views iv . The
update probability)(ivp is equal

to
query
update

spacestorage %
%1

−
, where the ratio

query
update

%
% represents the proportion of

updating vs. querying the data warehouse.

)(jupdate vC represents the
maintenance cost for view jv .

3.4.2 Profit/space ratio objective
function
If view selection is achieved under a space
constraint, the profit/space objective
function from Formula 16 is used. This
function computes the profit provided by

jv in regard to the storage space)(jvsize
it occupies.

(16)
)(
)(

)(/
/

j

jS
jS vsize

vP
vR =

3.4.3 Hybrid objective function
The constraint on storage space may be
relaxed if this space in relatively large. The
hybrid objective function H does not
penalize space-greedy views if the ratio

spacestorage
spaceremaining

−
− is lower or equal than

a storage-space given
threshold 10 , ≤< αα , where remaining-
space and storage-space are respectively
the remaining space after adding iv and
the allotted space needed for storing all the
views. This function is computed by
combining the two functions P and R as
shown in Formula 17.

(17)
otherwise)(

)(
)(

/

/
/

⎪
⎩

⎪
⎨

⎧
−=

jS

jS
jS

vR
spacestorage
spaceremaining-ifvP

vH

3.5 View selection algorithm

Our view selection algorithm
(Algorithm 1) is based on a greedy search
within the candidate view set V. The
objective function F must be one of the
functions P, R or H described in the
previous section. If R is used, we add to the
algorithm’s input the storage space M
allotted for views. If H is used, we also add
threshold α as input.

In the first algorithm iteration, the
values of the objective function are
computed for each view within V. The
view maxv that minimizes F, if it exists
(0)(max/ >vF S), is then added to S. If R or
H is used, the whole storage space M is
decreased by the amount of space occupied
by maxv .

The function values of F are then
computed for each remaining view in

SV − , since they depend on the selected
views present in S. This helps taking into
account the interactions that probably exist
between the views.

We repeat these iterations until
there is no improvement (0)(/ ≤vF S) or
until all the views have been selected
(Ø=− SV). If functions R or H are used,
the algorithm also stops when storage
space is full.

4. Experiments
In order to validate our approach for XML
materialized view selection, we generated
an XML data warehouse, modeled

according to the XCube specifications.
This classical test data warehouse is
composed of sales facts characterized by
the amount and quantity measures. The
facts are stored in the document Facts.xml
(4,92 MB). They are described by five
dimensions: channels, promotions,
customers, products and times that are
stored in the document Dimensions.xml
(3.77 MB). This data warehouse has been
implemented within the eXist native XML
DBMS [17], which is a free tool that
allows the storage of large documents and
supports the XQuery language. We ran our
tests on a Pentium 2 Ghz PC with 1 GB
main memory and an IDE hard drive.

Figure 7. Experimental results

We executed on our data warehouse

a workload composed of ten XQuery
decision-support queries, with and without
using our strategy. The selected views are
stored in an independent collection. This
collection is targeted by rewritten queries
according to view data. We plotted in
Figure 7 the execution time of our query
workload on the original XML documents
and on the materialized views we
generated. The X-axis represents the ten
queries and the Y-axis the corresponding
execution time. The Y-axis is represented
in logarithmic scale to highlight the
difference between the execution costs. On
an average, our XML view materializing
strategy improves response time by a
factor 24,700.

5. Conclusion and perspectives

In this paper, we have presented a
strategy for materialized view selection in

XML data warehouses. Our strategy
exploits the results of clustering applied on
a given workload to build a set of
syntactically relevant candidate views.
With the help of cost models we
specifically designed for the XML model,
we retain only the most advantageous
candidate views. These models estimate
data access cost using materialized views
and storage cost for these views.
We have also proposed three objective
functions: profit, profit/space ratio and
hybrid that exploit our cost models to
evaluate the execution cost of the
workload. These functions are themselves
exploited by a greedy algorithm that
recommends a pertinent configuration of
materialized views. This allows our
strategy to respect the storage space
constraint.

