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Abstract

This study deals with elastic-wave identification of discrete heterogeneities (inclu-
sions) in an otherwise homogeneous “reference” solid from limited-aperture wave-
form measurements taken on its surface. On adopting the boundary integral equa-
tion (BIE) framework for elastodynamic scattering, the inverse query is cast as a
minimization problem involving experimental observations and their simulations for
a trial inclusion that is defined through its boundary, elastic moduli, and mass den-
sity. For an optimal performance of the gradient-based search methods suited to
solve the problem, explicit expressions for the shape (i.e. boundary) and material
sensitivities of the misfit functional are obtained via the adjoint field approach and
direct differentiation of the governing BIEs. Making use of the message-passing in-
terface, the proposed sensitivity formulas are implemented in a data-parallel code
and integrated into a nonlinear optimization framework based on the direct BIE
method and an augmented Lagrangian whose inequality constraints are employed
to avoid solving forward scattering problems for physically inadmissible (or overly
distorted) trial inclusion configurations. Numerical results for the reconstruction of
an ellipsoidal defect in a semi-infinite solid show the effectiveness of the proposed
shape-material sensitivity formulation, which constitutes an essential computational
component of the defect identification algorithm.

Key words: Shape-material sensitivity, Elastodynamics, Identification, Inclusion,
Boundary element method, Constrained optimization

1 Introduction

Elastic-wave sensing of penetrable (i.e. deformable) heterogeneities in a solid
matrix is a long-standing problem in mechanics with applications to non-
destructive material testing, seismic prospecting, medical diagnosis, and un-
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derground object identificaton. In the context of seismic exploration, com-
prehensive three-dimensional (3D) mapping of subterranean structures com-
monly entails the interpretation of a large number, often thousands, of motion
measurements using elastodynamic or acoustic models based on domain dis-
cretization, see e.g. [41]. In contrast, this investigation focuses on the mapping
of objects buried in a known reference solid, from only a limited number of
remote measurements. In such instances, boundary integral equation (BIE)
formulations [11, 15] provide a direct mathematical link between the observed
waveforms and the geometry and material characteristics of a hidden object,
and therefore allow to exploit effectively the limited data.

Ahtough inverse scattering in general has been the subject of intensive math-
ematical and computational research [13, 16, 26, 40], only limited efforts have
so far been devoted to the wave-based reconstruction of homogeneous elastic
inclusions. Two-dimensional BIE formulations of the inclusion identification
problem were proposed in [27, 29] (elastostatics) and [43] (elastodynamics).
Volume integral equations of the Lippmann-Schwinger type, which entail do-
main discretization over a region in which flaws are a priori expected, are
used in e.g. [46] with seismic waves idealized as acoustic waves and [1, 38] in
conjunction with the contrast source inversion concept for elastic and electro-
magnetic waves, while fast solution methods are proposed in [23]. Mathemat-
ical results on identifiability are given in e.g. [24]. More recently, approximate
identification methods based on the small-inclusion asymptotics [5, 6, 19, 25],
specialized analytical solutions [7], or energy considerations [4] were proposed
for preliminary “scanning” of solid bodies.

The focus of this investigation is the development of a computational platform
for the 3D identification of penetrable elastic inclusions via an elastodynamic
BIE framework. This approach rests upon the full three-dimensional elastody-
namic model, with no resort to approximations such as the Born linearization
or small-inclusion asymptotics. The inclusions are assumed homogeneous and
bonded to the surrounding reference medium; as such, they are characterized
by their boundary (i.e. the surface that separates them from the reference
medium), elastic tensor, and mass density. For identificatiom purposes, the
inverse problem is reduced to the minimization of a cost functional repre-
senting the misfit between experimental observations (values of displacements
at sensor locations) and their simulations for an assumed inclusion config-
uration. The latter are based on a coupled system of regularized boundary
integral equations [11, 36]. For computational efficiency of the gradient search
technique employed by the inverse solution, the shape sensitivity of the fea-
tured cost functional is evaluated via an adjoint field approach which, besides
the matter of elegance, is computationally much more efficient than finite-
difference evaluations. This is accomplished by generalizing upon the shape
sensitivity approach proposed in [21] for elastic-wave void identification and
in [10] for the inverse scattering of acoustic waves. To completely character-
ize penetrable elastic defects, the material sensitivity of the cost functional
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is derived using two alternative methodologies: (i) a direct differentiation ap-
proach based on the material-parameter derivative of the governing BIE pair,
or (ii) adjoint field approach. A similar BIE-based treatment of shape-material
sensitivity has been recently proposed [47] for optical tomography featuring
the scalar Helmholtz equation with a complex wavenumber, while e.g. [3, 37]
present other applications of adjoint-based shape sensitivity analyses.

Making use of the message-passing interface, shape and material sensitivities
derived in this study are implemented in a data-parallel code and integrated
into a nonlinear optimization algorithm towards the solution of the 3D in-
verse problem. Preliminary identification studies on sample inclusion config-
urations demonstrated that the unconstrained (quasi-Newton) minimization
algorithm, that was successfully used in previous studies [21, 32] for 3D void
reconstruction, performs unsatisfactorily for the geometric-material identifi-
cation problem at hand. For this reason, a more robust algorithm based on
the augmented-Lagrangian cost functional [34] has been developed as a means
to deal with physical inequality constraints, without increasing the dimen-
sion of the parametric space, and ensure that all iterates (in terms of the
inclusions’ geometric and material parameters) be physically admissible. The
elastodynamic transmission problem, whose repeated solution is required by
the minimization, is thus always well-posed. The numerical results, which em-
ploy a direct boundary element method (BEM) for the primary, adjoint and
material-sensitivity solutions, demonstrate the feasibility of identifying the ge-
ometry and material characteristics of penetrable (elastic) defects hidden in
a semi-infinite solid from only a limited number of waveform measurements
taken on the (traction-free) surface.

2 Direct and inverse scattering by elastic inclusions

Consider an inverse scattering problem where the reference homogeneous solid
Ω, containing a bonded inclusion Ω̂true with boundary Γtrue, is probed by elastic
waves. The reference medium, whose external boundary (available for testing)
is denoted by S, is characterized by its elastic tensor C and mass density ρ;
the respective material characteristics of the inclusion are denoted as Ĉtrue and
ρ̂true. The ensuing shape and material sensitivity analyses (sections 3 to 5) are
carried out for the reference solid of an arbitrary shape, whereas the com-
putational treatment and numerical results presented thereafter (sections 6,
7) assume a semi-infinite configuration whereby S denotes the traction-free
surface of the half-space, and isotropic elastic properties in Ω− and Ω̂true.

Inverse problem. To identify the geometry Ω̂true and material characteristics
Ĉtrue and ρ̂true of the hidden defect, time-harmonic excitations are applied
in the form of volume (f ) and surface (g) force densities having respective
supports V ⊂ Ω and St ⊂ S, and displacements uD over the complementary
surface Su = S\St. The implicit time-harmonic factor exp(iωt) where ω denotes
the angular frequency of excitation is omitted hereon. Letting Ω̂ denote a trial
inclusion bounded by Γ and Ω− = Ω \ (Γ ∪ Ω̂) be the region surrounding
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the obstacle, the prescribed excitation (f , g,uD) gives rise to elastodynamic
displacement fields u = u[Ω̂, Ĉ, ρ̂] in Ω− and û = û[Ω̂, Ĉ, ρ̂] in Ω̂.

For identification purposes, the displacement uobs induced in the flawed solid
by (f , g,uD) is monitored over the measurement surface Sobs ⊂St (other possi-
bilities, e.g. finite sets of measurement points, being also allowed by the ensuing
treatment). Ideally, a defect configuration (Ω̂true, Ĉtrue, ρ̂true) such that

u[Ω̂true, Ĉtrue, ρ̂true] = uobs (on Sobs) (1)

is sought, where u on Sobs is understood in the sense of the trace. In practice,
due to many factors (e.g. incomplete and/or inexact measurements, modelling
uncertainties), the inclusion is sought so as to minimize a misfit cost functional

J (Ω̂, Ĉ, ρ̂) =
∫

Sobs

ϕ
(

u[Ω̂, Ĉ, ρ̂](ξ), uobs(ξ), ξ
)

dSξ, (2)

where function ϕ, which quantifies the misfit between the predicted and ob-
served displacements, is assumed to be differentiable with respect to its ar-
guments. For example, the usual least-squares measure of misfit is defined
through 2ϕ(u,uobs, ξ) = |u − uobs |2.

