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Abstract Animal models aim to replicate the symptoms, the lesions or the cause(s) of Alzheimer disease. Numerous

mouse transgenic lines have now succeeded in partially reproducing its lesions: the extracellular deposits of Ab peptide

and the intracellular accumulation of tau protein. Human mutatedMutated human APP transgenes result in the

deposition of Ab peptide, similar but not identical to the Ab peptide of the human senile plaque. Amyloid angiopathy

is common. Besides the deposition of Ab, axon dystrophy and alteration of dendrites have been observed. All of the

mutations cause an increase in Ab 42 levelslevels, except for the Arctic mutation thatmutation, which alters the Ab

sequence itself. Overexpressing wild typewild-type APP alone (as in the murine models of human trisomy 21) causes

no Ab deposition in most mouse lines. Doubly (APP x mutated(APP · mutated PS1) transgenic mice develop the

lesions earlier. Transgenic mice in which BACE1 has been knocked out or overexpressed have been producedpro-

duced, as well as lines with altered expression of neprilysin, the main degrading enzyme of Ab. The APP transgenic

mice have raised new questions concerning the mechanism of neuronal loss, the accumulation of Ab in the cell body of

the neurons, inflammation and gliosis, and the dendritic alterations. They have allowed to gain some insight to be

gained into the kinetics of the changes. The connection between the symptoms, the lesions and the increase in Ab

oligomers has been found to be difficult to unravel. Neurofibrillary tangles are only found in mouse lines that

overexpress mutated tau or human tau on a murine tau -/-�/� background. A triply transgenic model (mutated APP,

PS1 and tau) recapitulates the alterations seen in AD but its physiological relevance may be discussed. A number of

modulators of Ab or of tau accumulation have been tested. A transgenic model may be analyzed at least at three levels

at least (symptoms, lesions, cause of the disease)disease), and a reading key is proposed to summarize this analysis.
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Introduction

The extracellular accumulation of Ab peptide in the core of the senile plaque and the intracellular accumulation of tau

protein as neurofibrillary tangles and neuropil threads are to-daytoday considered the two molecular and morpho-

logic signatures of Alzheimer disease (AD), mandatory for its diagnosis [16]. The neuronal loss does not belong to the

diagnostic criteriacriteria, but has been also considered an important pathological component that should be re-

plicated in a good model of AD. Ab peptide, in its native state, is weakly soluble (a third of its amino-acids -AA-

sequence is hydrophobic); it forms dimers, trimers, and in general oligomers. It may aggregate and appear fibrillar at

electron microscopy. The aggregates of Ab peptide finally exhibit the properties of an amyloid substance: it is stained

by Congo red and thioflavin S, and is fibrillar at electron microscopy. The extracellular deposits of Ab peptide may be

diffuse or focal. They are said to be amyloid when they have the properties of an amyloid substance, properties that

are attributed to a high content of b-pleated sheet structures. Ab peptide doesaccumulates not only accumulate in the

core of the senile plaque but also in the vessel walls (amyloid angiopathy).

Two successive cleavages are necessary to free the Ab peptide from the amyloid precursor protein (APP) -

for(APP)—for a review see [317]. The first one, the so-called b-cleavage, at the extracellular N-terminus of the Ab

peptide, is due to the beta-site APP-cleaving enzyme (BACE) [42]. It produces a terminal fragment of APP composed

of 99 AA called C99. The second cleavage, taking place on APP C99, is performed within a lipid membrane by the c-

secretase complex (made of presenilin1 (PS1) or presenilin 2 (PS2), Pen 2, nicastrin and APH 1) - for1)—for a review

see [340]. The a-cleavage occurring in the Ab sequence of APP,APP prevents the production of Ab. Four isoforms of

APP are expressed in the human, of 695, 714, 751, or 770 amino acid residues. APP 751 and 770 contain a protease

inhibitor domain, homologous to the Kunitz type of serine protease inhibitors. In a few families, AD is transmitted as

an autosomal dominant trait. The mutations that have been found to be responsible offor these cases of familial

Alzheimer disease (FAD) are localized on the APP, PS1 or PS2 genes.

The tau pathology is mainly intracellular: accumulation of tau may occur in the cell body (neurofibrillary tan-

gle = NFT), in the dystrophic axons surrounding the amyloid core of the plaqueplaque, and in the neuropil threads,

which are mainly dendrites. At electron microscopy, tau protein mainly accumulates as paired helical filaments (PHF).

Table 1 This table illustrates, with examples, the SLC reading key that classifies the models according to their purpose. The reading key
does not intend, in any way, to evaluate the quality of the models i.e. the adequacy between the purpose and the result: for instance, the
cholinergic depletion may be excellent or poor, the model will remain of the type S1L0C0 because it intends to mimic the signs (whatever
the actual results) and does not intend to reproduce the lesions or the cause of the disease. The value of a model is not necessarily linked to
the global score: a restricted model that would perfectly mimic the mechanisms of the lesion in an area that is spared in the natural disease
(S0L1C0) could have a high scientific value

A reading key tofor animal models in AD :AD: examples

Models Signs (S) Lesions (L)Causes (C) Final score

FamilialSporadic

Targeted brain lesions 1 0 0 0 S1L0C0
Cholinergic depletion 1 0 0 0 S1L0C0
Ab injection 1 (depends on site of injection)1 0 0 S1L1C0
Tg APP (mono) 1 1 1 0 S1L1C1 (for FAD)

S1L1C0 (for sporadic AD)
Tg APP (multi) 1 1 0 0 S1L1C0
Tg tau (for expression of tau in the spinal cord) 0 1 0 0 S0L1C0
Tg tau (for expression of tau in the limbic system)1 1 0 0 S1L1C0
Tg APPxtau 1 1 0 0 S1L1C0

The reading key does not intend, in any way, to evaluate the quality of the models, i.e., their adequacy for the purpose of achieving the
result. For instance, whether the cholinergic depletion is excellent or poor, a model that intends to mimic the signs (whatever the actual
results), and does not intend to reproduce the lesions or the cause of the disease, will be type S1L0C0. The value of a model is not necessarily
linked to the global score: a restricted model that would perfectly mimic the mechanisms of the lesion in an area that is spared in the natural
disease (S0L1C0) could have a high scientific valueThe table also shows that only Familialfamilial Alzheimer Diseasedisease (FAD) has
been correctly modeled,modeled; the cause or causes of sporadic AD beingare unknown
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Before analyzing in some detailsdetail the numerous models of AD that have been proposed in the literature, we

would like to consider, in a general way, the aims that are pursued inwhen trying to mimic a human disease -

anddisease—and more specifically a neurodegenerative disease-disease in vivo.

Signs, lesions, cause :cause: the SLC reading key

Animal models aim at replicating the symptoms, the lesions or the cause of a disease. A ‘‘reading key’’‘‘reading key’’

relating Symptoms (S), Lesions (L) and Causes (C) with scores 0–1 is illustrated in table Table 1. In neurology, the

signs and symptoms (for instance, hemiplegia) are principally linked to the topography of the lesions (for instance

motor cortex)cortex), and are only poorly correlated with their nature (for instance both cerebral infarct and tu-

mor):tumor); in other words, similarity of clinical signs does not mean similarity in pathogenic mechanisms. De-

stroying the cholinergic system with ibotenic acid will lead to behaviouralbehavioral symptoms that may resemble

those of AD and be amendableamenable to treatments such as anti-cholinesterasesanticholinesterases [226]. It is clear,

however, that at the symptomatic level (S), therapeutic research can notcannot pretend to reach an understanding of

the pathological mechanisms. Such a model helps to understandcan aid our understanding of the symptoms (it will be

said here tocan be S1 i.e.termed ‘‘S1,’’ i.e., it reproduces signs and symptoms)symptoms), but gives no information on

the lesions occurring in AD (we will qualifiedqualify it as L0 i.e. giving‘‘L0,’’ i.e., it gives no information on the way

that lesions appear and interact) and all the moreor on the cause of the disease (C0):(‘‘C0’’): it can therefore be

classified as S1L0C0.

At the L level, the model attempts to mimic the lesions: for instance, amyloid peptide has been injected ininto the

brainbrains of living mice in an attempt of understandingto understand its neurotoxicity [262,290]. The results of such

an experiment will not giveprovide any information on the reason(s) offor Ab accumulation in the extracellular space.

The model is of the type S0L1C0. ButHowever, it has also been shown that the Ab oligomers may impede the synaptic

functions and be directly implied in the memory dysfunction [321]; it may therefore also explain the signs of the

disease (S1L1C0). A more subtle example, as discussed later in this article, is the modelling of the neurofibrillary

tangles of AD by a transgenic mice overexpressing mutated tau. There is no tau mutation in ADAD, so the model is

clearly not adequate to understand the cause of AD (it is to betherefore classified as C0). But whatever the wayBut,

however the tangles are produced, it may be interesting to understand how they interact with Ab peptide in transgenic

mice which develop amyloid deposits (L1C0)(L1C0). When the tangles are located in the limbic system, then the

symptoms may mimic those of AD (S1L1C0); in other mouse lines, the expression of tau in the motor neurones was

responsible for paralyses [247]: such a model may help to elucidate how the tangles may cause neuronal dysfunction. It

does not helpaid our understanding of the mechanisms responsible for NFT formation in AD nor the clinical signs of

dementia (S0L1C0).

Finally, at the C level, the model attempts to re-constructreconstruct the biological mechanisms responsible for the

disease, starting from its cause(s). Transfecting a mutated human APP experimentally reproduces the cause of familial

Alzheimer disease, due to APP mutation. Some lesions,lesions similar to those seen in the human,humans are found in

these mouse lines, which may therefore be classified as L1C1. The connection with the symptoms is far from sim-

plesimple, and it may happen that these mice do not show the typical clinical signs of AD (S0L1C1).

The 3three levels (S, L, &and C) are independent: lesioning the cerebral cortex by an ischemic lesion may, for

instance, mimic the symptoms of dementia; it will have little to do both with both the lesions and with the molecular

mechanisms of AD: it is a S1L0C0 model. Introducing in the mouse a mutated APP gene into the mouse may mimic

familial Alzheimer disease (S1L1C1 for familial AD)AD), but it could well be that the mechanism has nothing to do

with the mechanism of sporadic AD (it is then classified as S1L1C0 or even S0L1C0 as far as sporadic AD is

concerned). It should be stressed that the cellular mechanisms which lead to Ab and tau accumulationaccumulation,
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and eventually to neuronal deathdeath, could be replicated in neurons located outside the cerebral cortex: the

pathology could for instance be fully reproduced in the motor neurone. In such a hypothetical example, the me-

chanism would be elucidated although the animals would not exhibit the symptoms and signs of the disease (S0L1C1)

or(S0L1C1), and possibly not even exhibit the lesions that are presently considered asto be the mandatory stigmata of

the disease (S0L0C1) - see table (S0L0C1)—see Table 1 for examples.

Scope of this review

Which animal models are to be reviewed here? Several procedures – someprocedures—some of which are listed below

- havebelow—have been devised in the past to mimic AD in the animal. Destruction has been used to produce the

cortical or subcortical symptoms of AD. We will not deal with these models that clearly belong to the S level. The

reproduction of the lesions by exogenous chemicals havehas been attempted: the neurofibrillary tangles (NFT) caused

by aluminiumaluminum have been shown to be actually an accumulation of neurofilaments (and not of tau) [185,225].

Injection of Ab peptide may induce some clinical signs [227,289] or, under certain conditions, accelerate the patho-

logical process in a transgenic mouse -seemouse—see later and [111]- but]—but it does not directly reproduce the

lesions of the disease [99]. Spontaneous animal diseases, resembling AD, have been looked for: old monkeys [245] and

old bears [66] for instance, develop plaques and tangles; plaques have been seen in numerous species, noticeably in old

dogs [62,69], old cats [68]], and in mouse lemurs (Microcebus murinus)(Microcebus murinus) [78]. No model has

appeared sufficiently practical to be of common use.

The real breakthrough came from the transgene technology. Transgenesis made it possible, probably for the first

time, to reproduce specific neurodegenerative lesions. Mice have been overwhelmingly been used and this review will

principally deal with transgenic mice. Recently transgenic rats have been generated [96] with the aim of improving the

behavioural analysis. Space is insufficient to deal with invertebrates models: transgenic drosophilae expressing beta-

amyloid peptides have been devised to screen therapeutic targets [67]; the naturally lacking c-secretase activity has

been reconstituted in the yeast Saccharomyces Cerevisiaecerevisiae [92]; the nematode Caenorhabditis Eleganselegans

has also been used to elucidate the physiological role of AD molecular protagonists [134]. Flies, yeasts, and worms

play the role of ‘‘gene factories’’,‘‘gene factories,’’ which are particularly useful to study proteinsfor studying protein

interactions and to unravelunraveling molecular pathways. They are howeverhowever, too far away from the neu-

ropathology point of view, centredcentered on the lesions, to be fully covered in this review.

In vitro models have been used to unravel the physiopathological mechanisms involved in AD. ItThis is not the

place here to analyseanalyze the studies based on the hypothesis of a direct toxicity of Ab peptide on the cell. In this

paradigm, the effect of an experimental manipulation is usually tested by comparing neuronal death in control and

experimental situation.situations. Cell cultures have also been used to elucidate the subcellular topography of the

secretase activities. BACE is located in endosomes and also at the cell membrane [142]; Presenilin 1 immunoreactivity

is found in the endoplasmic reticulum, while the gamma-cleavage seems to take place downstream of the ER (pre-

senilin ‘‘spatial paradox’’).(the presenilin ‘‘spatial paradox’’). The production of Ab42 (but not of Ab40) appears to

take place in the endoplasmic reticulum/intermediate compartment [63] whilewhile, Ab40 is exclusively produced in

the trang-Golgitrans-Golgi network [114]. Primary cultures of hippocampal slices have been extensively used to study

the electrophysiological consequences of Ab oligomers (see later).