Finally, note that our strategy is
independent from the warehouse model
and the DBMS it is stored in. Though we
used an XCube-based reference data
warehouse, our strategy could easily be
applied on any other model. In the same
way, any DBMS could be used instead of
eXist, including relational, XML
compatible DBMSs.

The first experimental results we
achieved are very encouraging, and show
that our strategy guarantees a substantial
gain in performance. However, our first
perspective is to complement these results
with other tests, possibly on other systems
than eXist, and to assert in each
configuration the gain in performance vs.
the overhead for generating and refreshing
the materialized views.

This work also opens two other
axes of research perspectives. First, it is
blatantly crucial to adapt or develop highly
efficient optimization techniques in native
XML DBMSs if they are to approach the
performances of relational systems. XML
indices are getting more and more
efficient, but there is still room for
improvement (e.g., multidocument join
indices). The generalized exploitation of
materialized views could also be very
beneficial. Thus, a rewriting query engine

and refreshing strategies should be
devised.

Our second research axis is even
more specific to XML data warehouses.
Decision-support queries bear specific
needs in terms of operators. For instance,
we had to extend XQuery to allow multiple
Group by clauses to be able to implement
our decision-oriented workload within
eXist. Similar extensions do exist already,
but it could be interesting to further extend
XQuery to support OLAP operators such
as Cube, Rollup or Drill down.

References:

[1] S. Agrawal, S. Chaudhuri, and V. R.

Narasayya. Automated selection of
materialized views and indexes in SQL
databases. In 26th International
Conference on Very Large Data Bases
(VLDB 2000), Cairo, Egypt, 2000, pp.
496–505.

[2] K. Aouiche, P. E. Jouve, and J.

Darmont. Selection of views to
materialize based on query clustering.
Technical report, University of Lyon 2,
2005.

[3] E. Baralis, S. Paraboschi, and E.

Teniente. Materialized views selection
in a multidimensional database. In 23rd
International Conference on Very
Large Data Bases (VLDB 1997),
Athens, Greece, 1997, pp. 156–165.

[4] X. Baril and Z. Bellahsene. Selection of

materialized views: a cost-based
approach. In 15th International
Conference on Advanced Information
Systems Engineering (CAiSE 2003),
Klagenfurt, Austria, 2003, pp. 665–
680.

[5] S. Boag, D. Chamberlin, M. Fernandez,

D. Florescu, J. Robie, and J. Simeon.
XQuery 1.0: An XML Query
Language. W3C Working Draft,
http://www.w3.org/TR/xquery/, April
2004.

[6] A. F. Cardenas. Analysis and
performance of inverted data base
structures. Communications of the
ACM, Vol. 18, No. 5, 1975, pp. 253–
263.

[7] J. Darmont, O. Boussaid, F. Bentayeb,

S. Rabaseda, and Y. Zellouf. Web
multiform data structuring for
warehousing, volume 22 of Multimedia
Systems and Applications, 2003, pp.
179–194.

[8] J. Darmont, O. Boussaid, J.C. Ralaivao,

and K. Aouiche. An architecture
framework for complex data
warehouses. In 7th International
Conference on Enterprise Information
Systems (ICEIS 05), Miami, USA,
2005, pp 370–373.

[9] M. Golfarelli and S. Rizzi. A

methodological framework for data
warehouse design. In 1st ACM
international workshop on Data
warehousing and OLAP (DOLAP
1998), New York, USA, 1998, pp 3–9.

[10] H. Gupta. Selection of views to

materialize in a data warehouse. In 6th
International Conference on Database
Theory (ICDT 1997), Delphi, Greece,
1997, pp 98–112.

[11] H. Gupta and I. S. Mumick. Selection

of views to materialize in a data
warehouse. IEEE Transactions on
Knowledge and Data Engineering, Vol.
17, No. 1, 2005, pp24–43.