Forward problem. Let L and L̂ denote the Navier partial differential operator
respectively associated with the reference solid and inclusion, i.e.

Lu ≡ div (C :∇u) + ρω2u, L̂û ≡ div (Ĉ :∇û) + ρ̂ω2û. (3)

In (3) and thereafter, all quantities defined with reference to the inclusion or
its constitutive parameters are indicated with a hat symbol. Moreover, the
nabla symbol ∇ denotes the gradient operator, with the convention ∇(·) =
(·),ℓ⊗eℓ (the comma denoting a partial derivative), while the column symbol ‘:’
indicates a two-fold inner product between tensors, e.g. (C :∇u)ij = Cijkℓuk,ℓ.

The predicted displacement featured in cost functional (2) solves the forward
problem

(a) Lu + f = 0 (in Ω−), (b) L̂û = 0 (in Ω̂), (4)

u = û, t + t̂ = 0 (on Γ), (5)

(a) t = g (on St), (b) u = uD (on Su), (6)

where equations (4), (5) and (6) respectively state the elastodynamic field
equations, the perfect-bonding interfacial transmission conditions, and the ex-
ternal boundary conditions. In (5) and (6), t ≡ (C :∇u)·n and t̂ ≡ (Ĉ :∇û)·n̂
are the boundary tractions relative to the reference medium and the inclusion,
respectively, with n̂ = −n and n denoting the unit normal exterior to Ω−.

If the reference domain Ω extends to infinity in any direction, as is the case
for the semi-infinite solid examined later, u must in addition satisfy a suitable
radiation condition at infinity (this can be relaxed so as to allow e.g. scattering
of incident plane waves, see Appendix A.2). Moreover, (4) implicitly carries
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the assumption Ω̂∩V = ∅, i.e. the forward problem (4)–(6) is considered only
for a inclusion that is separated from the body force support.

Two alternative formulations of problem (4)–(6) are now summarized: (i) the
weak formulation, upon which the general results in terms of sensitivity for-
mulas are established (Secs. 3 to 5), and (ii) the BIE formulation used here as
a basis for the computational treatment and numerical results (Secs. 6, 7).

Weak formulation. The forward transmission problem (4)–(6) can be recast
in weak form whereby (u, û)∈V(uD) must satisfy

A
(

(u, û), (w, ŵ)
)

− F(w) = 0 ∀(w, ŵ)∈V(0), (7)

with the function spaces V, the symmetric bilinear form A, and the linear
form F defined by

V(uD) =
{

(w, ŵ)
∣

∣

∣ w ∈
[

H1
loc(Ω

−)
]3
, ŵ ∈

[

H1(Ω̂)
]3
,

w = uD on Su, w = ŵ on Γ
}

, (8a)

A
(

(u, û), (w, ŵ)
)

=
∫

Ω−

a(u,w) dV +
∫

Ω̂
â(û, ŵ) dV (8b)

F(w) =
∫

V
f ·w dV +

∫

St

g ·w dS (8c)

and the bilinear energy densities a in Ω− and â in Ω̂ given by

a(u,w) = ∇u :C :∇w − ρω2u·w, (9a)

â(û, ŵ) = ∇û : Ĉ :∇ŵ − ρ̂ω2û·ŵ. (9b)

BIE formulation (semi-infinite solid). Wave propagation and scattering in an
elastic half-space is a suitable idealization for a number of applications such
as non-destructive material testing and seismic exploration. BIE formulations,
which deal effectively with unbounded domains, are a natural framework for
such configurations. With reference to the Cartesian frame {O, ξ1, ξ2, ξ3}, let
the host domain Ω be semi-infinite (ξ3≥0) and bounded by the traction-free
surface S = {ξ | ξ3 = 0}. Let U(x, ξ) and T (x, ξ) denote the (half-space)
elastodynamic Green’s tensors, defined such that Uiℓ and Tiℓ (i, ℓ = 1, 2, 3)
respectively denote the ith component of the displacement and traction at
ξ ∈Ω resulting from a unit time-harmonic point force applied at x∈Ω in the
ℓth direction, with Tiℓ vanishing identically on S. Similarly, let Û (x, ξ) and
T̂ (x, ξ) denote the (full-space) elastodynamic Green’s tensors corresponding
to the material properties of the inclusion. With these definitions, the forward
problem (4)–(6) for a semi-infinite solid can be reformulated in terms of a pair
of regularized boundary integral equations [11, 36]:

u(x) +
∫

Γ

(

u(ξ) − u(x)
)

·[T (x, ξ)]1 dSξ +
∫

Γ
u(ξ)·[T (x, ξ)]2 dSξ

−
∫

Γ
t(ξ)·U(x, ξ) dSξ = uF(x), x∈Γ, (10)
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∫

Γ

(

u(ξ) − u(x)
)

·[T̂ (x, ξ)]1 dSξ +
∫

Γ
u(ξ)·[T̂ (x, ξ)]2 dSξ

+
∫

Γ
t(ξ)·Û(x, ξ) dSξ = 0, x∈Γ (11)

written respectively for the “matrix” Ω− and inclusion Ω̂, in terms of the
traces (u, t) on Γ of the exterior field. The free field uF featured in (10) is the
solution to (4), (5) when no inclusion is present, and is explicitly given by

uF(x) =
∫

V
f (ξ)·U(x, ξ) dVξ +

∫

S
g(ξ)·U(x, ξ) dSξ, x∈Ω. (12)

For regularization purposes, the traction Green’s functions in (10) and (11)
are decomposed [21] into the sum of (frequency-independent) singular parts
[T ]1, [T̂ ]1 and (frequency-dependent) regular parts [T ]2, [T̂ ]2 according to

T (x, ξ) = [T (x, ξ)]1 +[T (x, ξ)]2, T̂ (x, ξ) = [T̂ (x, ξ)]1 +[T̂ (x, ξ)]2.

On solving (10) and (11) for u and t, the displacement in the (reference) solid
surrounding the inclusion is given by the integral representation formula

u(x) = uF(x) +
∫

Γ

{

t(ξ)·U(x, ξ) − u(ξ)·T (x, ξ)
}

dSξ, x∈Ω−. (13)

Letting SR denote the sphere of radius R centered at the origin, (10) and (13)
rest on the assumption that u is a radiating elastodynamic state in the semi-
infinite solid Ω−, whereby u, t satisfy the generalized radiation condition [28]

lim
R→+∞

∫

SR∩Ω

{

u(ξ) ·T (x, ξ) − t(ξ) ·U(x, ξ)
}

dSξ = 0, x ∈ Ω−. (14)

3 Differentiation with respect to inclusion perturbations

To quantify the effect of the inclusion’s boundary and material-parameter
perturbations on the cost function (2), the defect configuration (Ω̂; Ĉ, ρ̂) is
assumed to depend on a time-like evolution parameter τ [39, 44], with the
unperturbed, ‘initial’ configuration (Ω̂; Ĉ, ρ̂) conventionally associated with
τ = 0. In this study, only the first-order infinitesimal perturbations of (Ω̂; Ĉ, ρ̂),
i.e. the first-order “time” derivatives at τ = 0, are considered. Perturbations
of the inclusion’s constitutive properties can thus be expressed as

Ĉτ = Ĉ + Ĉ
′τ, ρ̂τ = ρ̂+ ρ̂′τ, (15)

whereas the shape perturbations of Ω̂ can be synthesized as

x∈Ω → xτ = x + θ(x)τ ∈ Ωτ , (16)

where θ(x) is a given (i.e. prescribed) transformation velocity field. In the
sequel, θ(x) is assumed to vanish outside of a neighbourhood of Ω̂, which
postulates the existence of a bounded region O satisfying