This paper is focused on transgenic mice. The literature has rapidly grown rapidly on this topictopic, and we have

been forced, in many instances, to limit our subject and our analysis of the literature. The reader is referred to

excellent reviews on the subject [102,129,214,215,285,313]. We have deliberately not reviewed the effects of active or

passive Ab immunotherapy on Tg mice, asince this subject muchis far too largeextensive for this review.
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Specific problems raised by the pathology of transgenic mice

Transgenesis raises specific difficulties and questions. The number of transgenes that have been inserted and their

sitesites of insertion are uncontrolled. The expression of the gene may reach high values that trigger defence cellular

defence mechanisms that will give onlyprovide little information on the natural role of the transgene itself. The

topography of the protein expression and its course during development laregelylargely depends on the promoter.

Some defects may be related to anomaly of development and may be unrelated to the overexpression of the protein in

the adult – aadult—a problem which can be solved bythrough the use of inducible systems of expression (see later) or

by the use of gene knock-down by siRNA [274]. The genetic background may substantially modify the pathology

[46]], and uncontrolled results may be related to outbred lines. The transgenic animals should, if necessary, be back-

crossed for multiple generations to obtain inbred lines. The incidence of gender has been mentioned in several studies:

amyloid deposition has been found to be more extensive in female APP mice [323]. Pharmacological treatments with

intended anti-Ab effects have been found to have different (even opposed) effects in male and female transgenic mice

e.g.mice, e.g., [240], reinforcing the contention that gender is a variable to take into account in the analysis of murine

models.

The transgenic models of Ab accumulation

After the identification of the Ab peptide, initially in vessels of trisomy 21 patients and then in senile plaques of AD

cases [105,208,341], several teams looked for ‘‘the’’‘‘the’’ mutation responsible offor the rare cases of familial Alz-

heimer disease (FAD) –only(FAD)—only to realize that not one but numerous mutations were actually able to cause

the disease. Mutations are indeed located not only in the APP gene [52,106], from which the Ab peptide is cleaved, but

also in the genegenes of presenilin 1 or 2 [4,259,280] that are directly involved in Ab production from APP.

It is to-daynow clear that there is not one but several Ab peptides, with a C-terminal heterogeneity: some isoforms

end at the AA 40, otherand others at the AA 42 or even at AA 43, 45, 46 or 48 [248],]; the cause of this heterogeneity is

still unknown. Several Ab species are N-truncated and were shown to be the main Ab species in some APP mutations

[173,275]. All of the mutations that have been tested, when transfected in cellular models, induce an increase in the

Ab42/Ab40 ratio [72]], with the noticeable exception of the Arctic mutation involving directly involving the Ab

sequence itself [55]. All mutations induce an overproduction of Ab with the noticeable exception of the mutation

V715MV715M, in which, however, the ratio Ab42/Ab40 is increased [6]. Transfecting the APP gene induces an

overproduction of the proteinprotein, and APP overproduction may be sufficient to increase Ab peptide secretion:

both the b and the c enzymatic activities do not appear to be rate-limiting. However, as we shall see, APP has to be

muted to produce a quantity of Ab sufficient to cause visible changes.

Mutations of the gene of tau proteins are not associated with AD but with fronto-temporal dementia [284]. It is

therefore logical to consider that AD pathogenesis is related to a change in APP rather than in tau metabolism. This

conclusion is formalized as the ‘‘cascade hypothesis’’ that‘‘cascade hypothesis,’’ which states that the excessive pro-

duction of Ab peptide is the cause of a cascade of reactions that lead to tau pathology and neuronal death

[116,117,118,–119].

Various APP transgenic models

The three human isoforms of APP (hAPP) (695, 751, and 770 amino-acids) have been used as transgenes. The

mutations of the APP gene that have been used most often used are labelledlabeled by the place where they have been

identified: Swedish (which is made of two contiguous mutations), London, and Indiana, respectively K670NIndiana
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(K670N & M671L, V717I and V717FV717F, respectively, with the numbering corresponding to the longest APP

isoform.isoform). The hAPP gene has been driven by various promoters: PDGF,promoters—PDGF, Thy-1 or Thy-

1.2 (neuron specific),(neuron-specific), and hamster PrP (not only neuronal) thatjust neuronal)—which allows its

exclusive or preferential expression in the central nervous system. A large,large but certainly incomplete,incomplete

list of the transgenic lines pertaining to AD is tocan be found on the site of Alzforum website (http://www.alzfor-

um.org/res/com/tra/).

The APP singly transgenic lines

Seventeen amino acids differ in mouse and human APP; three of them are located in the Ab sequence (Arg 5 Gly, Tyr

10 Phe, His 13 Arg – theArg—the first AA is the human one). However, increasing the level of mouse APP does not

cause Ab deposition. Transfection of human APP is necessary [153], and the trisomy16 murine model (where no Ab

deposition is found) suggests that hAPP has to be mutated to obtain a reliable and abundant deposition.

Initial attempts Now that numerous mouse lines with Ab deposits have been produced, it is interesting to look back at

the first, largely unsuccessfulunsuccessful, attempts to develop an Alzheimer model [215]. After unconfirmed results of

Alzheimer pathology in transgenictransgenics expressing the C-terminal part of APP [161] or the Ab peptide under the

promoter of APP [332], several lines were generated with various techniques. The sequence limited to the Ab peptide

itself, under the promoter of the light chain of neurofilament, was neurotoxic. Ab remained intracellular and caused

apoptotic cell death [179]. Since Ab beingis partly hydrophobic, its cellular fate when synthesized outside a cell

membrane was probably not physiological. The pathogenic effects of its overproduction were probably not directly

linked to the pathogenesis of AD. Several attempts were made to introduce wild typewild-type human APP ininto

transgenic mice. Several transgenic lines were produced with a transgene that comprised the 100 AA of the C-terminal

part of APP [160,228]. A weak Ab accumulation was found in the cell body and the neuropil; C100 was also found to

aggregate in vesicular structures of the cytoplasm [160]. Long termLong-term potentiation (LTP) was impaired [228]],

but the extracellular deposits of Ab were limited or absent. In the APP-C99 (Tg 13592) mouse line, the signal sequence

and the 99 amino-acids C terminal fragment (C99) of APP is overexpressed under a cytomegalovirus enhancer/b-actin

promoter [97]. The expression is detected in many tissuestissues, and Ab deposits are detected only in the muscle in

aged animal.animals. The plasma concentration of Ab peptide is increased 17 times.17-fold. There are no deposits in

the brain. The mice exhibit hypoactivity and spatial learning deficit. This transgenic line indicates that the increase in

plasma Ab peptide concentration does not produce amyloid in the brainbrain, and strongly suggests that the pro-

duction of Ab peptide takes place in the brain of FAD patients rather than at the periphery.

A yeast artificial chromosome containing wild typewild-type APP did not induce any visible changes. A YAC

containing the human APP gene encoding APP harboring the Swedish mutation, the London mutation or a com-

bination of the two increased the Ab42 / Ab40Ab42/Ab40 ratio and decreased the concentration of a-secretase

derivatives [184]. Ab deposits and neuritic abnormalities were found in the olfactory cortex and olfactory bulb in

14 months old14 month-old animals which expressed a YAC containing APP with the Swedish mutation, mated to

homozygosity [172]. A human APP 695 transgene with the London mutation,mutation driven by the neuron speci-

ficneuron-specific enolase was not associated with any microscopical changes (probably because the levels of Ab were

not sufficient) [203]. These first attempts indicated that the Ab sequence alone was inefficient, thatinefficient; the whole

sequence of APP had to be expressedexpressed, and that only mutations were able to cause a significant increase ofin

Ab 42. The YAC technology was fruitfulfruitful, but lesions were observed in limited amounts and only in old

animals. The NSE promoter was not powerful enough to drive Ab secretion to the threshold level necessary to cause

lesions.
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A large number of hAPP singly transgenic mice with significant changes have thereaftersince been produced; only

the singly transgenic mouse lines that have been most studied in the literature are listed below.

The PDAPP transgenic line

The transgene of the first mouse line with significant pathologic accumulation of Ab peptide was a cDNA minigene

bearing the sequence of human APP (hAPP) carrying the Indiana mutation (V717F) with portions of APP introns 6–

8. The presence of introns 7 and 8 allowed the alternative splicing of exons 7 and 8, and the expression of the 695, 751

and 770 APP isoforms. APP expression was driven by the PDGF promoter [98]. This PDAPP transgenic line has been

extensively studied. From the age of 6 months,six months, the heterozygous mouse develops visible extracellular

deposits of Ab peptide in the hippocampushippocampus, and at 8 monthseight months in the isocortex [98,146].

Some deposits are amyloid (Congo red and thioflavin S positive). Ab peptide is also found in the vessel walls.
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The Tg2576 mouse line The Tg2576 mouse line [137] overexpresses the 695 isoform of human APP with the Swedish

double mutation (K670N/M671L) under the control of the hamster prion protein promoter. Ab diffuse and focal

deposits are found at 9–11 months of age in the heterozygous animal.

The APP23 mouse line,line In the APP23 mouse line, developed by Novartis Pharma, the 751 isoform of human APP

with the double Swedish mutation is expressed under the control of a mouse Thy-1.2 promoter [292]. (The] (the same

cDNA under the control of a human Thy-1 promoter had no pathology). There areis diffuse and congophilic

deposition of Ab peptide in parenchyma and vessels from 6six months of age.

Line C3–3 ItThis is also an APP bearing the Swedish double mutationmutation, which is overexpressed in this mouse

line. The chimeric mouse/human APP with the Swedish mutation K670N/M671L contains a humanized Ab domain.

The promoter is the mouse prion promoter. The mice do not develop plaques until 18 months of age [30,31].

The Tg CRND8 mouse line,line The Tg CRND8 mouse bearing both the Swedish double mutation and the Indiana

mutation (hAPP695 K670N,M671L + V717F), under a hamster prion promoter, develops plaques at as earlysoon as

3 monthsthree months of age [57]. The high Ab concentration and the highly increased Ab42/Ab40 ratio explain why

this model is particularly aggressive.

The hAPP H6, J9 and J20 hAPP lines Several Tg lines expressing, at various levels, wild typewild-type or mutated

hAPP were produced under a platelet- derivedplatelet-derived growth factor beta chain promoter (PDGF). A sum-

mary of the most commonly used of these Tg animals is given in [222] p 4052.(p. 4052). We just mention here the lines

that we will consider later: the J9 and J20 lines, aslike the Tg CRND8 line, express hAPP with the Swedish and the

Indiana mutation. In these lines, the human transgene is the isoform 770. The J9 line (‘‘hAPPlow’’)(‘‘hAPPlow’’)

expresses a moderate level of neuronal APP and Ab; the level of expression is high in the J20 line [56]. Line H6 also

expresses hAPP with the Indiana mutation also under the control of a PDGF promoter [344].

The APPDutch line,line The E693Q mutation of APP induces a massive amyloid angiopathy, as described in Dutch

patients. The disease has been replicated by generating a mouse line expressing hAPP751 with the with E693Q

mutation under a murine Thy1.2 promoter. Vascular accumulation of Ab with haemorragheshemorrhages and in-

flammation have been observed in these mice [128].

The ARC6 and ARC48 lines The Arctic mutation (E22G) is located in the Ab sequence; it stimulates Ab fibrillization

without changing the Ab42/Ab40 ratio. The transgene is a minigene containing APP with the Arctic mutation and

also the Swedish and Indiana mutations, under the control of the platelet-derived growth factor b-chain promoter

[54].

Data obtained from the comparison of different mouse lines indicate that the onset and the severity of the amyloid

deposits are directly linked to the level of Ab42 peptide. Sturchler-PierratSturchler–Pierrat et al., in parallel with the

APP23, developed a line in which only a 2-foldtwofold overexpression of human APP bearing the Swedish and the

Indiana mutationmutations was obtained. Ab deposition was seen later than in the APP23 and there was but little

amyloid formation [292]. In a series of different mouse lines with an hAPP 751 transgene bearing the Swedish and the

London mutations, the progression of the pathology appeared to be directly linked withto the level of Ab42 con-

centration [257], the level of Ab(1–40) being higher in mice that did not show any amyloid deposits. A high level of

Ab42 is a necessary condition, but it is not sufficient: Mucke et al. generated different APP transgenic lines under the
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same promoter (PDGF); they noticed that the overexpression of wild typewild-type human APP, even if it increased

the level of Ab42, was insufficient to cause plaque formation –formation—which was observed only when the APP

transgene carried a pathogenic mutation,mutation known to be responsible for familial AD [222]. However, the late

occurrence of Ab deposits was mentioned in two lines,lines (as briefly and incompletely described in the literatur-

e,literature) in which human APP, without mutation, was overexpressed under the control of a NSE [130] or a Thy-1

promoter [128]. Only the overexpression of APP751 , butAPP751, not of APP695, was able to induce Ab deposition in

the first model.

Trisomy 21 models

Chromosome 21, which is present in a triple dose in Down syndrome, contains the APP gene, explainingwhich

explains why AD lesions are almost constant at a relatively early age. An exceptional patient with a partial trisomy 21

that did not include the APP gene did not develop AD [244]. On the other hand, microduplication of the APP gene,

inducing AD with prominent amyloid angiopathy, has recently been identified [261]).]. Models of trisomy 21 (trisomy

16 in the mouse) have been generated and giveprovide information not only on the role of the APP gene but also of its

contiguous genes in the pathology. Two segmental trisomy 16 models, Ts65Dn and Ts1Cje, have contrasted con-

sequences. In the Ts65Dn mouse [251], a large segment of chromosome 16 including the APP gene,gene is in three

copiescopies, while the segment in triplicate in the Ts1Cje mouse is smaller and does not include the APP gene nor the

gene of the superoxide dismutase 1 (SOD1) [264]. Increased levels of APP mRNA and of the protein itself have been

detected in the Ts65Dn mouse in the striatum by 6–8 months of age, and in the hippocampus and parietal cortex by

13–16 months of age. Ab42 levels have been found to be increased at 6 months.six months. At this age, the basal

forebrain cholinergic neurons (BFCN) start degenerating [141], a degeneration that is related to impaired retrograde

transport of NGF [64,265]. Neither total tau nor tau phosporylated on the serine 199 are elevated in the Ts65Dn mice

[140]. As expected, the level of Ab42 is normal in the Ts1Cje mouse line (which has the normal two copies of the APP

gene) and there is no degeneration of the BFCN. However, and quite unexpectedly, abnormal phosphorylation of tau

has been detected in this mouse line without tangle formation [281]. In the ‘‘transchromosomic’’‘‘transchromosomic’’

21 model (Tc1), an almost complete human chromosome 21 has been incorporated ininto the mouse genome [236].