[12] R. Gupta, G. Shuqiao, and Y. Zhen. A

report on XML data indexing
techniques. Technical report, National
University of Singapore.

[13] V. Harinarayan, A. Rajaraman, and J.

D. Ullman. Implementing data cubes
efficiently. In ACM SIGMOD
International Conference on
Management of data (SIGMOD 1996),
Montreal, Canada, 1996, pp 205–216.

[14] W. Hummer, A. Bauer, and G. Harde.
XCube: XML for data warehouses. In
6th ACM International Workshop on
Data warehousing and OLAP (DOLAP
03), New Orleans, USA, 2003, pp 33–
40.

[15] P. Jouve and N. Nicoloyannis.

Kerouac: An algorithm for clustering
categorical data sets with practical
advantages. In International Workshop
on Data Mining Learning for
Actionable Knowledge (DMAK 2003),
2003.

[16] Y. Kotidis and N. Roussopoulos.

Dynamat: A dynamic view
management system for data
warehouses. In ACM SIGMOD
International Conference on
Management of Data (SIGMOD
1999), Philadelphia, USA, 1999, pp
371– 382.

[17] W. Meier. eXist: An Open Source

Native XML Database. In Web, Web
Services, and Database Systems,
NODe 2002 Web and Database
Related Workshops, Erfurt,Germany,
volume 2593 of LNCS, 2002, pp.
169–183.

[18] T. P. Nadeau and T. J. Teorey.

Achieving scalability in OLAP
materialized view selection. In 5th
ACM International Workshop on
Data Warehousing and OLAP
(DOLAP 2002), McLean, USA,
2002, pp. 28–34.

[19] B.K. Park, H. Han, and I.Y. Song.

XML-OLAP: A Multidimensional
Analysis Framework for XML
Warehouses. In 7th International
Conference on Data Warehousing
and Knowledge Discovery (DaWaK
2005), Copenhagen, Denmark, 2005,
pp. 32–42.

[20] J. Pokorny. Modelling Stars Using

XML. In 4th ACM International
Workshop on Data Warehousing and

OLAP (DOLAP 2001), Atlanta,
USA, 2001, pp. 24–31.

[21] J. Pokorny. XML Data Warehouse:

Modelling and Querying. In 5th
International Baltic Conference
(BalticDB&IS 2002), Tallin, Estonia,
2002, pp. 267–280.

[22] A. Shukla, P. Deshpande, and J. F.

Naughton. Materialized view
selection for multicube data models.
In 7th International Conference on
Extending DataBase Technology
(EDBT 2000), Konstanz, Germany,
2000, pp. 269–284.

[23] J. R. Smith, C.S. Li, and A. Jhingran.

A wavelet framework for adapting
data cube views for OLAP. IEEE
Transactions on Knowledge and Data
Engineering, Vol. 16, No. 5, 2004,
pp. 552–565.

[24] H. Uchiyama, K. Runapongsa, and T.

J. Teorey. A progressive view
materialization algorithm. In 2nd
ACM International Workshop on
Data warehousing and OLAP
(DOLAP 1999), Kansas City, USA,
1999, pp. 36–41.

[25] S. R. Valluri, S. Vadapalli, and K.

Karlapalem. View relevance driven
materialized view selection in data
warehousing environment. In 13th
Australasian Database Technologies
(ADC 2002), Melbourne, Australia,
2002, pp 187–196.

[26] S. Yao. Approximating block accesses

in database organizations.
Communication of the ACM, Vol. 20,
No. 4, 1977, pp 260–261.

[27] C. Zhang, X. Yao, and J. Yang. An

evolutionary approach to materialized
view selection in a data warehouse
environment. IEEE Transactions on
Systems, Man, and Cybernetics, Vol.
31, No. 3, 2001, pp. 282–294.