(a) Ω̂⊂O⊂Ω, (b) θ = 0 in Ω\O, (c) O ∩ S = ∅, (d) O ∩ V = ∅, (17)

with (c) and (d) stemming from the natural assumption that the trial inclusion
intersect neither the external surface nor the body-force support.
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Total and Lagrangian derivatives of field variables. Consider a generic field
variable g which depends on the inclusion configuration (Ω̂τ , Ĉτ , ρ̂τ ), e.g. the
solution of the forward problem (4)–(6). Such quantity can be represented in

the form g(x ; Ω̂τ , Ĉτ , ρ̂τ ). Let the total derivative,
⋄
g, of g be defined by

⋄
g = lim

τց0

1

τ

[

g(xτ ; Ω̂τ , Ĉτ , ρ̂τ ) − g(x ; Ω̂, Ĉ, ρ̂)
]

, (18)

i.e. by following the evolution of g at a point xτ moving according to geometric
transformation (16), while the inclusion’s material parameters are perturbed

according to (15). The contributions to
⋄
g of the inclusion’s geometric and

material perturbations can be separated through additive decomposition

⋄
g =

•

g + g′, (19)

with the shape sensitivity
•

g and material sensitivity g′ respectively defined by
“freezing” the material parameters and the shape of the inclusion in (18), i.e.

•

g = lim
τց0

1

τ

[

g(xτ ; Ω̂τ , Ĉ, ρ̂) − g(x ; Ω̂, Ĉ, ρ̂)
]

(20)

g′ = lim
τց0

1

τ

[

g(x ; Ω̂, Ĉτ , ρ̂τ ) − g(x ; Ω̂, Ĉ, ρ̂)
]

=
∂g

∂Ĉ
· Ĉ′ +

∂g

∂ρ̂
ρ̂′. (21)

The shape sensitivity thus corresponds to the Lagrangian time derivative of
continuum kinematics with the physical time variable replaced with a pseudo-
time. For the ensuing developments, it is useful to note that the shape sensi-
tivity of a gradient is given [39] by

(∇g)• = ∇
•

g − ∇g · ∇θ. (22)

Differentiation of integrals. Consider a generic domain integral I of the form

I =
∫

O
g(x ; Ω̂τ , Ĉτ , ρ̂τ ) dV,

in Eulerian description, where O denotes the support of geometric perturba-

tion (16). Upon noting that the shape sensitivity of dV is given by
•

dV =
[div θ] dV , the total derivative of I [39] can be written as

(a)
⋄

I =
•

I + I ′, (b)
•

I =
∫

O

{

•

g + gdiv θ
}

dV, (c) I ′ =
∫

O
g′ dV. (23)

4 Shape sensitivity using an adjoint solution

Taking into account assumption (17c) whereby Sobs remains invariant under
perturbation (16), the shape sensitivity of cost functional (2) takes the form

•

J = Re

{

∫

Sobs

ϕ,u(u,uobs, ξ)·
•

udS

}

, (24)
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where the complex-valued function ϕ,u is defined as

ϕ,u =
∂ϕ

∂uR
− i

∂ϕ

∂uI

, (uR = Re(u), uI = Im(u)). (25)

On parameterizing the geometric perturbation (16) in terms of a selected
shape parameter a and setting τ = a−a0, formula (24) yields the derivative
of J with respect to a evaluated at a0 in terms of the derivative solution

•

u;
this is the essence of the so-called direct differentiation approach. One can
however circumvent the actual computation of derivatives

•

u (one for each
shape parameter describing the sought inclusion) by resorting to the adjoint
field approach, to whose formulation the remainder of this section is devoted.

4.1 Displacement shape sensitivity – weak formulation

Since the weak formulation (7) of the forward problem (4)–(6) holds for all
perturbed inclusion configurations, the governing weak formulation for the dis-

placement shape sensitivity (
•

u,
•

û) can be obtained by exploiting the identity

•

A
(

(u, û), (w, ŵ)
)

−
•

F(w) = 0 ∀(w, ŵ)∈V(0). (26)

As shown in Appendix A.1, application of the Lagrangian differentiation for-
mula (23b) to (8b) results in

•

A
(

(u, û), (w, ŵ)
)

= A
(

(
•

u,
•

û), (w, ŵ)
)

+ A
(

(u, û), (
•

w,
•

ŵ)
)

+
∫

Ω−

Lw·(∇u·θ) dV +
∫

Ω̂
L̂ŵ ·(∇û·θ) dV

+
∫

Γ

[

n·E(u,w) + n̂·Ê(û, ŵ)
]

·θ dS, (27)

where the bilinear tensorial function E(u,w), related to the dynamic Eshelby
energy-momentum tensor [17], is defined by

E(u,w) = a(u,w)I − (C :∇w)·∇u − (C :∇u)·∇w. (28)

(I: second-order identity tensor) and Ê(û, ŵ) is defined similarly in terms
of the inclusion characteristics. Invoking assumption (17d), one further finds
that the Lagrangian derivative of F(w) is given by

•

F(w) = F(
•

w). (29)

On substituting (27) and (29) into (26), invoking the equality obtained by set-

ting (w, ŵ) = (
•

w,
•

ŵ) in (7), and noting that
•

u = 0 on Su (since the prescribed
displacement uD is insensitive to the inclusion shape), the displacement shape

sensitivity (
•

u,
•

û)∈V(0) is found to be governed by the weak formulation:

A
(

(
•

u,
•

û), (w, ŵ)
)

= −
∫

Ω−

Lw·(∇u·θ) dV −
∫

Ω̂
L̂ŵ·(∇û·θ) dV

∫

Γ

[

n·E(u,w) + n̂·Ê(û, ŵ)
]

·θ dS ∀(w, ŵ)∈V(0). (30)
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4.2 Adjoint solution

The main motivation behind the adjoint state approach is to evaluate the
shape sensitivity (24) in an indirect, and computationally faster, manner by
circumventing the actual computation of field sensitivities

•

u. Interpreting the
integral in (24) as a virtual work and treating the sensitivity

•

u therein as a test
function leads to define the adjoint state (v, v̂)∈V(0) by the weak statement

A
(

(v, v̂), (w, ŵ)
)

=
∫

Sobs

ϕ,u(u,uobs, ξ) ·w dS ∀(w, ŵ) ∈ V(0), (31)

whose solution (v, v̂) is the adjoint state. The adjoint transmission prob-
lem (31) can equivalently be stated in strong form as:

{

(a) Lv = 0 (in Ω−),

(b) L̂v̂ = 0 (in Ω̂)























(c) p = ϕ,u (on Sobs)

(d) p = 0 (on St \Sobs)

(e) v = 0 (on Su)

(f) v = v̂, p + p̂ = 0 (on Γ)

(32)

where p = (C :∇v)·n and p̂ = (Ĉ :∇v̂)·n̂ are the traction vectors respectively
associated with v and v̂. Alternatively, traces (v,p) on Γ of the solution to
problem (32) satisfy integral equations (10), (11) with the free field given by

vF(x) =
∫

Sobs

ϕ,u

(

u(ξ),uobs(ξ), ξ
)

·U(x, ξ) dSξ, x∈Ω. (33)

The nature (32c) of the adjoint excitation and the assumed boundedness of
Sobs ensure that (v,p) satisfies the generalized radiation condition (14).

4.3 Shape sensitivity formula

Setting (w, ŵ) = (
•

u,
•

û) in (31), formula (24) for the shape sensitivity
•

J
becomes

•

J = Re
{

A
(

(v, v̂), (
•

u,
•

û)
)}

.