Few data concerning APP metabolism are presently available.

Early endosomal alterations, the earliest known pathology detected in sporadic AD and DS developsDS, develop

before Ab is deposited and as soluble Ab increases [50]. In the basal forebrain of Ts65Dn mice, neurons develop

enlarged endosomes at 2 months.two months. There is no enlargement of the endosomes in the Ts1Cje mice (no APP

overexpression) andor in transgenic mice overexpressing APP751 with the Swedish double mutation alone or in

combination with the London mutation [49]. The cause of endosome enlargement remainsis still to be fully elucidated.

Presenilin transgenic mice

Mutated human PS1 or PS2, when expressed alone, do not induce any detectable lesionlesion, although they increase

the level of Ab peptide [211,239,268]. The behaviouralbehavioral impairment is modest [154,183]. The mutated PS1

transgene, however, disturbs calcium homeostasis in the endoplasmic reticulum [211]. It has furthermore been recently

shown that a mutated human PS1 transgene altered the fast axonal transport and induced tau hyperphosphorylation

[189].

Doubly transgenic mice
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The b- and c-secretase pathway APP and BaceBACE (b-secretase)

APP plus Bace1BACE1

BACE 1BACE1 cleaves APP at AA 1 of the Ab peptide but also at AA 11, producing N-truncated Ab. BACE1

transgenic mice (with the promoter of the Ca2+/calmodulin-dependent protein kinase II gene = CaMKII) have an

increased turnover of serotonin and aexhibit bolder behaviourbehavior than control littermates [120]. hAPP mice have

been crossed with mice overexpressing BACE 1.BACE1. The BACE transgene increased the level of Ab but also that

of the C-terminal fragments of APP [27]. The coexpression of BACE 1BACE1 in a transgenic APP line increased the

density of diffuse and focal deposits of Ab peptide, but, unexpectedly, dramatically decreased the severity of amyloid

angiopathy. This was considered thea consequence of the abundance of N-truncated Ab species. In this hypothesis,

the N-truncated Ab peptide accumulates preferentially in the parenchyma, while the full-length Ab peptide may be

drained and accumulates in the vessels [331]. In another study, BACE1 co-expression (murine Thy1 promoter) with

hAPP decreased the level of Ab and of APPAPP, but worsened the severity of the neurodegeneration, which is

possibly thea consequence of the accumulation of APP C terminal fragments (CTF) [258].

APP minus Bace1BACE1

Mice, knock-outMice knocked-out for BACE 1,BACE1 are viable and fertile and do not produce Ab [199]. They

are timid and less exploratory than the controls [120]. Mutation of the b-secretase cleavage site (M671I) on APP also

eliminates the production of human Ab [223]. Lowering BACE1 levels using lentiviral vectors expressing siRNAs

targetingthat target BACE1 reduced amyloid production and the neurodegenerative and behavioral deficits in APP

transgenic mice [282]. Crossing BACE1 KO mice with PDAPP mice [212] or with with TG2576 mice [199] prevented

the pathology. Loss of BACE1 function rescued the behaviouralbehavioral alterations [212]. EvenThe effect was even

spectacular in PDAPP mice heterozygous for BACE1, the effect was spectacular although the decrease in Ab 42 was

relatively modest (-12 %)(�12%) [212]. These results suggest that inhibition of BACE could be a therapeutic target.

Unfortunately, other results indicate that BACE -/- x�/� · PDAPP mice have unexpected sensorimotor impairments,

spatial memory deficits, and display seizures – aseizures—a phenotype that could prevent the use of inhibitors of

BACE [168].

APP and Presenilinspresenilins (c-secretase)

APP plus Presenilinpresenilin

The co-transfection of human mutated (M146L or M146V) presenilin 1 significantly lowers the age at which the

first plaques are detected [89,131,216], most probably by increasing the quantity of secreted Ab42.Ab42 secreted.

Wild-type PS1 or PS2 has no effect [89]. In C3-3 mice,mice crossed with mice expressing a mutant PS1, the Ab deposits

are visible at 9 monthsnine months (instead of 18) [30,31]. The PSAPP line has been obtained by crossing Tg2576

mice with mice expressing human PS1M146L . Amyloid deposits are present at 6 months (9 monthssix months

(nine months in the Tg2576 mouse line). In a APPSLPS1M146L mouse model developed by Sanofi-Aventis, a human

APP751 gene carrying both the Swedish and the London mutationmutations (K670N/M671L and V717I) under the

control of the Thy-1 promoter is associated with a human mutant gene of presenilin-1 (PS-1 M146L) under the HMG-

CoA reductase promoter (allowing a preferential cerebral expression). An intracellular accumulation of Ab peptide is

visible at 2 monthstwo months, and Ab plaques appear as early as 3 monthsthree months [26,186]. A similar mouse

line,line with the M233T/L235P mutations knocked in the PS1 gene (APPSLPS1ki),) develops a very aggressive form of

the disease but also a prominent neuronal loss in the CA1 sector [48].

The coexpression of hAPP with the Swedish double mutation (K670N/M671L) and that of PS1 with the L166P

mutation under the control of a neuron-specific Thy1 promoter element (APPPS1 mice) dramatically lowers the age at

which the first lesions are visible :visible: cerebral amyloidosis starts at 6–8 weeks6–8 weeks, and the number of

microglial cells increases 3-foldthreefold from 1one to 8 months.eight months. Neuronal loss appears minimal [249].

The 5XFAD model was devised to accelerate Ab deposition [231]; these APP/PS1 double transgenic mice coexpress

five FAD mutations [APP K670N/M671L (Swedish) + I716V (Florida) + V717I (London) and PS1
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M146L&L286V]. Intracellular accumulation of Ab42 is seen at 1.5 months of age and amyloid deposition begins at

2 months.two months.

AThe deletion of exon 9 in presenilin 1 increases, in man, the secretion of Ab peptide and is associated with the

occurrence of large and homogeneous senile plaques that are only weakly congophilic (the so-called cotton‘‘cotton

wool plaques).plaques’’). The occurrence of the lesions is accelerated in the mouse when an hPS1 gene with a deletion

of the exon 9 deleted (line S9) is coexpressed with a hAPP gene with the APP Swedish mutation (line C3-3)C3-3),

yielding an APPswe/PS1dE9 line [100,191]. The first Ab deposits are detected at the age of 4–5 months. The E9

deletion of the PS1 gene, rather than inactivating the gene, induces a gain of function.

APP minus Presenilinpresenilin

The PS1 knockout (KO) mice are not viable. They have skeletal and CNS deficits (hemorrhages, deficient neu-

rogenesis),neurogenesis) which could partly be due to the role of the gamma-secretase in Notch signaling [279]. Using

a loxP/Cre-recombinase strategy, Dewachter et al. succeeded in generating a post-natal, neuron specific,neuron-

specific, PS1 KO mouse. The absence of presenilin 1 prevented the formation of Ab peptide deposits [77]. However, a

cognitive deficit (object recognition test) was still present in the hAPP [V717I] x· PS1 -/-�/� mice, a deficit that the

authors attributed to the increase in APP C99 (the product of the BACE cleavage of APP). The potential toxic

roletoxicity of C99 has been tested in the Tg 13592 line, in which spatial learning deficit has been observed in the

absence of brain Ab deposits.

The a-secretase pathway The a-secretase cleaves APP in the Ab sequence. ADAM10- AADAM10—A Disintegrin

And Metalloproteinase- isMetalloproteinase—is presently the best candidate asfor the enzyme responsible for the a-

secretase activity [170]. The wild typewild-type human ADAM10 gene, in a mouse line carrying hAPP with the

London mutation, increased the secretion of sAPP, reduced the concentration of Ab peptidepeptide, and prevented

the formation of Ab peptide deposits. On the contraryIn contrast, the expression of an inactive mutant of ADAM10

worsened the pathology [243].

Ab degradation Neprilysin

Neprilysin (or neutral endopeptidase 24.11 = NEP or CD10 or enkephalinase) is thought to be at least partly

responsible for the degradingdegradation of Ab peptide. This metalloendopeptidase is inhibited by phosphoramidon

and thiorphan [149]. Transgenic expression of neprilysin improves the pathology and the behaviourbehavior in an

APPxPS1APP · PS1 mouse line with a Swedish and Indiana mutationmutations [242]. A lentiviral vector expressing

human neprilysin decreases by half the density of plaques by half [205].

Chronic infusion of thiorphan in the rat induces Ab deposition [149]. Increased concentration of Ab peptide is

observed in NEP-/-NEP�/� mice [91,148]. Amyloid-like deposits in addition toand signs of neuronal degeneration

have been observed in aged neprilysin-deficient mice [201]. Loss of NEP function in APP mice markedly increased

hippocampal amyloid plaque burden, and led to the development of amyloid angiopathy. Even a 50 %50% reduction

ofin NEP activity was sufficient to increase amyloid neuropathology [95]. APPxNEP-KOAPP · NEP-KO mice have

been shown to develop synaptic alterations and cognitive deficits, presumably in relation withto increased levels of Ab

oligomers [138].

Inducible model

The difficulty metinvolved in solubilizing amyloid, whatever its composition, left openmeant that the question ofre-

garding the course of the disease if the Ab accumulation is just stopped but the amyloid remainsstays in place.place

remained open. An inducible model made it possible to study the evolution of the plaques after the hAPP695Swedish/
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Indiana transgene,hAPP695 Swedish/Indiana transgene had been inactivated. It appeared that the amyloid pathology

did not progress, but it did not regress.regress either. The amyloid core produced the same inflammation and was

surrounded by dystrophic neurites [152].

Conclusions

The alterations observed in these various mouse models are compatible with a coherent view of APP metabolism: APP

is cleaved by BACE1 and the c-secretase complex to produce Ab peptide. Higher Ab levels are observed when either

BACE or the c-secretase activity is increased. When the concentration of Ab is sufficient, deposits are observed but, in

the mouse, but only if APP is mutated. Stimulating the a-secretase pathway (ADAM10 transgenic line) or the

degradation of Ab (NEP transgenic line) improves the pathology and the behaviour.behavior.

In the next section we consider, from a pathological point of view, the lesions that are observed in the transgenic

lines. We have distinguished the expected alterations, thosealterations—those that are present in man and absent in

the animal, andanimal—and finally the lesions that ask new questions or suggest new pointpoints of views.view.

Pathological consequences of the accumulation of Ab peptide

To simplify the terminology, the ambiguous term of senile plaque‘‘senile plaque’’ will be avoided as much as

possible. The term ‘‘diffuse’’‘‘diffuse’’ describes the non-amyloid (non-congophilic, non-fibrillar),nonamyloid (non-

congophilic, nonfibrillar), large and irregular Ab deposits,deposits; the term ‘‘focal’’‘‘focal’’ describes the small,

spherical, intensely immunoreactive Ab deposits; and the term ‘‘amyloid’’‘‘amyloid’’ is used for the deposits that are

stained by thioflavin-S or Congo red.

Aspects for which the APP transgenic lines may serve as good models of AD

In many ways the APP transgenic mice mimic the amyloid aspect of Alzheimer pathology:pathology.

Ab production and Ab deposits

While APP overexpression remains roughly constant during the lifelives of the APP transgenic mice, the level of Ab

increases with age. In the PDAPP mouse line, for instance, Ab concentrations increase 17-fold in the hippocampus

between the ages of 4four and 8 months,eight months, and by 18 months are over 500-fold that at 4 monthsfour

months [158]. From a given age on, the micemice, which produce a large amount of Ab 42,Ab42, develop visible

deposits first in the hippocampus and isocortex and secondarily in some subcortical nuclei. Although the topography

of the lesions depends on the transgene promoter, it should be stressed that the deposition exhibits a laminar pattern

that suggests that Ab42 is secreted in the terminal field of the neurons, probably just as occurs in humans. In some

lines, this is particularly striking for the perforant path that links the neurons of layer II of the entorhinal cortex with

the external molecular layer of the dentate gyrus [293]. Section ofSectioning the perforant path prevents the formation

of the amyloid deposits in the molecular layer of the dentate gyrus [188]. The deposits are Congo red and thioflavin S

positive and are made of amyloid fibrils 9–11 nm in diameter, as in AD. The process of the formation ofby which the

amyloid fibrils are formed is not thea mechanical consequence of an increase in APP overexpression and Ab peptide

concentration. APP may be overexpressed at higher levels in regions devoid of plaques rather than in areas where they

are abundant [158]. It has been shown that Ab deposition couldcan be dramatically accelerated by the injection of

amyloid substancesubstances from older transgenic mice or even from human amyloid. Strangely enough, in a way

similarsomewhat similarly to what has been observed in prion diseases, the fibrils obtained by simply having the

synthetic peptides precipitated in solution are not efficient [218,319].
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Amyloid angiopathy

Amyloid angiopathy is common in APP transgenic mice [127]. It was a common belief that Ab deposition in the vessel

walls of perforating arteries and subarachnoid vessels werewas due to the secretion of Ab peptide by the smooth

vascular muscle cells [338].Tg]. Tg mice have demonstrated that this is far from always being true. In some transgenic

lines, the amyloid angiopathy appears particularly prominent – asprominent—as in the line generated by Van Dorpe

et al. (695 isoform of hAPP- LondonhAPP—London mutation V717I ;V717I; murine Thy1 promoter) [315] and in the

line APP23 (isoform 751 of APP with Swedish mutation; murine Thy-1.2 promoter) [43]. The role of the Ab42/Ab40

ratio is an important determinant of the distribution of Ab in vessels or in parenchyma: the APPDutch mice (E693Q

APP751) develop prominent amyloid angiopathy, associated with an increaseincreased level of Ab40. ButHowever,

the APPDutch mice crossed with PS1G384A Tg mice mainly develop parenchymal deposits, the ratio Ab42/Ab40

beingwith an increased ratio of Ab42 to Ab40 [126].Since]. Since the deposition is seen in transgenic lines in which Ab

peptide is expressed under a neuronal promoter, it is highly probable that the peptide,peptide produced by the

neurons,neurons accumulates in the vessel walls [43,315]. This is compatible with the theory put forward by Weller

et al. that the Ab peptide is drained with interstitial fluid through the peri-vascularperivascular space (in a direction

opposite to the arterial blood flow) [328]. Recently, Ab peptide was found in the perivascular space of APP23 mice

and also, in small amounts, in wild typewild-type aged animals. Ab was colocalized with ApoEApoE, suggesting that

the drainage of Ab could involve an interaction with ApoE [301].