Choosing (w, ŵ) = (v, v̂) in (30) then readily yields, by virtue of field equa-

tions (32a,b) and the symmetry of A(·, ·), the following expression for
•

J ,
where the displacement shape sensitivity no longer appears:

•

J = −Re
{

∫

Γ

[

n·E(u,v) + n̂·Ê(û, v̂)
]

·θ dS
}

. (34)

Equation (34) is, however, not well suited for applications where the free and
adjoint solutions are computed by means of the BEM, as it features displace-
ment gradients on Γ. This is addressed by introducing the decomposition

∇u = ∇Su + u,n ⊗ n (35)

of a gradient in terms of its tangential component ∇Su and the normal deriva-
tive u,n, and expressing the latter in terms of ∇Su and t by inverting the
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relationship t = (C :∇u)·n whereby

u,n = D ·∆t. (36)

Here, the second-order tensor D and the combination ∆t are respectively
defined by D = [n·C ·n]−1 (exploiting the minor symmetry of C), and

∆t = t − (C :∇Su)·n. (37)

By virtue of (35)–(37), tensor function E(u,v) can be written in terms of the
interfacial tractions and tangential displacement gradients, so that

n·E(u,v)·θ

=
[

∇Su :C :∇Sv − ∆t·D ·∆p − ρω2u·v
]

θn − (t·∇Sv + p·∇Su)·θ.

This finally allows to express (34) in terms of quantities directly available from
the boundary element solution. Utilizing transmission conditions (5) and (32f),
the desired form of the shape sensitivity result is thus established as

•

J = Re
{

∫

Γ

[

∇Su : (Ĉ − C) :∇Sv

− ∆t̂·D̂ ·∆p̂ + ∆t·D ·∆p − (ρ̂− ρ)ω2u·v
]

θn dS
}

, (38)

with ∆t̂, ∆p̂ defined by (37) with C,n replaced by Ĉ, n̂, and D̂ = [n̂·Ĉ·n̂]−1.

In the case where either material has isotropic elasticity (which is not a pre-
requisite for the derivation of (38)), tensors C,D or Ĉ, D̂ are given in terms
of the shear modulus µ and Poisson’s ratio ν of the relevant material (with I

denoting the symmetric fourth-order identity tensor) by

C = 2µ
[

ν

1 − 2ν
I ⊗ I + I

]

, D =
1

µ

[

I −
1

2(1 − ν)
n ⊗ n

]

.

5 Material sensitivity

The material sensitivity of the generic cost function (2) is a priori given by

J ′ = Re
{

∫

Sobs

ϕ,u(u,uobs, ξ)·u′ dS
}

. (39)

5.1 Domain integral formulation, adjoint solution approach

Proceeding along the lines of Section 4, the domain formulation of the dis-
placement material sensitivity (u′, û′) is found by considering the material
sensitivity of weak statement (7), i.e.

A
(

(u′, û′), (w, ŵ)
)

= −
∫

Ω̂
â′(û, ŵ) dV, ∀(w, ŵ)∈V(0) (40)

where the bilinear density â′ is defined by (9b) with the inclusion characteris-
tics Ĉ and ρ̂ replaced respectively by their sensitivities Ĉ′ and ρ̂′.

10



Expression (39) suggests that J ′ can be expressed in terms of the previously-
defined adjoint problem (31). Indeed, on setting (w, ŵ) = (v, v̂) in (40),
(w, ŵ) = (u′, û′) in (31), and proceeding as before, one finds that

J ′ = −Re
{

∫

Ω̂
â′(û, v̂) dV

}

. (41)

The domain-integral format of formula (41) is obviously impractical for BEM-
based applications. For that reason, alternative approaches that facilitate the
evaluation of J ′ using BEM forward and adjoint solutions are examined next.

Before proceeding to the BIE specialization of (41) and the subsequent nu-
merical results, both focused here on semi-infinite host domains, it should be
emphasized that the shape sensitivity formula (38) and its material counter-
part (41) are general in the sense that they uniformly apply to finite, semi-
infinite or infinite (R3) host domains. The present BIE formulation and its
underlying assumption of a semi-infinite ”host” define an illustration, not a
limitation, of the proposed shape-material sensitivity framework.

5.2 Surface integral formulation, direct approach

The direct differentiation approach makes use of (39) with the material sensi-
tivity u′ on Sobs evaluated by differentiating the governing boundary integral
equations. On expressing the governing pair (10) and (11) in operator form as

T
[

u
]

(x) − U
[

t
]

(x) = uF(x)

T̂
[

u
]

(x) − Û
[

t
]

(x) = 0
(x∈ Γ), (42)

and keeping in mind that the full-space Green’s tensors Û , T̂ depend on the
inclusion’s material parameters whereas U , T and the free field uF do not, the
sensitivities u′, t′ on Γ can be shown to solve the pair of integral equations

T
[

u′
]

(x) − U
[

t′
]

(x) = 0

T̂
[

u′
]

(x) − Û
[

t′
]

(x) = Û ′
[

t
]

(x) − T̂ ′
[

u
]

(x)
(x∈Γ) (43)

where integral operators Û ′, T̂ ′ featured on the right-hand side are defined in
terms of the respective Green’s tensor derivatives Û ′, T̂ ′, see Appendix A.3.

Once equations (43) are solved for u′, t′ on Γ, the displacement sensitivity u′ on
Sobs follows by taking the material sensitivity of representation formula (13).
On substituting the resulting expression into (39), the material sensitivity J ′

is finally given, using an operator notation similar to that in (42), by

J ′ = Re
{

∫

Sobs

ϕ,u(u,uobs, ξ)·
(

Uobs
[

t′
]

(x) − T obs
[

u′
]

(x)
)

dS
}

. (44)

5.3 Surface integral formulation, adjoint solution approach

As an alternative to the above direct differentiation strategy, an adjoint field
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approach for the evaluation of J ′ as a surface integral may be formulated
as follows. Let the new adjoint state (v, v̂) be defined as the solution of a
transposed system of integral equations, written in weak form as

∫

Γ

{

v(x)·
(

T [w](x) − U [tw](x)
)

+ v̂(x)·
(

T̂ [w](x) − Û [tw](x)
)}

dSx

=
∫

Sobs

ϕ,u·
(

Uobs[tw](x) − T obs[w](x)
)

dSx , ∀(w, tw) (45)

where w and tw are trial (vector) functions on Γ. Next, multiplying the first
and the second equation in (43) respectively by v(x) and v̂(x), integrating
the result over x∈Γ, and adding the identities one obtains

∫

Γ

{

v(x)·
(

T [u′](x) − U [t′](x)
)

+ v̂(x)·
(

T̂ [u′](x) − Û [t′](x)
)}

dSx

=
∫

Γ
v̂(x)·

(

Û ′[t](x) − T̂ ′[u](x)
)

dSx , ∀(w, tw). (46)

Setting (w, tw) = (u′, t′) in (45), subtracting the resulting identity from (46)
and recalling the material sensitivity formula (44), material sensitivity J ′

follows in a surface-integral, adjoint-based form as

J ′ =
∫

Γ
v̂(x)·

(

Û ′[t](x) − T̂ ′[u](x)
)

dSx. (47)

The above material sensitivity formula is in particular well suited for use
within a Galerkin BEM framework, as it involves two nested surface integrals.

6 Computational treatment

In what follows, an inclusion identification method based on the proposed
shape-material sensitivity approach and an augmented-Lagrangian cost func-
tional is implemented using a BEM framework and the underlying assumption
that the background domain Ω is semi-infinite.