Pathology of synapses

Synaptophysin Immunoreactivityimmunoreactivity Loss of synaptophysin immunoreactivity (IR) has been considered

to be a hallmark of AD pathology and the best correlate of cognitive deficit [298], an opinion that has, however, been

discussedunder discussion [79]. The results in the Tg mice have been contradictory. Some studies reported an absence

of change: Inin the APP23 mouse line, for instance, no loss of synaptophysin IR has been detected despite robust Ab

deposition [28]. The loss may be subtle: in the TG2576 APP mouse line, no loss was initially observed, but rather an

increase, correlated with a deficit in synaptic function [165]; a more exhaustive stereological and ultrastructural

analysis in the same line found a decrease in the synaptic density of the external molecular layer of the dentate gyrus,

in close relation withto the Ab deposits [87]. Some studies report a reproducible loss of synaptophysin IR. The

decrease in density of presynaptic terminals precedes forby several months the extracellular deposition of Ab peptide

in a line H6 (see above) [136]. An age-dependent decrease in synaptophysin IR has been documented in the PDAPP

mouse line [84]. Mucke et al. have generated several mouse lines expressing either wild typewild-type or mutated

human APP. At the same level of expression of hAPP, extracellular deposits of Ab peptide are observed only when

APP is mutated, even when the level of Ab42 is high. The density of synaptophysin IR is even found to be decreased

even in mice expressing wild typewild-type APP without Ab deposits. It is inversely correlated with the level of Ab

42Ab42, but it is not necessarily associated with a high plaque load or with a high level of APP expression [222].

Synaptic alterations can thus be seen in the absence of extracellular deposit of Ab peptide. Moreover, age relatedan

age-related decrease in synaptophysin IR has been observed in PS1 singly transgenic mice [263]. Presynaptic markers

synaptophysin and syntaxin,syntaxin as well postsynaptic density-95 decreased with age in the 5XFAD model [231].

The density of dendritic spines decreases in the CA1 sector of PDAPP and of Tg2576 before Ab deposition [187]. It

has been suggested that the loss of dendritic spines could be related to the toxicity of Ab oligomers. The density of

spines of rat pyramidal neurones in culture was decreased after exposure to picomolar levels of soluble oligomers of

Ab peptide. This effect is mediated by NMDA typeNMDA-type glutamate receptor and is reversible [278]. Abeta-

derivedAb-derived oligomers (ADDLs) selectively bindsbind to postsynaptic densities of presumably excitatory

neurons (sparing the inhibitory GABAergic ones),ones) in cultures of highly differentiated hippocampal neurons. This
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binding is associated with a decrease in membrane expression of NMDA and EphB2 receptors and with the ap-

pearance of abnormally long thin spines [177].

While the effect on spines is probably caused by Ab solubleAb-soluble oligomers, larger changes observed on

dendritic trees seem to be more directly correlated with fibrillar amyloid deposits. In the Tg2576 transgenic line, the

dendritic density is diminished within the boundaries of amyloid-beta plaques, with the greatest loss (about 80%) in

the thioflavin S positive cores. The processes are abnormally curvy [190]. In the same line, in vivo imaging using

multiphoton confocal microscopy reveals spine loss and shaft atrophy of dendrites near Ab deposits [304].

In conclusion, the data ofin the literature indicate a regular drop in the presynaptic marker synaptophysin in the

APP transgenic mice; this decrease may be seen in the absence of Ab depositdeposits (but with high con-

centrationconcentrations of Ab42)Ab42), and has been also noticed in PS1 transgenic mice. The fibrillar deposits of

Ab peptide, on the other hand, alter the dendrites.Long term Long-term potentiation and Ab oligomers

Long termLong-term potentiation (LTP) is an enhanced synaptic transmission observed in synapses that have

previously been stimulated. It is studied withthrough electrophysiological means ex vivo (brain slices) or in vivo. LTP,

which can be considered asto be a mechanism supportingthat supports learning and memory functions, was shown to

be severely impaired in old Tg2576 mice [51]. In the PDAPP mouse model, abnormal neurotransmission in hippo-

campal circuits can be detected before the formation of extracellular deposits of Ab peptides [104]. Ab peptide

oligomers rapidly and significantly block LTP [320]. PS1 mutation alone can also induce anomalies ofin synaptic

transmission that are similar to those observed after the application of Ab42 peptide and are probably related to a

decrease in the number of synapses [187] rather than to a modulation of their function [246].

In conclusion, the data ofin the literature suggest that synaptic alterations could be directly correlated with a high

concentration of Ab42, the amyloid conformation adding probably adding some supplementary detrimental con-

straints on the dendrites. They also suggest that electrophysiological alterations may be present in the absence of

structural changes and that Ab oligomers are responsible for these changes.

Synapses and connections It has been known for a long time that neurites making upcomprising the corona of the

senile plaque contain synapses. The origin of the axons that contribute to this ‘‘innervation’’‘‘innervation’’ of the

plaque is unknown except in rare circumstances (for instance, the axons in the superficial part of the molecular layer of

the dentate gyrus come from the entorhinal cortex; they probably heavily contribute to the plaquesplaque’s in-

nervation in that region). It has been possible to track cortico-corticalcorticocortical connections with an anterograde

tracer in APPxPS1 mice and to show that some of them came into contact with the plaque core, while thalamic

connections for instance avoided the plaque by following a curvy trajectory [74,75]. Entorhinal axons form dystrophic

boutons in contact with Ab deposits located in the entorhinal projection area of the dentate gyrus [241]; aberrant

boutons were found associated with amyloid in ectopic locations within the hippocampus, the thalamus, white matter

tracts, as well as surrounding vascular amyloid [241]. These data show the presence of profound changes in neuronal

connections that had been underestimated and probably contribute to dementia.

Pathology of neurites and axonopathy

The amyloid deposits induce massive changes in the neurites that surround them (the corona of the plaque). They are

labelledlabeled by anti-neurofilamentantineurofilament and anti-APP antibodies (PDAPP mouse line, 10–12 months

of age) [207]. The tau immunoreactivity of the corona neurites has attracted much attentionattention, since it may

constitute the missing link between Ab and tau pathology. Phosphorylated tau and ubiquitin epitopes appear gen-

erally late,appear late on, after 14 months of age in the PDAPP line [207]. No paired helical filaments (PHF) have ever

been identified at electron microscopy [207] (with the noticeable exception of Kurt et al. [176].]). The dystrophic

neurites,neurites in the Tg2576 mouse,mouse are enriched in GSK3bGSK3b, suggesting that this kinase is principally
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responsible for tau phosphorylation [303]. In a APPSwe/L xPS1 model · PS1 model, most Ab peptide deposits are

surrounded by a high number of degenerating neurites containing APP, ubiquitin, and manganese de-

pendentmanganese-dependent superoxide dismutase. Mitochondrial markers (cytochrome c, cytochrome oxidase 1,

and Bax) are also in these degenerating neurites. Phosphorylated tau immunoreactivity appears late and develops at a

slow pace [25].

The accumulation of neurofilament, APP, tau and ubiquitin epitopes is associated with morphological changes of

the neurites. The amyloid core of the plaques,plaques in PDAPP mice crossed with mice overexpressing yellow

fluorescent protein (YFP) in a subset of neurons,neurons is surrounded by markedly enlarged YFP-labeled axonal

and dendritic varicosities [36]. The geometry of the neurites in or near the amyloid core is modified [190]. The presence

of abnormal axonal varicosities near fibrillar deposits has also been observed in vivo by transcranial two-photon

imaging [304] (Tg2576). An alteration of axonal transport has been considered asto be the possible cause of these

changes: spheroids and myelin ovoids, axonal accumulation of APP, neurofilament and ubiquitin are observed in the

white matter of the spinal cord [337] in the APPxPS1APP · PS1 and APPxPS1- KiAPP · PS1—Ki lines developed by

Sanofi-Aventis [26,336,337]. Anterograde tracing of cortical connections has also revealed abnormal boutons in

contact with the amyloid core [75,241]. The tracing of connections by DiI, a lipophilic carbocyanine dye, has been

used by Capetillo-ZarateCapetillo–Zarate et al. [45]. They found, in the APP23 mouse line, a selective vulnerability of

commissural neurons.

Pathology of the cholinergic and other neurotransmitters systemneurotransmitter systems

Cell loss affecting basal forebrain cholinergic areas (observed in people with AD [330]),]) has not been reported in

transgenic mice ([125]; reviewed in [102]) except in the trisomy 21 model (trisomy 16 in the mouse) [141,265].

Dystrophic cholinergic neurites, on the contrary,in contrast, have been regularly observed in contact with congophilic

plaques [38,200,292]. Several studies have demonstrated decreased cholinergic terminals in APP [103] or APP/PS1

[342] transgenic mice (see however[however, [81] for mixed results). The Tg2576 mouse shows a significant elevation in

the density of cholinergic synapses in the frontal and parietal corticescortices, but in the double transgenic Tg2576 x

PS1Tg2576 · PS1M146L, the density of cholinergic synapses is significantly reduced in the frontal cortex. The size of

these synapses is smaller than in wild typewild-type animals in the frontal cortex and hippocampus [342]. A re-

organization of cholinergic innervation (reduction of acetylcholinesterase-positive fibers in the subiculum; increased

fiber density in CA1 and in the dentate gyrus) has also been mentioned [38]. Minor changes in acetylcholine release

were measured by microdialysis [121]. Decreases in the enzymatic activity of the cholinergic, serotoninergic and

noradrenergic systems were noticed only in the more aggressive models such as the APP23 [311]. These data indicate

that the changes in neurotransmission are, as far as it is presently known, limited in APP tgTg mice, which are,

therefore,are therefore poorly adapted to testtesting therapeutics aimingaimed at improving neurotransmission in

AD.

Alterations that are lacking in the APP transgenic mouse models

Despite the many similarities between the pathology of AD and of its Tg models, the APP Tg mouse is not a perfect

replica of AD. The most striking difference is the absence of NFTs. Even if hyperphosphorylated tau has been

detected with immunohistochemical methods, as we have seen, PHF have,has, to our knowledge, never been found.

The link that has been postulated in the cascade hypothesis between the alteration of APP metabolism and tau

accumulation has not been reproducedreproduced, and the reason offor this failure is still unknown. On the other

hand, the large predominance of Ab deposition on all other lesions in the Tg mice givesprovides a new opportunity to
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study the effect of studying,Ab accumulation as if in isolation, the effect of Ab accumulation, not mixed with tau

pathology.

Problems and questions

The transgenic animals, by allowing the exploration of uncharted territories, have revealed new pathogenic possi-

bilities which, forpossibilities, although many of them,these cannot yet be proven in the human. There areare, on the

other hands,hand, some discrepancies between the data obtained in the mice and in man, which remain unexplained.

We have collected inIn this section we discuss the discrepancies and the open questions.

Atrophy

The atrophy of the medial part of the temporal lobe, including the entorhinal cortex, hippocampus and amygda-

laamygdala, is probably one of the best establishedbest-established signs of AD. Atrophy has also been detected in the

main APP transgenic lines, but with an unexpected time course. Most of the studies that have evaluated brain atrophy

in transgenic mice have been carried out in the PDAPP model [84,109,250,309,327]. These investigations reported a

reduction in hippocampal volume and a severe atrophy or agenesis of fiber tracts (fornix and corpus callosum). The

alterations are already observed in young animals (3 months)(three months) before the accumulation of Ab and show

no further deterioration in older mice [84,109,250,309,327]. They have to be considered in parallel with the difficulties

met in findingwhen searching for a significant neuronal loss in Tg animals (see later the next section on neuronal

loss).‘‘Neuronal loss’’). Atrophy in Tg mice may therefore be the consequence of a developmental defect [124,202],]

that could be amplified in strains with specific genetic backgrounds [202]. This observation leaves opensuggests the

possibility that some functional alterations observed in Tg mice are related to developmental changes rather than to

the accumulation of Ab peptide. Alternatively, the atrophy could be related to early alterations caused by the toxicity

of Ab oligomers before the formation of plaques.

The comparisoncomparison, by in vivo MRI, of APP/PS1 Tg mice (Double Thy1 APP751 SL x HMGSL · HMG

PS1 M146L developed by Sanofi-Aventis [26]) and ofwith plaque-free PS1 Tg mice did not reveal atrophy in young

APP/PS1 animals. Hippocampal volumes are not affected by APP overexpression, regardless of age. However, an age-

related atrophy occurs in APP/PS1 mice, involving posterior brain regions, including the midbrain and the internal

capsule, the corpus callosum and the fornix. The pattern of atrophy, thatwhich involves white matter and largely

spares the isocortex and hippocampus, is different from that reported in AD patients [76].

Neuronal loss

Contrarily to the popular belief that neuronal loss is the essence of Alzheimer pathology, neuronal loss is particularly

difficult to assess and opposite views have been expressed concerning its course and severity in AD (see for in-

stance:[instance [108,254]). Roughly speaking, two contrastedcontrasting opinions have been expressed: forexpressed.

For some, the neurotoxicity of Ab peptide is directly responsible for the neuronal death [348]. Numerous cellular

models have indeed shown, in vitro, vitro, the toxicity of the peptide (or even of part of the peptide) and have

quantified the cell death that it induces. However, it is not yet clear how these results obtained outside a living tissue

maycan be transposed to the whole brain. In the human, for instance, large diffuse deposits are commonly seen in

intellectually normal aging persons and in the absence of overt neuronal death; they may surround normal loo-

kingnormal-looking neurones [73,80]. On the other hand, the neurofibrillary pathology has often been incriminated as

the direct cause of the neuronal death. The ‘‘ghost tangles’’ i.e.‘‘ghost tangles’’ (i.e., tangles left in the extracellular

space after the death of the neurons that contained them,them) are a direct proof of the neuronal death caused by-by
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or at least associated with-with the NFTs [33]. Finally, other stillas yet unknown mechanisms have been incriminated

[108].

ResultsConflicting results have also been conflicting inobtained for the transgenic micemice, and even a para-

doxical increase in the number of neurons has even been noticed in young animals of the Tg23 mouse line [29]. As a

general rule, the neuronal loss has been mild or absent in singly transgenic lines :lines: no significant neuronal loss has

been found in the isocortex or hippocampus of PDAPP mice [146] except in the immediate vicinity of amyloid focal

deposits [307] and in the Tg2576 mice [145]).]. Mild neuronal loss was described for instance in the APP23 mouse line

[44] orand in the CA3 sector of the PDAPP mice [136]. By contrast, the neuronal loss was found to be moderate or

severe in doubly transgenic mice (Tg2576x PS1-M146L(Tg2576 · PS1-M146L [307]; Swedish &and London muta-

tions x PS1·PS1 (M146L) [271]; Swedish &and London mutations x· knock in PS1 (M146L) [48]; 5xFAD5·FAD

[231]). In the majority of the lines, the neuronal loss involves the hippocampus (with a few exception (Cingula-

teexceptions—cingulate cortex: PSAPP mice [307]; layer V of the isocortex [231]). The cause of the neuronal loss has

been discussed: Ab42 peptide at high concentration [231], amyloid Ab deposits [307]; intracellular Ab [48]. There is,

however, some consensus to consider that the possible toxic effect of Ab peptide on the neurons is not direct, since the

loss is not correlated with the amyloid burden, may be absent in regions rich in Ab deposits and, on the contrary,

mayin contrast, can be seen at asome distance from them [271].

The nature of the precipitated amyloid peptide

The different isoforms of Ab peptide are the main [260], maybeand possibly the only constituent [283]], constituent of

the core of the senile plaque observed in the human. These isoforms include full sizefull-size Ab peptidepeptides 42

and 40 as well as N-truncated molecules that could represent up to 60 %60% of all the Ab species. The major

truncated variants consist of Ab peptide starting at AA 2–5 and 8–10 [275]. Post translationalPost-translational

modification leads to alteration of the Ab molecule: isomerization, racemization, pyroglutamyl formation, oxidation,

and covalent linkage of Ab dimers [175]. As a consequence, the Ab peptide of the human senile plaque appears

particularly difficult to solubilise.solubilize.

Ab deposits observed in transgenic mice resemble those depicted in human patients, showing classical im-

munoreactivity with specific anti-Ab antibodies and also amyloid characteristics following histochemical stainings

(green fluorescence with thioflavine-S and Congo red birefringence under polarized light). The deposits of Ab peptide

in the APP Tg mice contain Ab-40Ab40 and Ab-42Ab42 as in the human [297]], but hashave different physico-

chemicalphysicochemical characteristics. At variance with what is observed in the human, in the APP23 Tg mice

[175]], as in Tg2576 mice [159], the Ab peptide is fully soluble in buffers containing SDS. This is attributed to the lack

of the post-translational modifications that are observed in man [175]. Quite intriguing is the weak affinity of the

transgenic murine amyloid to the Pittsburgh compound-B (PIB) that is used in the human to visualize the senile

plaques [167]. Changes in affinity might be caused by differences in the secondary structures of Ab peptides deposited

in human and mice brain tissues.

The topography of the Ab deposits

The topography of the Ab deposits follows, in man, a stereotyped progression that has been formalized by Thal et al.

[302] (isocortex, hippocampus, basal ganglia, brainstem, cerebellum). This progression is not replicated in the Tg mice,

where Ab deposits often mainly affect in priority the hippocampus, and where it largely depends on the promoter that

is used.

Intracellular Ab peptide
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The abundance, the significance and even the presence of intraneuronal Ab peptide (IAb) in man are now discussed.

DifficultSince it is difficult to distinguish from lipofuscin, IAb has probably been underestimated in human neuro-

pathology. A technical factor altering the IR of Ab peptide may have contributed to this underestimation :under-

estimation: the use of heat enhances the visualisation of IAb, but formic acid impedes it [70,71,238]. Formic acid is

commonly used to enhance the IR of extracellular Ab. The use of antibodies directed toward the N- and C-termini of

the peptide has demonstrated that most the IAb is mainly made up of the 42 isoforms and is N-truncated (see for

instance [113,325]), so it is possibly the cleavage product of a- and c-secretase. There is some controversy concerning

the abundance of intracellular Ab peptide: Wegiel et al. detects it even in glia and at a young age. For them, it is

unrelated to AD pathology, beingsince it is observed in regions where Ab deposition does not occur [325]. For others,

onOn the contrary,other hand, for others, intraneuronal Ab accumulationaccumulation, which takes place within the

multivesicular bodies[bodies [294], a] (a specialized form of lysosomes,lysosomes) is an essential factor of the pa-

thogenesis [18,113,178,294,334]. It has been seen in Down syndrome patients,patients before the appearance of senile

plaques [115,221]], and is said to be present in vulnerable regions before the development of full-blown pathology

[113].

This point of view has been stimulated by the analysis of Tg mice. Large granules containing Ab peptide im-

munoreactivity have, indeed,have indeed been seen within the cortical neurons of several transgenic lines among

whichlines, such as Tg2576 mice [113,294], APPSLPS1M146L [186,335], APPSLPS1 M146LKI [48] and 3xTg-AD3 · Tg-

AD mouse [233,234]. In the transgenic models, Ab intraneuronal accumulation is easy to identify and much simpler to

distinguish from lipofuscin than in man. The density of intraneuronal Ab peptide decreases while the density of

extracellular Ab deposits increases [186,234,335]], suggesting that the secretion of intracellular Ab is responsible for its

extracellular accumulation. The removal of extracellular Ab deposits (by immunotherapy) is shortly followed by the

clearance of intraneuronal Ab, indicating that there is a dynamic balance between the two pools [234].

In conclusion, the frequency of intracellular Ab peptide accumulation and its temporal relationship with the

extracellular deposits in transgenic mice raise new questions: does the intracellular accumulation also constitute a

constant stage in the neuropathology of AD? Should the cascade hypothesis be changed accordingly [334]? Is it, on the

contrary, the consequence ofin contrast, due to the overproduction of Ab peptide, observed only in a subset of AD

(genetic cases)? Is its easy recognition in Tg animals the mere consequence of the artificial overexpression of APP? If

the extracellular Ab takes its originoriginates in the intracellular pool, why isdoesn’t the extracellular pool not only

constitutedconsist of N-truncated species? No other example better illustrates the interplay between AD and its

experimental models. The emphasis putplaced on intracellular Ab is clearly thea consequence of the scrutiny of the

transgenic mice. On the other hand, its importance in Tg models leadhas led to re-assessa reassessment of its role in

the human.

Kinetics of the change

Multiphoton confocal microscopy, thatwhich does not induce the lesions caused by the high energy of the laser beam

used in standard confocal microscopy, allows the examination of a living tissue. This technique has been applied to

living transgenic animals, allowing to visualizesuch that the cortex can be visualized through a window made in the

skull. Observation, duringObservations made over periods of months, hasmonths have provided new insight into the

kinetics of the Ab deposits in the parenchyma and in the vessel walls: Focalfocal amyloid deposits develop rapidly.

They could be followed over periods of up to 5 months.five months. Most of them remain stable in size and shape.

Only a small population of the deposits growsgrew or shrinksshrunk in Tg2576 mice [59]. TopicalThe topical ap-

plication of anti-Ab antibodies cleared diffuse and focal deposits over a 3- to 8-day3–8-day period [14].

Intracortical injections of adeno-associated virus (AAV) containing the gene for enhanced GFP in TG2576 allowed

to visualize some neurons,neurons to be visualized, the processes of which could be followed onover long distances.
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Around 14 %14% of all the dystrophic processes in contact with the amyloid core were dendritic. Neurites did not

penetrate the dense amyloid cores but curvecurved around them. A severe deficit in spine density (-50%)(�50%) was

noticed within a distance of 20 lm from the plaque edge. A decrementdecrease (�25%) also occurred on dendrites not

associated with plaques. Plaques and dendrites remainremained stable over the weeks of observation [286]. In a

further study withusing the same methodology, a small subset of spines (around 5 %)5%) was found to appear at one

hourone-hour intervals in the control groups, counterbalanced by a similar percentage of spines that dis-

appear,disappear. In the Tg2576 mice, spine elimination increasedincreased, resulting in spine loss, especially in the

near vicinity of the plaques [287]. In another experiment, the dystrophic neurites surrounding the amyloid core were

visualized by their spontaneous fluorescence in the PDAPP/YFP model mentioned earlier, while the amyloid core was

revealed by the in vivo fluorophore methoxy-X04 thatmethoxy-X04, which has a high affinity for amyloid. Dystrophic

neurites appeared stable over a 3 daythree-day period. Antibodies applied at the surface of the brain partly cleared the

Ab deposits but also significantly improved the neuritic dystrophy within 3 daysthree days [35]. In Tg2576 mice,

methoxy-X04 reveals that the first vascular amyloid deposits involvesinvolve the leptomeningeal arteries as multifocal

deposits of band-like Ab. New observations made at weekly intervals showed an increase in the number of amyloid

bands and a widening of those already present. With theOver time, the propagation of existing bands took over-

overtook the initiation of new ones [255]. In conclusion, the observation of the kinetics of thethese lesion in-

dicateskinetics observations indicate that the amyloid deposits are relatively stable, and that the amyloid angiopathy

progresses initially by initiating new foci of deposition and later by increasing their size. The study of the dystrophic

neurites suggests that they are relatively inert, while a small population of spines is continuously modified by plastic

changes. An increase in the number of disappearing spines that is not balanced by an increase ofa similar magni-

tudeincrease in the number of new spines explains the loss of spines that is found in the Tg2576 mouse line.

Inflammation and gliosis

The presence of microglia within the senile plaque and of astrocytes surrounding the amyloid core has been known for

a long time and is mentioned in the classical text books.textbooks. These glial cells have been shown to express

numerous inflammatory cytokines (reviewed in [2]). The presence of microglia and of astrocytes around the focal Ab

deposits has been abundantly documented in Tg mice. The first inflammatory changes are observed quite early, before

any visible Ab deposition. They are associated with increased BACE activity [123]. However, the cytokines whose

expression isexpressions are induced by Ab peptide, particularly the peptide in its fibrillar form, arehave been dis-

cussed and contradictory results have been published in the literature [20,209,217]. In the Tg2576 mouse line, for

instance, IL-1b and TNF-a -immunopositive microglia as well as IL6 immunopositive astrocytes have been found in

close contact with amyloid Ab deposits [20]; the authors conclude that these changes are similar to those seen in man.

Mehlhorn et al., in the same mouse line, only found an overexpression of IL-1b in the reactive astrocytes that

surrounded the amyloid depositsdeposits, and concluded that the local immune response in transgenic Tg2576 mouse

brain was different to that observed in brains from AD patients [217]. The microglial cells present in the plaque are

partly derived from the bone marrow, as demonstrated by grafting bone marrow from mice expressing enhanced green

fluorescent protein expressing mice.protein. Fluorescent microglia was detected around the amyloid deposits,deposits

when the graft had been doneperformed before the onset of pathology; they were less abundant when the graft was

done in an old animal [204]. The presence of activated microglial cells in contact with the Ab deposits has been

explained in different ways: for Wegiel et al. [324,326], the microglial cell is the ‘‘driving force’’,‘‘driving force’’

responsible for the transformation of non-fibrillarnonfibrillar Ab into congophilic, amyloid,congophilic amyloid

deposits, while for others it is associated withlinked to the inflammation that is associated with the amyloid core

[20,295]]. The effects of inflammation have also been discussed and apprehendedcaptured through transgenic tech-

nology. It is toshould be noticednoted that several experimental data have uncovered the positive role of in-
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flammation:inflammation. TGF-b1 overexpression promoted the clearance of parenchymal Ab by microglial cells but

increased amyloid angiopathy [343]. The level of C3 complement factor was elevated in these mice. To inhibit C3,

soluble complement receptor-related protein y, a complement inhibitorinhibitor, was expressed with hAPP. The

amyloid pathology was increased 2-two- to 3-foldthreefold, suggesting that the activation of the complement that

took place in the Tg mice was useful [345]. The inhibition of C1q (the recognition component of the classical

complement activation pathway) had an opposite (although less marked) effect. The absence of its gene in Tg2576

mice and in APP/PS1 mice did not modify the amount of Ab deposition and its amyloid transformation. However, it

was associated with a lower level of glial activation around the Ab deposits and improved the loss of synaptophysin

and of MAP2 immunoreactivity. The Ab deposits were reduced when double transgenic APPswe /PS1APPswe/PS1

delta E9 mice were crossed with mice overexpressing IL-1 b [277]. Injection of lipopolysaccharide ininto the hippo-

campus of APP/PS1 mice stimulated recruitment of microglia and reduced Ab burden [204]. It is also clear that

passive or active immunotherapy, with the common consequence of bringingwhich both bring anti-Ab antibodies

ininto contact with the amyloid depositsdeposits, produced spectacular results in the PDAPP mouse [269] and

indicated that inflammation was not necessarily detrimental.