6.1 Boundary integral approximation

To illustrate the utility of sensitivities (38) and (44) for elastic-wave identifica-
tion of penetrable defects, let the trial obstacle Ω̂ be isotropic and described in
terms of a finite set a = (a1, a2, . . . , aD, µ̂, ν̂, ρ̂) of D+3 geometric and material
parameters, where µ̂, ν̂ and ρ̂ denote respectively the shear modulus, Poisson’s
ratio, and mass density of the defect. Introducing an auxiliary notation

Ja(a) ≡ J
(

Ω̂(a1, . . . , aD), Ĉ(µ̂, ν̂), ρ̂
)

(48)

to reflect the defect parametrization and making reference to (20) and (21), the
sensitivities ∂Ja/∂ak used for minimizing Ja(a) are computable according to

Geometric:
∂Ja

∂ak
=

•

J |τ=ak
, k = 1, 2, . . .D (49a)
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Material:
∂Ja

∂ak
= J ′|τ=ak

, k = D+1, D+2, D+3. (49b)

Boundary element discretization. For the evaluation of surface integrals over

∂Ω̂ = Γ that are involved in the computation of
•

J and J ′, one may assume
Γ =

⋃K
e=1Ee, where {Ee}

K
e=1 are closed and non-overlapping surface elements.

Following the usual approach, each boundary element Ee ⊂Γ is parametrized
by a mapping E→Ee that introduces local coordinates, η = (η1, η2)∈ E , where
E is a polygonal domain in R

2. The approximating boundary surface, Γh =
⋃K

e=1E
h
e , can then be generated by interpolating a set of parameter-dependent

nodes ξq(a)∈Ee with pre-defined mesh connectivity. To this end, the Q-noded
approximation Eh

e of a generic surface element Ee ⊂Γ is written as

ξ(η) =
Q

∑

q=1

Nq(η) ξq(a), ξ ∈Eh
e , ξq ∈Ee, η ∈E , (50)

where Nq are the relevant shape functions. By virtue of (50) the normal trans-
formation velocity θn in (38) is, for a given parameter ak, approximated as

θn(ξ) ≡ θk
n(ξ) =

Q
∑

q=1

Nq(η)
∂ξq

∂ak

·n, ξ ∈Eh
e , ξq ∈Ee, k= 1, 2, . . .D (51)

where n denotes the unit normal to the surface. Assuming next the isopara-
metric representation of elastodynamic quantities, the boundary displacement
(u) and traction (t) fields over Γ are interpolated at a generic point ξ ∈Eh

e in
terms of the nodal displacements uq and tractions tq at ξq ∈Ee as

u =
Q

∑

q=1

Nq(η) uq, t =
Q

∑

q=1

Nq(η) tq. (52)

Evaluation of shape sensitivities. The computation of
•

J and J ′ entails solv-
ing transmission problems associated respectively with the primary field u,
the adjoint field v, and the material-sensitivity field u′ for each material pa-
rameter associated with the inclusion (i.e. a total of five problems under the
assumption of isotropic inclusions). With reference to (12), (33), (42), (43),
(50) and (52), the discrete algebraic systems for these fields can be written as

Primary
HŨ −GT̃ = UF,

ĤŨ − ĜT̃ = 0,
(53a)

Adjoint
HṼ −GP̃ = VF,

ĤṼ − ĜP̃ = 0,
(53b)

Material-sensitivity
HŨ′ − GT̃′ = 0,

ĤŨ′ − ĜT̃′ = Ĝ′T̃ − Ĥ′Ũ
(53c)
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where vectors Ũ and T̃ contain the nodal approximations of the primary
(displacement and traction) fields u and t; coefficient matrices H, G, Ĥ and Ĝ

approximate the respective integral operators T ,U , T̂ and Û in (42); Ṽ and P̃

are associated with the respective adjoint fields v and p; UF and VF collect the
nodal values of the free fields (12) and (33); vectors Ũ′ and T̃′ refer respectively
to u′ and t′, while Ĥ′ and Ĝ′ are the matrix discretizations of T̂ ′ and Û ′ in (43).
The coefficient matrices are the same for all three discretized systems, which
allows for a computationally-effective solution of (53b) and (53c) once the
primary problem (53a) has been solved.

In the context of (38), however, the shape sensitivity computation requires
not only the primary and adjoint fields on Γ, but also their surface gradients.
By virtue of (52), the required surface gradient of u is approximated as

∇Su =
Q

∑

q=1

∇SNq(η) ⊗ uq (54)

over each boundary element, with a similar expression applying in terms of
∇Sv. To evaluate the tangential derivative ∇SNq in (54), let the local compan-
ion basis {r1, r2,n} at any point ξ ∈Eh

e be defined from the (differentiable)
boundary element parametrization ξ = ξ(η) of (50) by

r1 =
Q

∑

q=1

∂Nq

∂η1
ξq, r2 =

Q
∑

q=1

∂Nq

∂η2
ξq, n =

r1 × r2

‖r1 × r2‖
, (55)

so that vectors r1 and r2 are tangent to Eh
e . The surface gradient of shape

functions ∇SNq then takes an explicit form

∇SNq = n ×
[

∂Nq

∂η2
r1 −

∂Nq

∂η1
r2

]

q = 1, 2, . . .Q. (56)

Since the triplet {r1, r2,n} defined by (55) forms a positive-oriented basis
in R

3, reversing the connectivity of a given element (i.e. listing its nodes in
opposite order) leads to the sign-reversal of n through swapping of r1 and r2.
Hence, a desired orientation for the approximate surface Γh can be achieved
by adequately setting the mesh connectivity. Here, quantities pertaining to Ω−

(background) and Ω̂ (inclusion) in sensitivity formula (38), and consequently
matrices H and Ĥ in (53a–c), are defined in terms of the inward and outward
orientations of Γ, respectively. Consistent element orientation is thus ensured
by using two opposite mesh connectivity tables for Γh (one “direct” for Ω−,
the other “reverse” for Ω̂). This method allows for systematic generalization
towards multiple-inclusion or nested-inclusion configurations. The surface gra-
dients (54) are insensitive to the choice of mesh connectivity orientation.

6.2 Parallel computation

Owing to the high computational cost commonly associated with 3D inverse
scattering, regularized boundary integral treatment [36] of the primary, ad-
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Table 1
Sample CPU times [min:sec] per evaluation the cost function and its sensitivities.

np 2 4 8 12 24 48 96

CPU time 46:01 23:27 12:41 9:05 5:52 3:24 2:31

Qs 1.98 3.89 7.20 10.05 17.01 26.85 36.28

Qs/np 0.99 0.97 0.90 0.84 0.70 0.56 0.38

joint, and material-sensitivity problems in (53a–c) is implemented, together

with formulas (38) and (44) for
•

J and J ′, in a data parallel code using
the message-passing interface (MPI) [35]. Data-type parallelism normally ap-
plies when identical operations are performed concurrently on multiple data
items. With reference to (11) and (53a), such is the case with repeated, time-
consuming, computation of the elastodynamic Green’s tensors U and T (un-
derlying the evaluation of matrices H and G), in situations when the reference
domain Ω is semi-infinite. In contrast to the fundamental solution for an infi-
nite domain R

3 which is available in closed form (e.g. Û and T̂ underpinning
matrices Ĥ and Ĝ, see (A.8a,b)), elastodynamic Green’s tensors for a semi-
infinite solid are given as improper integrals [22] whose numerical quadrature
entails two to three orders-of-magnitude higher computational effort.

On denoting by np the number of processes and by N the number of BEM de-
grees of freedom on Γ, the code is accordingly parallelized by block-distributing
the computation of H and G matrices (both of dimension N×N) where every
participating process is assigned approximately N/np columns of each array.
As vectors UF and VF in (53a,b) also involve the (displacement) Green’s tensor
U for the reference domain, see (12) and (33), their computation is similarly
distributed among the participating processes. For consistency, matrices Ĥ

and Ĝ are likewise computed in parallel fashion, even though this does not
result in a meaningful reduction of the run time owing to the closed-form na-
ture of Û and T̂ . Once computed for the solution of the primary problem,
the LU-factorized “global” coefficient matrix (combining H, G, Ĥ and Ĝ) is
stored and reused for solving the adjoint and material-sensitivity problems.

To illustrate the performance of the parallel code the speed-up ratio Qs, i.e.
the ratio of the elapsed time of a serial program over that of its parallel
counterpart with np processes, is considered. The computation is performed on
the IBM BladeCenter H cluster equipped with 307 LS21 nodes, each containing
two dual-core 2.6 GHz Opteron processors sharing 8GB of memory. For the
purpose of comparison, the inclusion is described as a nine-parameter ellipsoid
(D+3 = 9) characterized by its three centroidal coordinates, three semi-axes,
and three material constants. The boundary element mesh approximating the
surface of the defect has 650 nodes; the testing configuration is comprised
of 25 uniaxial sources and 36 triaxial receivers located on the surface of a
semi-infinite solid (see Fig. 1). Table 1 shows the CPU times per evaluation

15



of the cost function Ja and its sensitivities ∂Ja/∂ak (k = 1, · · · , 9), the speed-
up ratios Qs, and a measure of the per-processor efficiency Qs/np for the
sample problem in a semi-infinite solid. As a point of reference, computation
of the analogous problem when the host domain is infinite (Ω = R

3), takes 1
minute and 31 seconds on a single processor. In the ensuing examples, the half-
space calculations are performed with np = 48 which represents a reasonable
compromise between the speed-up ratio and per-processor efficiency.

6.3 Defect parametrization

The geometry of the trial defect Ω̂ is, for the ensuing numerical experiments,
described in terms of an ellipsoid whose principal axes are aligned with the
reference Cartesian frame {O; ξ1, ξ2, ξ3}; its evolution within the host domain
Ω is restricted to i) translation and ii) stretch along the principal axes. For
problems involving identification of a single isotropic defect, such description
entails the use of a nine-dimensional parametric space

a =
(

c1
d
,
c2
d
,
c3
d
,
α1

d
,
α2

d
,
α3

d
,
µ̂

µ
, ν̂,

ρ̂

ρ

)

(57)

(i.e. D= 6), which incorporates the defect’s centroidal motion (ci, i= 1, 2, 3),
principal stretches (αi, i = 1, 2, 3), and material characteristics (µ̂, ν̂, ρ̂). Pa-
rameters ak in (57) are moreover defined in dimensionless fashion using ma-
terial characteristics (µ, ρ) of the reference solid and an arbitrary length scale
d. With such definitions, analytical dependence of the nodal coordinates,
ξq = ξq(a), of the surface mesh on the evolving defect boundary Γ is intro-
duced as an affine deformation of the boundary element mesh for a reference
unit sphere S (described by Lagrange coordinates (X1, X2, X3)) so that

ξq
i = ci + αiX

q
i , Xq ∈S, i= 1, 2, 3 (58)

assuming no summation over index i. On the basis of (57) and (58), one finds
that the normal transformation velocities θk

n defined by (51) are given by

(

θk
n, k= 1, . . . , D

)

=
(

n1, n2, n3,
ξ1 − c1
α1

n1,
ξ2 − c2
α2

n2,
ξ3 − c3
α3

n3

)

d. (59)

Since formulas (38) and (44) are not restricted to simply-connected defects,
one could parametrize the subsurface heterogeneity as multiple defects, using
e.g. description (57) for each. The assumed topology then cannot be altered
during the minimization process. As to the correct choice of “initial” topology
(e.g. in terms of the number of defects), such preliminary information could
be obtained from the available measurements using for instance the methods
of topological sensitivity [12, 18, 19] or linear sampling [8, 20, 31].

6.4 Minimization

As examined earlier, the goal of this study is the 3D identification of “pene-
trable” subsurface defects via the minimization of cost functional J (Ω̂, Ĉ, ρ̂)
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given by (2). Here it is important to remember, however, that certain argu-
ments of J , most notably the material characteristics of the trial defect, are
subject to inequality constraints that must be enforced to maintain the phys-
ical relevance of the solution. In the context of isotropic elasticity assumed
in the ensuing examples, one finds that besides ρ̂ > 0, one must have µ̂ > 0
and −1 < ν̂ < 0.5 to sustain the positive definiteness of the strain energy
density [2]. While numerous techniques are available for non-linear minimiza-
tion subject to inequality constraints [34], most of such algorithms provide
only “soft” bounds that can be violated during the minimization process. To
aid the strict enforcement of the featured inequality constraints on µ̂, ν̂ and
ρ̂, the nine-dimensional defect parametrization in (57) is restated using the
transformed variables b = (b1, b2, . . . , b9)∈R

9 where

bk = ak, k = 1, . . . 6, bk = log(ak) k = 7, 9, b8 = log(0.5−a8) (60)

which ensure that µ > 0, ν < 0.5, and ρ > 0. The cost function is then
expressed naturally in the transformed variables through Jb(b) = Ja(a), with
Ja defined by (48). On the basis of (60), the required sensitivities of Jb can be
computed in terms of ∂Ja/∂ak given by (38), (44) and (49b) as

∂Jb

∂bk
=
∂Ja

∂ak
, k≤ 6,

∂Jb

∂bk
=
∂Ja

∂ak
ak k= 7, 9

∂Jb

∂b8
=
∂Ja

∂a8
(a8 − 0.5).

The minimization problem is posed in a constrained fashion, using parametriza-
tion (60), as

min
b

Jb(b), Ci(b) ≥ 0 ∀i∈I, (61)

where the “soft” inequality constraints Ci (I being a set of integers) reflect any
additional restrictions in terms of defect’s centroidal coordinates (c1, c2, c3),
semi-axes (α1, α2, α3), and material properties (µ̂, ν̂, ρ̂). The inequality con-
straints used in the ensuing numerical examples are listed in Appendix A.4.

Following [34], optimization problem (61) is for practical implementation re-
duced, using slack variables, to the unconstrained minimization

min
b

LA(b,λm, γm) (62)

of an augmented Lagrangian

LA(b,λm, γm) ≡ Jb(b) +
∑

i∈I

ψ(Ci(b), λm
i ; γm),

ψ(C, λ, γ) =







−λC + C2/2γ C ≤ γ λ,

−γ λ2/2 C > γ λ
(63)

whose gradient is computable as

∇b LA(b,λm; γm) = ∇LA(b) −
∑

i∈I|Ci(b)≤γmλm

i

(λm
i − Ci(b)/γm)∇Ci(b). (64)
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Given the initial penalty parameter γ0 > 0, tolerance τ0 > 0, starting point b0,
and reference vector of Lagrange multipliers λ0, the augmented Lagrangian
method introduces a sequence (m = 1, 2, . . .) of unconstrained minimization
problems with explicit Lagrange multiplier estimates (λm) and decreasing
penalties (γm) that produce a good estimate of the local KKT (Karush-
Kuhn-Tucker) solution, b⋆, of (61) even when γ is not particularly close to
zero [34]. This latter feature is highly desirable as it reduces the possibility
of ill-conditioning that commonly occurs for vanishing values of the penalty
parameter γ. The algorithm terminates when ‖∇b LA‖ < τ ⋆, where τ ⋆ is the
user-chosen ultimate tolerance. For any given iterate m, the nonlinar min-
imization (62) is effected using the BFGS quasi-Newton method [34] (with
stopping criterion defined by ‖∇b LA‖< τm) and an inexact line search based
on the strong Wolfe conditions [30]. Due to the unconstrained character of
minimization subproblems (62), constraints (A.14) are “soft” in that they do
not by themselves prevent b from reaching physically inadmissible, or merely
undesirable, values (e.g. penny-shaped ellipsoids which may lead to an ill-
conditioned BEM solution). To deal wih the problem, the line search algo-
rithm embedded in (62) has been augmented by a step-reduction feature that
prevents b from exceeding the soft-bound limits (A.14) by more than 30%.
For the numerical examples presented next, the internal parameters were set
to γ0 = 0.025, τ0 = 100, λ0 = 1, γm+1/γm = τm+1/τm = 0.2, and τ ⋆ = 10−3.