However, the beneficesbenefits of inflammation have tomust be counterbalanced bycontrasted with the deleterious

effects noticedobserved after the overexpression of several inflammatory proteins,proteins. These data that helped

advocatingto advocate an anti-inflammatory strategy in AD: a1-anti-chymotrypsin, an acute-phase inflammatory

protein, promoted amyloid pathology when co-expressedcoexpressed with hAPP in singly Tg mice [224,230]. Co-

expressionCoexpression of Cox2,Co·2, an enzyme implicated in inflammation and inhibited by a class of anti-

inflammatory drugs, with APPswe and PS1A246E did not modify Ab pathology but induced an elevation in the number

of phosphorylated retinoblastoma (pRb) tumor suppressor protein and active caspase-3 immunopositive neurons

[346].

In conclusion, the presence of astrocytes and microglia around the amyloid core of the plaque is seen both in the

human and in the Tg mice. The inflammation is howeveris, however, less severe in the latter [272]. The immunological

mechanisms involved, the cytokines that are secreted, and even the effect (beneficial or detrimental) of inflammation

remain discussedthe source of much discussion, with contradictory results published in the literature. The spectacular

effect of immunotherapy has, however, demonstrated that the microglia, when correctly stimulated, are able to clear

the extracellular Ab deposits and suggestdeposits. This suggests that, on the whole, triggering an adequately oriented

inflammation is a better strategy than attempting to silence it.

Alteration of neurogenesis in hAPP transgenic mice

Neurogenesis, restricted to the dentate gyrus and the subventricular zone in the adultadult, has been found to be

enhanced in Alzheimer disease [157]. Largely divergent results have been obtained in different mouse lines,lines

expressing either mutated APP alone or mutated APP with mutated PS1. A two-fold increase in BrdU incorporation

in the PDAPP mice was initially described by Jin et al. [156]. Several authors found that the proliferation of the neural

progenitors was reduced [86,88,122], with a parallel reduction ofin their survival [122], in connection with the amyloid

deposits [88] or even before their appearance [86]. Zhang et al. found the effect on neurogenesis to be linked to the

presence of a mutant PS1 gene [351]. Finally, the proliferation was found to be increased by Verret et al.al., while the

survival at 4 weeksfour weeks of the newborn neurons was decreased in correlation with the Ab deposits [318]. The

effect could also depend on the ApoE genotype (see later).
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Correlations between pathology and physiological alterations

Ideally, mimicking the lesions in a Tg mouse should induce clinical symptoms that are similar to those seen in man; as

already mentioned, however, the signs depend largely on the topography of the changes. A L1C1 model could be S0 if

the lesions, although a good replica of what is seen in man areman, do not occurringoccur at the correct place (see

abovethe ‘‘Signs, lesions, cause: the SLC reading key).key’’ above). We will have the opportunity to study such

situations in the tau mice. However, many attempts have been made to isolate specific signs that could be improved by

the treatment and would allow a therapeutic screening.

Regulation of body weight, body temperature, sleep. Increasedsleep; increased lethality

Decreased thermoregulation and altered wake/sleep patterns have been described in PDAPP mice [139]. APP

transgenic mice are occasionally reported to have reduced body weights and enhanced (premature) lethality

[57,164,166,174,220]. These alterations depend on the genetic background and are still poorly understood: neuro-

developmental defects could be one of the factors; acute events (such as spontaneous epileptic seizures) might also

play a role.

Behavioral changes in Tg mice

Anomalous anxiety-related behavioursbehaviors are occasionally noted in APP transgenic mice either in themice,

taking the form of either neophobia or, on the contrary, ofin contrast, hypo-anxiety and reduced inhibition

[85,101,182,237]. The anatomical correlates of these behaviouralbehavioral changes are unknown.

Neurological disorders

Signs of neurological impairments have been described in both single APP and double APP/PS1 transgenic mice from

different lines (i.e.(i.e., PDAPP, Tg2576, APP23, TgCRND8, APP/PS1 lines). Motor dysfunction and difficulties in

coordinating movements are shown by reduced grip strength and altered behaviourbehavior on a beam or an ac-

celerated rotating device (rotarod) [12,164,166,310]. The integrity of sensory functions havehas not been fully

documented in APP transgenic mice. Enhanced acoustic (startle) reflex in TgCRND8 mice may indicate the abnormal

processing of auditory stimuli [213]. Impairments in visually-guided navigation (swimming to a cued location in a

spatial environment) could reflect compromised visual abilities [166]. A number of studies indicate that APP trans-

genic mice are hyperactive [12,85,132,166,182,237]], but the locomotor activity has been shown to be decreased in the

APP23 model that develops severe cerebral amyloid angiopathy in addition to parenchymal Ab plaques [181,310].

Cognitive dysfunctions

Based on the evidence of an amnesic syndrome and early medial temporal lobe pathology in AD patients, beha-

viouralbehavioral studies in APP transgenic mice have largely focused on learning abilities infor tasks relying on the

integrity of the hippocampus. For reviews, see [13,83,129,169]. Figs ] (Figs. 1,2).1) (1) Water maze

This test requires the animal to locate and swim towards an invisible platform in a water tank. During learning, the

mouse is supposed to build a ‘‘cognitive map’’‘‘cognitive map’’ of the environment, a representation that enables the

animal to locate the platform, regardless of where it enters the pool. Rodents with damage to the hippocampus are

severely impaired. Almost all APP transgenic models have, to date, been screened in the water maze task. The

majority of these studies indicate defects in navigation behaviour.behavior. The transgenic mice reach the goal later

and after having covered a longer distance; they may have difficulties remembering the location of the platform when
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assessed during probe trials. These types of deficit, some of which withexhibit very early onset [57,310] have been

observed in the PDAPP [53], Tg2576 [137,329], APP23 [163,181,310], TgCRND8 [57], and crossed APP/PS1 [198]

models. It is important to keep in mind, however, that some reports have failed to demonstrate significant or robust

learning and retention deficits in the water maze task [132,164,166] in both APP and APP/PS1 transgenic mice. The

reasons for such discrepancies remain to be understood.are still unclear.2) (2) Spatial alternation

The rodents have a natural propensity to alternate their visits from already-experienced locations to new ones. This

behaviour,behavior, that can either be analyzed spontaneously or conditioned by an explicit reinforced alternation

rule, requires intact working memory abilities. Lesions of the hippocampus but also of the frontal cortex disrupt

spatial alternation [180]. Spontaneous or reinforced spatial alternation has been extensively studied in the Tg2576

modelmodel, with several reports indicating decreased performances ([51,65,131,137,182,237]; see howeverhowever,

[166] for mixed results). The deficit is said to be detectable at an early age before overt Ab depositiondeposition, and

to increase with age. The deficits were questionable in female APP23 mice [181]. Additional reports illustrated reduced

spatial alternation in double APPxPS1 transgenic mice ([131,132,333]; see howeversee, however, [197]).3) (3) Object

recognition

Visual recognition memory is also sensitive to hippocampal dysfuntion. Objects are shown to the mouse during an

acquisition phase. Following a variable delay (from minutes to several hours)hours), the mouse is replacedplaced back

in the test arena witharena, which now contains both familiar (previously shown) objects and new ones. The natural

tendency of rodents is to explore the new objects (novelty attraction). Good performance in this test relies on the

hippocampus, the perirhinal and entorhinal corticescortices, and on their interconnection. Impaired recognition

memory has been demonstrated in both APP [77] and APPxPS1 transgenic mice [135]. As mentioned earlierearlier, the

knocking outknocking-out of PS1 did not rescue the cognitive deficit in the APP mouse [77]. Conflicting results have

been obtained concerning the object recognition task in the PDAPP mice (deficit: (deficit [85] which is possibly

corrected by immunotherapy [82]; absence of deficit: [53]).4) (4) Sparing of ‘‘procedural memory’’‘‘procedural memory’’

The dichotomy between procedural memory (based on the acquisition of skills or of a sequence of procedures),

which is relatively spared in AD, and declarative memory, which is affected at the initial stage, can notcannot be

directly applied to animals. Some efforts have been made to test the ability to follow procedures in a stereotyped

manner and to contrast it with the ability to build cognitive maps. The APP Tg mice are still able to apply at least

some procedural strategies [85,139], especially when given the choicesa choice between multiple strategies to solve

problems [24,219], thus suggesting selective alterations of different memory systems in these mice (sparing of pro-

cedural memorymemory, while relational ‘‘declarative-like’’‘‘declarative-like’’ memories are affected).

Is extracellular accumulation of Ab peptide the cause of the deficit?

An inverse correlation between cognitive deficit and amyloid accumulation has been reported in several studies

involving singly transgenic APP mice (e.g.(e.g., [53,84]) and doubly transgenic mice (e.g.(e.g., [110,267]). The good

correlation between the areas where Ab peptide accumulates and the type of cognitive deficit, and the efficiency of the

immunotherapy both onin terms of the amyloid load and on the behaviouralbehavioral symptoms are also in favour

offavor the hypothesis of a direct toxic effect of amyloid. However, some discrepancies are poorly compatible with this

hypothesis: in some cases, the deficit is detectable without Ab accumulation [131,310]; sometimes,sometimes it is

observed after the Ab accumulation has taken place [135]; sometimeswhile at other times there is no deficit despite a

severe amyloid load [23,24]. Cheng et al. [55]], while working on mice bearing the Arctic mutation that alters the

sequence of the Ab peptide and makes it more prone to precipitate in fibrillar form (without altering the ratio Ab42/

Ab40) demonstrateAb42/Ab40), demonstrated a striking dissociation between plaque formation and functional

deficits. ARC6 mice had more plaques than J20 mice but essentially no behavioral deficits. Furthermore, ARC48 mice

had markedly greater plaque loads than J20 mice but comparable or less severe functional deficits. This set of results,
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from different mouse lines, suggests that it is not the fibrillar Ab peptide sequestred in the plaque that is responsible

for the cognitive deficit, but rather some other,other diffusible Ab species [329]], or, as suggested more recently,

intracellular Ab peptide.

Pathogenicity of intracellular Ab

We have mentioned inIn a precedingprevious section (Problems and question.Heading: (‘‘Intracellular Ab peptide) ’’)

we mentioned the controversy concerningover the role of intracellular Ab peptide in the cascade of the pathogenetic

events leading to neuronal dysfunction. Intracellular Ab peptide has also been considered asto be directly responsible

for the clinical signs: in the 3xTg-AD3·Tg-AD mouse, synaptic dysfunction is detected before the development of Ab

extracellular deposits and of tangles, but in correlation with intracellular Ab accumulation [233]. The deficit in long-

term memory appeared also appeared to be correlated with the accumulation of intracellular Ab. Immunotherapy

rescued the deficit and was associated with the clearance of intracellular Ab that re-appearedreappeared with the

cognitive deficit when the effects of the immunotherapy wanewaned [22]. However, since the density of neurons

containing intracellular Ab decreases with ageage, while cognitive deficits increase, intracellular Ab can notcannot be

the unique or even the essentialcrucial factor responsible for the neuronal dysfunction.

Pathogenicity of oligomers

Since insoluble fibrillar Ab peptides do not diffuse and are thus unable to play a pathogenetic role, except by direct

contiguity, other Ab compounds able tothat can be active at asome distance from the plaques have been looked for.

As already alluded to, Ab peptides easily form dimers, trimers and, in generalgeneral, oligomers that pre-exist toin

protofibrillar and aggregated Ab deposits. In recent years, oligomers have been repeatedly been found to play an

important pathogenetic role, particularly onin synapses (see above) –forabove)—for a review see [322]. In several

studies the presence of oligomers is thought to be necessary to explain the experimental observation: alter-

ationobservations. Alteration of the total amount of cerebral Ab, for instance, was not changed by Ab im-

munizationimmunization, although cognitive dysfunction was improved in a TgCRND8 murine model of Alzheimer

disease, suggesting that the antibodies acted on soluble Ab species [155]. Dodart et al. [82] injected a monoclonal m266

anti-Ab antibody tointo PDAPP mice. The memory deficits were reversed in less than 24 hours24 h by a single

intraperitoneal injection (which could not modify amyloid burden). The antibodies were supposed to act directly on

the oligomers.

In the Tg2576 mouse line, deficits in spatial alternation (Y-maze) were noticed at 7 monthsseven months of age,

before Ab deposits were seen in the brain, but at a time when the levels of soluble Ab 40/42 were already elevated

[237]. The memory loss,loss detected at around 6 monthssix months coincided with the appearance of detergent-

insoluble Ab aggregatesaggregates, but the inverse correlation between the aggregation of insoluble Ab and memory

was lost when age was taken into account. The authors concluded that the insoluble Ab was a surrogate marker for

small assemblies of Ab peptide that disrupted cognition and occurred as intermediates during the formation of

aggregates [329]. In the same mouse line, dimeric Ab peptide was shown to accumulate in lipid rafts of cell membranes

at 6 monthssix months of ageage, when the first memory alterations are observed. At that stage, Ab dimers are fully

soluble in SDS [162]. Lesné et al. looked for an Ab species whose accumulation corresponded to the time course of the

decline in spatial reference memory (appearing at 6 monthssix months and remaining stable for 7 to 8 months

thereafter) also7–8 months thereafter), again in the Tg2576 mouse line. They found that Ab peptide forms stable

molecular assemblies that are preferentially made of trimers. The dodecamers (=4(four trimers) of molecular weight

56 (termed Ab*56) were the best correlates of the memory deficit and the most likely candidatecandidates for the toxic

species responsible for the memory deficit [192]. A direct testingtest of the hypothesis of the Ab-oligomers was
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obtainedachieved by injecting in the lateral ventricle of rats, having learned an alternation task, the conditioned

medium of a cell culture producing large amounts of Ab peptides and particularly of oligomers.oligomers into the

lateral ventricle of rats that had learned an alternation task. This injection caused a deficit in the learned task that was

‘‘rapid,‘‘rapid, potent and transient’’transient’’ [60].

The transgenic models of neurofibrillary pathology

The first part of this review was centered on Ab pathology. Only dystrophic neurites of the corona of the plaque

contain hyperphosphorylated tau epitopes; paired helical filaments are remarkably absent from these models. The

neurofibrillary, tau part of the pathology is thus practically absent from the Tg mice that we have considered up to

now.

Normal and mutated tau transgene

Tau is a phosphoprotein that belongs to the family of the microtubule associated protein;microtubule-associated

proteins; it binds to tubulin and facilitates tubule polymerization [61]. It has an axonal subcellular localisationloca-

lization in the normal adult brain. When phosphorylated it is detached from tubulin which depolymerises – depo-

lymerisation that favoursdepolymerizes—this depolymerization favors axonal growth and plasticity. Six isoforms of

the protein are known [107] that], which differ in the presence or absence of exons 2, 3, or 10. An alternative splicing of

exon 10 produces either tau with four repetitive motives (4R tau) or tau with only 3 (3R tau) [107]. Hyperpho-

sphorylated tau is the main constituent of NFT of AD, which contains both 3R and 4R tau. The NFTs of progressive

supranuclear palsy and corticobasal degeneration are principally or exclusively made of 4R tau [276], while Pick body

contains exclusively or preferentially 3R tau [39,40]. The presence of tau immunoreactivity in a somato-den-

driticsomatodendritic distribution in the absence of true NFT defines ‘‘pre-tangle’’the ‘‘pretangle’’ [17]. A somato-

dendriticsomatodendritic distribution of tau is also found in argyrophilic grain disease. The subcellular distribution of

tau (axonal or somatodendritic) depends on the distribution of its mRNA, not on signals included in the protein

sequence [19]. No change in tau expression has been detected in AD, but intronic and exonic mutations of the tau gene

are known to be the cause of fronto-temporalfrontotemporal dementia linked with chromosome 17 (FTDP-17).

The physiology of tau protein is different in adult mice and adult humans. Mouse brain contains exclusively the 4R

tau isoforms,isoforms exclusively, whereas levels of 3R and 4R are approximately equal in normal adult human brain.

Although mouse and human tau sequences are similar, there are 14 amino acid differences in the N-terminal region

[8]].

The normal shortest 3R tau isoform (3R tau without N-terminal insert) has been introduced ininto the mouse

genome under the promoter of the murine 3-hydroxy-methyl-glutaryl CoA reductase gene [37]. Tau immunoreactivity

was present in the somato-dendriticsomatodendritic compartment. Several epitopes,epitopes known to be phos-

phorylated in AD,AD were also phosphorylated, but there were no NFTs. The shortest tau isoform was also

expressed under a murine prion promoter [147]. Insoluble, hyperphosphorylated tau inclusions were present in

cortical and brainstem neurons but were mostly abundant in spinal cord neurons. There were no paired helical

filaments at electron microscopy. Lines expressing the longest 4-repeatfour-repeat tau isoform under the murine thy-1

promoter (ALZ7 line) [112] developed a peripheral and central axonopathy [247,288]. Dilated axons, spheroids, and

pretangles were observed without true tangle formation.

Another approach consisted inof expressing human genomic tau,tau contained in P1-derived artificial chromo-

somes (PAC). In line 8c, a PAC,PAC containing all 14 exons, exon -1,exon-1, and more than 7 kb of 5’the 5’ flanking

region, which includes the tau promoter, was overexpressed in mice. Tau was distributed in neurites and at synapses,
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but was absent from cell bodies. There were no significant pathological changeschanges, while axonal spheroids and

somatodendritic distributiondistributions were observed in mice overexpressing 4R cDNA [90]. Htau mice were

obtained by crossing tau knock-out mice with 8c mice [8]. Neither tau knock-out mice nor 8c mice develop any

evidence of tau pathology. Htau mice exclusively express the 6six normal human tau isoforms (without murine tau),

the level of the 3R isoforms being significantly higher than that of the 4R isoform [8]. NFTs and extensive cell death

were seen in the htau micemice, although they express lower levellevels of human tau than the c8 mice [8]. This

suggests that wild typewild-type murine tau prevents the aggregation of overexpressed human tau. Cell death in htau

mice does not seem to be directly caused by the NFTs but appears to be linked to reexpression of proteins involved in

cell-cycle and DNA synthesis [7]. NFTs were observed at a young age in mouse lines in which the P301L mutation was

introduced [111,196] or the V337M mutation [296]. Non apoptoticNonapoptotic cell death and tau filaments were

observed in transgenic mice with the P301S mutation of tau protein [3]. The expression of human 4-repeatfour-repeat

tau with G272V and P301S mutations under a Thy1.2-promoter induced neurofibrillary pathology in the brain with

severe cognitive alteration and no sensorimotor deficit [270].

In conclusion, PHF and NFT are usually not observed when any form of wild-type human tau is expressed –

expressed, except in the model developed by Andorfer et al. [8] in which mouse tau gene is knocked-out. In almost all

of the models where cDNA wild typewild-type tau is expressed, the distribution of tau is somatodendritic; only the

construction of Duff et al. [90] using a minigene preserves a normal subcellular distribution of tau. Overexpression of

mutated tau regularly produces NFT.

Interaction between tau and Ab accumulation

The influence of Ab hyperproduction on the neurofibrillary pathology was studied in different ways: injection of

amyloid Ab42 fibrils into the brains of P301L mutant tau transgenic mice caused a fivefold increase in the numbers of

NFTs in cell bodies within the amygdalaamygdala, from where neurons project to the injection sites [111]. In P301L

mutant tau mice crossed with APP Tg2576 transgenic mice, the amyloid deposits occurred at the same age as in the

Tg2576 simple transgenic progenitorprogenitor, but the neurofibrillary pathology was substantially enhanced in the

limbic system and olfactory cortex, suggesting a synergy between the 2two pathologies [195].

On the other hand, reducing endogenous tau ameliorates or even completely rescues amyloid beta-induced deficits

(the hAPP Tau -/-�/� mice had better results on cognitive test than hAPP Tau +/� that, themselves,+/�, which, in

turn, had better results thatthan hAPP Tau +/+ mice). The presence of tau protein was also necessary to produce

experimental excitotoxic lesions produced by the GABAA receptor antagonist pentylenetetrazole [256].

The triply transgenic tau model expressing 3R tau (without mutation), APP with the Swedish and the London

mutation and PS1 with the M146L mutationmutation, did not develop true NFTs; however, the mutated tau

transgene and hyperphosporylatedhyperphosphorylated tau epitopes were found in the neuritic component of the

plaque [32].

Oddo et al., instead of crossing single transgenic mice, injected simultaneously injected a P301L mutant tau

transgene and an APP transgene bearing the Swedish mutation, both under a Thy 1.2 murine promoter, into single-

cell embryos from mutant homozygous PS1M146V knock-in mice. The 2two transgenes appeared to co-in-

tegratecointegrate at the same locus. These triple transgenic mice (=3xTg-AD(=3·Tg-AD mice) finally bear a

mutated knocked-in PS1 gene knocked-in,gene, as well as a mutated APP and a mutated tau gene. At the first stage,

Ab peptide accumulates intracellularly. Secondarily Ab then precipitates in the extracellular space. Intracellular tau

accumulation is finally observed. As in the human, Ab accumulation is first seen in the isocortex, while tau pathology

first appears in the limbic system [233]. The electrophysiological alterations (most noticeably, the deficit in LTP) are

seen before extracellular accumulation of Ab peptide at a time when intracellular accumulation of Ab is already seen.

Moreover, the injection of antibodies directed against Ab peptide first cleans the extracellular deposits before inducing
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the disappearance of intracellular accumulation [234]. Normalization of the electrophysiological alterations is cor-

related with the disappearance of intracellular Ab peptide [233]. Increased tau levels and hyperphosphorylation has no

effect on the onset and progression of Ab pathology [232]. However, the cognitive deficit appearsdoes not only appear

to be linked not only with Ab peptide; soluble tau species are also reduced after active and passive immunization and

could be involved in the cognitive improvement caused by immunotherapy [235].

What is the physiological relevance of a triple transgenic mouse to explain sporadic AD or even familial AD

(FAD)(FAD), which has never been found to be associated with a tau gene mutation? It is clear that no human disease

is provoked by a triple mutation on the PS1, APP and tau genes. The model can therefore not be considered as

describingto describe the cause of AD, and particularly of sporadic AD (C0). However, it integrates for the first time it

integrates all of the lesions that have been described in the human (L1) in a topography that, in several ways,

resembles the distribution of the lesions seen in man (S1). This model may therefore be considered, in our view, as

belongingto belong to the S1L1C0 type. It is probably too early to draw from this model the conclusion that Ab

peptide deposition should precede tau pathology (it does in the model; itthis does not warrant that it occurs in this

way in the human). In the same way, the conclusion that intracellular Ab is crucial in theto human pathogenesis

because intracellular Ab is the best correlate of the electrophysiological signs in this triple transgenic model can

notcannot be drawn, in our view, without a further and careful analysis of intracellular Ab in man.

Persistence of the pathology in conditional KO mice

To analyseanalyze the mechanism of progression of the NFT, mice expressing a repressible human tau variant

(rTg4510) were generated. The responder transgene consisted of a tetracycline operon-responsive element placed

upstream of a cDNA encoding human tau with four microtubule binding repeats (4R tau) and the P301L mutation.

Doxycycline, when introduced ininto the food and water, suppresses transgene expression. Before doxycycline ad-

ministration, the mice developed progressive age-related NFTs, neuronal loss, and behavioral impairments; when the

expression of human tau was repressed, the cognitive deficit recovered and the neuronal loss remained stable but the

number of NFTs continued to increase. This observation suggested that, not unlike what was observed in Ab

pathology, the toxic effect of tau was not linked to the visible lesions (i.e(i.e., NFTs) but to another tau species, the

production of which was prevented by the repression of the tau gene [266]. These tau assemblies appear to be, just as

in Ab pathology, multimers [21]. The toxic tau multimers of 140 and 170 kDa probably contain full lengthfull-length

tau [21]. The progression of NFT despite the silencing of the mutated tau gene could indicate that NFTs, once present

in the human brain, will progress even if a putative treatment is active ontargeted at their cause.

Modulation of APP transgene

The effects of overexpressing or knocking out various known or supposed modulators of Ab secretion have been

studied in the literature.

Modulation of Ab secretion by APOE

Apolipoprotein E is a protein involved in cholesterol transport. Its main receptor, the low densitylow-density lipo-

protein receptor-related protein (LRP), is widely expressed in the central nervous system. Moreover, ApoE

[229,305,306] and LRP [10] appearsappear to be bound with Ab in a large subset of senile plaques. Much was expected

of studies using Tg mice to elucidate the role of apolipoprotein E (ApoE):(ApoE); the risk of developing AD is indeed

increased in people bearing the epsilon 4 allele [291]. Actually, the expression of the various isoforms of human ApoE
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in Tg mice and the knock-out of the ApoE gene in the mouse brought conflicting results and somehow increased the

complexity of the problem.

Effects on Ab deposition

A comparative study of the time coursecourses of Ab42, Ab40, and ApoE deposition in relation to astrogliosis in

Tg2576 suggested that Ab42 preceded ApoE in the plaque, followed by Ab40Ab40, which occupied the centrecenter

of the deposit in later stages. Moreover, the presence of ApoE was correlated with the astrogliosis [297]. The Ab

deposits were compared in heterozygous V717F APP Tg mice (APPV717F+/�) with graded expression of the mouse

ApoE gene. The mice carried no (ApoE -/-),�/�), one (ApoE +/�) or two (ApoE +/+) alleles. Amyloid deposits as

well as Ab immunoreactivity were lacking in the cortex in the absence of ApoE expression in animals aged 22 months.

Ab deposition was observed -althoughobserved—although at a lower level than in the ApoE +/+ mices- whenmi-

ce—when only one allele (ApoE +/�) was present. ApoE immunoreactivity was found in all of the thioflavin S

positive amyloid cores in the Tg mice with one or two ApoE alleles [15]. In a later study with homozygous V717F APP

Tg mice (APPV717F+/+) on an ApoE null background, it was found that the cortical and dentate gyrus deposition of

Ab was dramatically reducedreduced, but that the densitydensities of the CA1 and CA3 diffuse deposits waswere

increased even ifwhen there was no thioflavin S positive deposits [144]. The overexpression of ApoE4 in a hAPP

mouse, knockknocked out for ApoE, increases 10-fold the number of focal, amyloid deposits tenfold in comparison

with the ApoE3 mice [133]. Since the dystrophic neurites that are found in the coronacoronae of the plaques are only

observed when the deposit is focal and amyloid, it is no wonder that no ‘‘neuritic plaques’’‘‘neuritic plaques’’ are

found in the ApoE -/-�/� mice. The role of ApoE itself in the neuritic degeneration is discussed [133]. In heterozygous

V717F APP Tg mice, Ab deposition was compared in mice expressing no ApoE, murine ApoE, or the various human

ApoE isoforms (ApoE2, E3, and E4). As previously shown, ApoE was not necessary but it enhanced the formation of

fibrillar Ab. Murine ApoE was the most efficient, then human ApoE4, E3 and E2. In other words, as in man, ApoE2

and ApoE3 delayed the formation of amyloid deposits when compared to murine ApoE and human ApoE4 [94]. In

Tg mice bearing one allele of the Swedish (Sw) mutation (APP sw+/�), the expression of the human ApoE4 (ApoE4+/

�) (under the human transferrin promoter) accelerated Ab deposition and amyloid formation [47]. ButHowever, in

another study, the overexpression of human ApoE4 under a murine prion protein promoter (responsible for a

neuronal and glial expression) did not modify the amount and progression of Ab deposition in Tg mice expressing

human APPswe or APPswe and PS1 with the deletion of exon 9 [193]. Van Dooren et al. compared the effects of

expressing human ApoE4 in neurons (thy1 gene promoter) or in glia (GFAP gene promoter) of hAPP V717I singly

transgenic and APP-V717I xPS1A246EAPP-V717I · PS1A246E doubly transgenic mice (thy-1(thy1 gene promoter

for both transgenes). All of the mice were female and hemizygous for the transgene. The thy1 gene promoter construct

is practically not expressedunexpressed in the thalamus. The presence of the human ApoE4 allele had a differential

effect on cortex and thalamus, thatwhich also depended on its production cells of production, neuronal(neuronal or

glial:glial): in the cortex, neuronal ApoE4 increased the number of diffuse deposits of Ab, while in the thalamus, the

density of both diffuse and focal deposits was increased with neuronal asand with glial ApoE. Neuronal ApoE

promoted cortical amyloid angiopathyangiopathy, while both neuronal and glial ApoE had a similar effect on the

thalamus. ApoE did not influence APP processing and was not associated with tau hyperphosphorylation (probably

because the ApoE transgene was hemizygous) [314]. Since in these constructs, APP was not produced in the thala-

mus,thalamus in these constructs, the accumulation of diffuse or focal Ab in this topography was related to its

migration.