7 Results

The effectiveness of the proposed shape-material sensitivity approach as a
tool for reconstructing buried penetrable objects is now demonstrated on a
set of numerical results. In all examples to follow, the buried obstacle is
“illuminated” using N = 4 × 4 = 16 point forces, sequentially applied at
locations xn (n = 1 . . . N) in the ξ3-direction over the square testing grid
(ξ1, ξ2)∈ [−3d, 3d]× [−3d, 3d] in the ξ3 = 0 plane, where d is a reference length;
for each source, the response of the solid is monitored using M = 5×5 = 25 tri-
axial receivers with locations xm (m= 1 . . .M) arranged (in the same plane)
as shown in Fig. 1. The distance function ϕ(u,uobs, ξ) in (2) is taken in the
least-squares form and given by

ϕ(u,uobs, ξ) =
1

2

N
∑

n=1

M
∑

m=1

δ(ξ − xm)|u − uobs|2.

Problem quantities are normalized using the length scale d together with the
shear modulus and mass density (µ, ρ) of the reference solid; in particular,
the nondimensional angular frequency ω̄ = ωd(ρ/µ)1/2 is introduced. In all
examples, the reference solid is additionally characterized by ν = 0.35.

7.1 Sensitivity evaluation

To verify the numerical implementation, geometric and material sensitivities
∂Ja/∂ak (k = 1, 2, . . . , 9) stemming from (38) and (44) are compared with
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Fig. 1. Testing grid and sample defects in a semi-infinite solid ξ3 > 0 (ν = 0.35)

their central difference approximations computed using the boundary integral
approach of [36] and a surface mesh with 650 eight-noded quadrangular ele-
ments. The comparison is performed at a = (.1, .1, 3; .5, .5, .5; 2, .35, .9) for a
“true” ellipsoid given by atrue = (0, 0, 3; .5, .5, .5; 5, .25, 1), assuming an infi-
nite reference domain Ω = R

3 to ensure maximum accuracy for the Green’s
functions and focus on the performance of the proposed computation scheme.
The frequency of illumination corresponds to ω̄ = 3. From Table 2, one can
see that the relative discrepancy between the sensitivity formulas and their
central difference approximations (computed using ±4% perturbation on each
parameter) does not exceed 0.4%. It is moreover important to note that the
speedup (i.e. the reduction in the computational effort) over the central differ-
ence approach is approximately 1/(2(D+3)) where D+3 is the total number
of (geometric and material) design parameters. This estimate stems from the
fact that formulas (38) and (44) essentially revolve around the solution of one
forward problem (since the adjoint and material-sensitivity problems then ex-
ploit the existing matrix factorization), whereas central-difference evaluations
entail the set-up and solution of two irreducible problems for each ak.

7.2 Obstacle reconstruction

Two examples are now presented to illustrate the reconstruction of penetrable
defects in an isotropic, semi-infinite solid via shape sensitivities (38), mate-
rial sensitivities (44), and the constrained minimization approach described in
Section 6.4. In both examples, anticipating the non-convexity characterizing
most inverse scattering problems, the initial trial defect is placed relatively

Table 2
Sensitivities ∂ak

J ≡ ∂J /∂ak: comparison with central differences

Sensitivity ∂c1J ∂c2J ∂c3J ∂α1
J ∂α2

J ∂α3
J ∂µ̂J ∂ν̂J ∂ρ̂J

Formulae 0.3884 0.3884 3.669 -8.384 -8.384 -9.803 -3.286 .07205 -2.857

Finite diff. 0.3873 0.3873 3.666 -8.384 -8.384 -9.802 -3.289 .07231 -2.856
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Fig. 2. Reconstruction of a hard defect (ω̄ = 3, µ̂true = 4µ).

close to its target. This assumption is made reasonable by the fact that prob-
ing techniques [9, 42] based on e.g. topological sensitivity [12, 18, 19] or linear
sampling [8, 20, 31] provide a reliable preliminary information about the defect
location and material characteristics. While these techniques can in principle
use the same experimental data exploited by the nonlinear minimization, their
explicit coupling with the present scheme is beyond the scope of this study.

Hard obstacle. For this example the testing grid, placed on the surface of the
half-space (ξ3 = 0), and the true defect (indicated as “Hard”) are shown in
Fig. 1. The frequency of illumination is again such that ω̄= 3, corresponding
to a shear wavelength λS = 2πd/3. The true defect, centered at (a1, a2, a3)

true =
(1, .5, 3), is described as an ellipsoid with semi-axes (a4, a5, a6)

true = (.4, .6, .5)
and material properties (µ̂, ν̂, ρ̂)true = (4µ, 0.25, 1.1ρ); the initial iterate is
placed at a0 = (−.4,−.2, 2.5; .5, .5, .5; 1.8, .3, 1), see Fig. 1.

To avoid committing the “inverse crime” [16] whereby the same model is
used to synthesize as well as to invert the data in an inverse problem, syn-
thetic observations uobs are generated using a boundary element mesh with
1,460 nodes, whereas the minimization exploits a coarser mesh with 650 nodes.
Fig. 2 illustrates the iterative reconstruction process for this example. To aid
the physical insight, the bottom-right panel depicts selected iterations in the
3D space, with the surface color of each iterate (i.e. trial defect) corresponding
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to its shear modulus according to the attached color bar. As can be seen from
the display, the solution converges to the global minimum of J after approx-
imately 70 iterations. Not surprisingly, the centroidal coordinates exhibit the
fastest convergence, followed by that in terms of the semi-axes and material
properties. It should be noted, however, that the synthetic data in this exam-
ple contain no extraneous perturbations other than those caused by the use of
dissimilar BEM meshes. To examine the effect of measurement uncertainties,
synthetic observations uobs are next corrupted as

ũobs := (1 + ̺χ) uobs (65)

over all source-receiver pairs, where ̺ is the noise amplitude and χ∈ [−1, 1] is a
uniform random variable. Table 3 lists the reconstructed defect parameters for
the noise amplitude levels of 0, 1, and 2%. The defect reconstruction is seen to
be fairly sensitive to measurement noise. For instance, a ̺= 1% perturbation
of experimental data leads to average (absolute) errors of 0.4%, 1.6% and 15%
in terms of the defect’s centroid, semi-axes, and material properties. While
the latter figure may seem excessive, one may recall that perturbation (65)
is specified in terms of the total field u. As a point of reference, the induced
perturbation in terms of the scattered field uS−uF , which carries all available
information about the defect, exceeds 50% for selected source-receiver pairs
when ̺ = 1%. In practical situations, this problem may be mitigated using
a combination of i) multi-tonal illumination, in combination with accelerated
BEM such as the Fast multipole method allowing for higher frequencies in
forward simulations [14, 33], and ii) Bayesian (e.g. maximum likelihood) data
analysis, where prior information on the sought inclusion and measurement
errors are incorporated into a posterior probability density function [45].

Soft obstacle. To illustrate the method in cases where the inclusion is more
compliant than the background material, this example considers a true de-
fect with centroidal coordinates (a1, a2, a3)

true = (−1.1,−0.3, 2.7), semi-axes
(a4, a5, a6)

true = (.6, .8, .6) and material properties (µ̂, ν̂, ρ̂)true = (0.2µ, 0.1, 0.8ρ).
The testing arrangement, mimicking that in the previous example, as well as
the true (“Soft”) defect are again shown in Fig. 1. Each of the 16 sequentially-
applied point sources acts in the ξ3-direction at frequency ω̄= 2, correspond-
ing to a shear wavelength λS = πd. The meshes used for the generation of

Table 3
Sensitivity of the solution to experimental noise (hard defect)

Parameter c1/d c2/d c3/d α1/d α2/d α3/d µ̂/µ ν̂ ρ̂/µ

True 1.0 0.50 3.0 0.40 0.60 0.50 5.0 0.25 1.1

Identified, ̺ = 0% 1.0 0.50 3.0 0.40 0.60 0.50 5.0 0.25 1.1

Identified, ̺ = 1% 0.996 0.496 3.0 0.408 0.607 0.508 3.76 0.297 1.1

Identified, ̺ = 2% 0.992 0.492 2.99 0.367 0.583 0.481 5.19 0.016 1.06
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Fig. 3. Reconstruction of a soft defect (ω̄ = 2, µ̂true = 0.2µ).

synthetic measurements and the reconstruction respectively feature 650 and
290 nodes. Figure 3 illustrates the reconstruction of the soft defect, assuming
a0 = (−.4,−.2, 2.5; .5, .5, .5; .8, .3, 1) for the initial iterate whose geometry
is shown in Fig. 1. Again, the bottom right-hand panel plots the selected it-
erations, color-coded according to the trial shear modulus µ̂ of each iterate.
In this case, the solution converges to the global minimum of J after ap-
proximately 50 iterations, with centroidal coordinates leading the way. With
reference to the bottom left-hand panel, a notable feature of the minimization
process is an activated inequality constraint ν̂ ≤ 0.49, see (A.14), which steers
the numerical solution safely away from the incompressible case ν = 0.5.