Effects on tau
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ApoE could have more widespread effects than suspected. Neuronal but not glial expression of ApoE4 resulted in

hyperphosphorylation of protein tau and caused prominent axonopathy by disruption ofdisrupting axonal transport

[299,300]. In various transgenic lines in which human ApoE3 or ApoE4 was expressed under a GFAP or a neuron-

specific enolase (NSE) promoter, C-terminal fragments of ApoE4 (and to a lesser degree of ApoE3) accumulated, and

tau protein appeared to be hyperphosphorylated only in the NSE-ApoE Tg mice [34].

Effects on synapses

Buttini et al. found in hAPP mice that synaptophysin-immunoreactive presynaptic terminals, choline acetyltransferase

(ChAT) activity, and ChAT-positive fibers were reduced in old apoE-deficient transgenic mice expressing human APP.

This effect was prevented by the expression of the ApoE3 allele [41].

Conclusions

The effect of ApoE on Ab metabolism and deposition is still controversial. The presence of murine or human ApoE

does not directly modify the metabolism of APPAPP, but increases the number of focal deposits, the number of their

surrounding dystrophic neurites, and the level of vascular angiopathy. It could also be involved in the transport of Ab,

since lesions are seen in the thalamus under conditions in which Ab is not produced by the thalamic neurons. The

effects on the phosphorylation of tau are intriguing: they could beprovide a link between Ab and tau alterations;

alternatively, as tau hyperphosphorylation is only found when the neuronal expression of ApoE is high, itthey could

be related to side effects of the transgenesis. The importance of ApoE forto the trophicity of some synapses appears to

be more firmly establishedestablished, since they areit is revealed by knocking out the murine gene. Strangely enough,

whereas ApoE is known to be mainly produced by glia, most of the effects are found with a neuronal expression [9]],

and this should prompt a re-evaluation of neuronal ApoE in human pathology.

Modulation of Ab deposition by other proteins involved in cholesterol metabolism :metabolism: liver X receptor, LRP and

ABCA1 Besides the essential role of ApoE in Ab deposition, a number of data suggestssuggest a link between

cholesterol metabolism and AD pathology. In APP Tg mice (PSAPP line = TG2576 x PS1line = TG2576 · PS1

M146V), dietary cholesterol seems to accelerate Ab depositiondeposition, whereas cholesterol-lowering drugs lower it

[252,253]. Inhibition of acyl-coenzyme A cholesterol acyltransferase (ACAT), an enzyme that controls the equilibrium

between free cholesterol and cholesteryl estersesters, was shown to reduce amyloid pathology [143].

The liver X receptor (LXR) regulates cholesterol metabolism and also plays a role in inflammation: it in-

hibitsinhibitsthe expression of genes involved in inflammation but promotes the phagocytosis of Ab by microglia.

Deletion of either LXRa or LXRb in APPswe/PS1deltaE9 transgenic mice resulted in increased amyloid plaque load

[349].

LRP is an endocytic cell-surface receptor that is abundant in neurons (cell body and dendrites). It allows the

internalization of several ligands, among whichligands such as apoE, APP (with the Kunitz inhibitor) and a2-

macroglobulin. LRP knock outknock-out mice are not viable. van Uden et al. used mice deficient in receptor-

associated protein (RAP) to reduce by 80 % the level of LRP.LRP by 80%. They were crossed with the hAPP line J9.

The amount of amyloid deposits was doubled on the RAP -/-�/� background, while APP processing was not altered,

suggesting that, indeed,that LRP helpeddoes indeed help to clear Ab42 [316]. On the other hand, overexpression of a

functional mini LRP receptor (LRP2) in PDAPP mice produced a decrease in cerebal ApoE, a moderate but sig-

nificant increase in insoluble, detergent soluble (probably membrane-bound) Ab42Ab42, and a decrease in total Ab in

the CSF. The decrease in the ApoE level is explained by an accelerated internalization and degradation of ApoE when

LRP is overexpressed. The effect on Ab42 is abolished in ApoE-/-ApoE �/� mice, suggesting that it is mediated
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through the binding of Ab42 to ApoE. In cell cultureculture, the cells overexpressing LRP2 clear the Ab42 present in

the culture medium more rapidly [350].

ABCA1 (ATP-binding cassette transporter A1) is a major regulator of cholesterol efflux and high densityhigh-

density lipoprotein (HDL) metabolism. The mutation of ABCA1 in the human causes severe hypercholester-

olemia,hypercholesterolemia and marked deficitdeficits of high densityhigh-density lipoprotein (HDL) and of apoA-I.

The level of ApoE is low in the brainbrains of these patients. In APP23 Tg mice knock-outknocked out for ABCA1,

the density of Ab and Congo red positive deposits is increased. The amyloid angiopathy is more severe and associated

with micro-haemorrhages.microhemorrhages. The level of soluble ApoE is decreased in the brain [171].

Modulation of Ab secretion by a-synuclein Lewy and AD pathologies are often associated in the human and could

have a synergistic effect. On the other hand, some rare cases of familial Parkinson disease are linked to several

mutations on the a-synuclein gene. a-synuclein positivea-Synuclein-positive neurites have been mentioned in the aged

TG2576 (APPswe) transgenic line [347]. Such a pathology in a mouse line without any known alteration of a-synuclein

already hints towardat cooperation between amyloid and Lewy pathology. The human wild-type or mutated (A53T)

a-synuclein gene has been expressed in mice under the control of the mouse Thy1 regulatory sequence [312]. Similar

pathological changes were observed in the two mouse lines. The protein accumulated in the neurons and caused their

degeneration. ButHowever, for unknown reasons, the pathology involved unexpected areas: brainstem neurons and

motor neurons of the spinal cord appeared particularly vulnerable. There was no expression of the transgenes in the

substantia nigra pars compacta. In other mouse lines in which the wild-type or the mutated a-synuclein gene was

driven by the promoter of the tyrosine-hydroxylase [210],] no degeneration was observed in the substantia nigra

despite a high level of expression. Overexpression of wild typewild-type and mutated a-synuclein in cultures of

dopaminergic neurons, however, caused significant cell death. Cytoplasmic inclusions were observed only in the

cultures where the mutant gene had been transfected.

Accumulation of a-synuclein occurred earlier in doubly – hAPPdoubly—hAPP (line J9) and wild type a-synuclein -

bigenicwild-type a-synuclein—bigenic mice. Some inclusions appeared fibrillar in the doubly transgenic animals,

whereas they were always amorphous in the singly transgenic animals [206].

In conclusion, the effects of a-synuclein remain still controversial: several reports indicate that even the wild-type

form of the human protein may induce pathological changes. It is, however,is however surprising that, contrarilyin

contrast to what is observed in the human, the dopaminergic system appears resistant. Although still badly explained,

a-synuclein and APP seem to interact in the transgenic lines just as they do in the human.

Modulation of the pathology by other proteins Numerous doubly or tripletriply transgenic lines (only some listed here)

have been generated to elucidate the influence of a candidate protein on the secretion of Ab peptide or on the

pathology that it generates.

Transthyretin:

Transthyretin (TTR) is a serum protein that precipitates in autosomal dominant familial amyloidotic poly-

neuropathy, in familial amyloidotic cardiomyopathycardiomyopathy, and in sporadic senile systemic amyloidosis. It

is also said to complex Ab peptide that is physiologically present in the CSF of controls and of patients and could

prevent amyloid formation [273]. Mouse strains transgenic for either wild-type or mutant (TTR L55P) human TTR

genes have been produced and develop TTR deposits in heart and kidney, only some beingof which are congophilic.

Hemizygous deletion of its gene favoursfavors Ab deposition in APPswe/PS1deltaE9 mice [58].

Oxidative damage

The homozygous deletion of the superoxide dismutase 2 (SOD2), a mitochondrial enzyme implicated in the

protection against oxidative damage, worsened the cognitive deficit and decreased the microtubule associatedmi-

29



crotubule-associated protein 2 (MAP2) immunoreactivity, a sign of dendritic loss. Paradoxically, it lowered the

density of Ab deposits but increased amyloid angiopathy [93].

Fyn

Fyn, a tyrosine-kinase that is altered in AD brains, is located in the postsynaptic density of glutamatergic neurons.

It could be involved in the signal transduction responsible for the toxic effect of Ab on synapses. When overexpressed

in hAPP mice lines J9 and J20, it induced impaired spatial memory retention and altered emotional behaviour.be-

havior. It also caused other changes in the expression of proteinsproteins, such as Fos and calbindin [56].

Modulation of the pathology by activity

The effects of environmental enrichment on Ab deposition are contradictory. It was initially found to improve

cognitive function but to exacerbate amyloid plaque formation in APPswe/PS1dE9 mice [150,151]. In a later

studystudy, increasing cognitive, social, or physical activities protected the Tg mice from the cognitive impairment

without affecting amyloid deposition [11]. Physical activity (running wheel: [1]) as well as an enriched environment [5]

was found to reduce Ab levellevels in the TgCRND8 line, while another study did not find any significant effect on Ab

deposition in the APP-23 mice [339]. In stillyet another study involving doubly transgenic mice TG2576 x PS1M671L,

a ‘‘complete’’TG2576 · PS1M671L, ‘‘complete’’ environmental enrichment (i.e.(i.e., in terms of cognitive, social and

physical activities) was shown to reduce significantly reduce the amyloid load (-28 %(�28% in hippocampus and �36

in entorhinal cortex). The contradictory results ofin the literature suggest that the effecteffects of environmental

enrichment and physical activity are related to additional, badly controlled factors. Recently, it has been suggested

that the ApoE allele could play a role, since environmental enrichment stimulated apoptosis when the human ApoE4

was expressed on a murine ApoE deficient background and on the contrary,background, while it stimulated neu-

rogenesis in ApoE3 mice [194].

Trauma

Repetitive mild traumatic injury of the brain increased the deposition of Ab peptide in the Tg2576 mouse model.

Single brain trauma had no effect [308].

Conclusions

The transgenic technology has, for the first time, allowed the production of some of the lesions observed in human

neurodegenerative diseases. Its success proves, a contrario, how weak were the other methods based on the use of

destruction, toxic agents or observationobservations of naturally occurring animal diseases.diseases were.

We have repeatedly seen in this review that the conclusion that may be drawn from a model depends on the joined

analysis of the transgenic line and of the human disease. The renewed analysis of the lesions in the animal enlightens

our view on the human pathology; ignorance of the human pathology will, no doubt,will undoubtedly lead to

erroneous interpretation. This crossed examination implies a double competence – incompetence—in both human and

animal pathology. The neuropathologist is a key scientist in the exploration of these new territories.
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Fig. 1Fig. 1a–b Connections of plaques. a)a The anterograde tracer biotinylated dextran amine (BDA)(BDA) was injected ininto the
mediodorsal nucleus of the thalamus. The prefrontal cortex was examined after Congo red staining. The anterogradely labeled fibers are
shown in brown (long arrow). (long arrow). The normal connections are present and avoid the plaque, whose core is stained by Congo red
(small arrow). b) (small arrow). b BDA was injected ininto the posterior cingular cortex. Labeled fibers are visible in the visual cortex
(black),(black), which is normally connected with the posterior cingulate cortex. Several fibers (arrows)(arrows) come into contact with the
amyloid deposit (brown;(brown; immunolabeled by a polyclonal anti-Ab42 antibody) and appear dystrophic. Bar = 10 lmBar = 10 lm
for a and b.b. This experiment suggests that only a subset of the cortical connections ‘‘innervates’’‘‘innervates’’ the plaque (Delatour et al.,
2004)[75]

Fig. 2 Comparison of extracellular deposition and intracellular accumulation of Ab peptide in APPxPS1 Tg Mice. Mice. Five illustrative
mice, taken at 2, 5, 9, 11, and 15 months of age, were studied. Sections, 25 lm in thickness, were immunostained with an anti-Ab8–17
antibody (clone 6F/D3; Dako, Glostrup). The extracellular deposits of Ab peptide are plotted on the left side in green;green; the
intracellular granules of Ab peptide are shown in red on the right side. Intracellular Ab is visible as early as 2 months,after just
two months, before the appearance of extracellular deposits. The density of intracellular Ab decreases with the increase in the density of
extracellular deposits of Ab peptide. Scale bar = 1bar = 1 mm. Modified from (Langui et al. 2004)[186]
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