8 Conclusions

In this work, 3D inverse scattering of elastic waves involving penetrable solid
defects is investigated within the framework of a boundary integral equation
method. The inverse problem is reduced to the minimization of a misfit be-
tween experimental observations and their simulations for a trial inclusion. To
maximize the accuracy and efficiency of gradient-based search algorithms, the
shape sensitivity of the cost function is formulated via an adjoint problem ap-
proach, extending earlier works on void identification. This is complemented
by a novel material sensitivity formulation, developed using two alternative
methodologies, namely the direct-differentiation and adjoint-field approaches.
The proposed shape and material sensitivity formulas, computable as surface
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integrals over the trial defect boundary, are implemented and incorporated into
a nonlinear optimization algorithm based on an augmented Lagrangian that
facilitates the imposition of inequality constraints. From preliminary numerical
studies, the latter were found to be critical in avoiding physically inadmissible
or computationally inadequate trial inclusion configurations. The effectiveness
of the proposed sensitivity formulation is demonstrated on numerical examples
dealing with the reconstruction of an ellipsoidal inclusion embedded in a semi-
infinite solid. Future work towards a comprehensive computational platform
for elastic-wave imaging of penetrable defects will incorporate other necessary
components: preliminary defect-indicator function based on e.g. topological
sensitivity or linear sampling methods, refined misfit functions based on e.g.
Bayesian concepts that allow for stochastic data analysis, and a fast multipole
(accelerated) version of the elastodynamic boundary element method.
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A Appendices

A.1 Proof of identity (27)

From (22) and the symmetry properties of the elastic tensor C, one obtains

(∇u :C :∇w)• = ∇u :C :
(

∇
•

w − ∇w·∇θ
)

+ ∇w :C :
(

∇
•

u − ∇u·∇θ
)

,

which, used with differentiation formula (23) and definition (9a) of a(·, ·), gives

{
∫

Ω−

a(u,w) dV
}

•

=
∫

Ω−

{

a(
•

u,w) + a(u,
•

w)
}

dV +
∫

Ω−

E(u,w) : [∇θ]T dV (A.1)
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with E(·, ·) defined by (28). Moreover, one easily checks by that the following
identity holds for any pair of (sufficiently smooth) fields u,w:

E(u,w) : [∇θ]T =
(

Lu·∇w + Lw·∇u
)

·θ + div
[

E(u,w)·θ
]

(A.2)

On using (A.2), applying the divergence theorem together with (17c), and
invoking field equation (4a), equation (A.1) becomes

{
∫

Ω−

a(u,w) dV
}

•

=
∫

Ω−

{

a(
•

u,w) + a(u,
•

w)
}

dV

+
∫

Ω−

Lw·(∇u·θ) dV +
∫

Γ
n·E(u,w)·θ dS, (A.3)

Applying the same treatment to the second integral of (8b) yields a variant
of (A.3) wherein Ω−,n,u,w,C, ρ are respectively replaced with Ω̂, n̂, û, ŵ, Ĉ, ρ̂.
Expression (27) then follows from applying (A.3) and its counterpart to (8b)
and invoking definition (8b) for interpreting terms featuring a(·, ·) or â(·, ·).

A.2 Generalization of (30) to arbitrary free fields

The proof of sensitivity result (38) given in Section 4 assumes that either (i)
Ω is bounded or (ii) the free field satisfies the generalized radiation condition
at infinity. Assumption (ii) can be relaxed so that any free-field uF satisfying
LuF = 0 in Ω (e.g. a plane wave) is permitted. This result rests upon a
modified version of the weak formulation (7) which reads
∫

Ω−

a(uS,w) dV +
∫

Ω̂

{

â(û, ŵ) − a(ûF, ŵ)
}

dV = 0 ∀(w, ŵ)∈V(0), (A.4)

where uS = u−uF is the scattered field in Ω−. A derivation along the lines of
Appendix (A.1) yields the Lagrangian-derivative form of equation (A.4) as

0 = A
(

(
•

uS,
•

ûS), (w, ŵ)
)

+
∫

Ω−

Lw·(∇uS ·θ) dV +
∫

Γ
n·E(uS,w)·θ dS

+
∫

Ω̂

[

â(
•

ûF, ŵ) + L̂ŵ·(∇û·θ)
]

dV +
∫

Γ
n̂·Ê(û, ŵ)·θ dS

−
∫

Ω̂

[

a(
•

ûF, ŵ) + Lŵ·(∇ûF ·θ)
]

dV −
∫

Γ
n̂·E(ûF, ŵ)·θ dS (A.5)

Identity (A.5) is rearranged by noting that the free field satisfies
{

∫

O\Ω̂
a(uF,w) dV +

∫

Ω̂
a(ûF, ŵ) dV −

∫

∂O
tF ·w dS

}

•

= 0 ∀(w, ŵ)∈V(0)

(with O as introduced in (17)) which, upon carrying out the Lagrangian dif-
ferentiation, yields

−
∫

Ω̂

[

a(
•

ûF, ŵ) + Lŵ·(∇ûF ·θ)
]

dV −
∫

Γ
n̂·E(ûF, ŵ)·θ dS

=
∫

O\Ω̂

[

a(
•

uF,w) + Lw·(∇uF ·θ)
]

dV +
∫

Γ
n·E(uF,w)·θ dS, (A.6)
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The free field, being insensitive to the inclusion shape and properties, has a

Lagrangian derivative given by
•

ûF = ∇ûF ·θ, which in turn implies that

a(
•

ûF, ŵ) + Lw·(∇uF ·θ) = a(∇uF ·θ,w) + Lw·(∇uF ·θ)

= div
[

(C :∇w)·∇uF ·θ
]

(A.7)

Substituting (A.6) into (A.5) and using (A.7) with the divergence theorem,
the counterpart of the weak shape sensitivity formulation (30) is found as

A
(

(
•

uS,
•

ûS), (w, ŵ)
)

= −
∫

Ω−

Lw·(∇uS ·θ) dV −
∫

Ω̂
L̂ŵ·(∇ûF ·θ) dV

−
∫

Γ

[

n·E(u,w)+n̂·Ê(û, ŵ)
]

·θ dS−
∫

Γ
(tw+t̂w)·∇uF·θ dS ∀(w, ŵ)∈V(0).

From that point, the adjoint solution is again defined by (31). Proceeding as in
Sec. 4, one finds that the shape sensitivity formula (30) still holds, in particular
because the last integral in (A.5) vanishes by virtue of conditions (32f).

A.3 Material sensitivity of elastodynamic fundamental solution

The full-space elastodynamic Green’s tensors Û and T̂ are given, for the
inclusion medium, by their components

Ûiℓ(x, ξ) =
1

µ̂k̂2
S

[

G(r; k̂S) −G(r; k̂P)
]

,iℓ
+

1

µ̂
G(r; k̂S)δiℓ (A.8a)

T̂iℓ(x, ξ) = G,j(r; k̂S)δiℓnj +G,i(r; k̂S)nℓ +
(

1 − 2γ̂2
)

G,ℓ(r; k̂P)ni

+
2

k̂2
S

[

G(r; k̂S) −G(r; k̂P)
]

,ijℓ
nj (A.8b)

where r = |ξ−x| is the distance between integration and collocation points,
n = n(ξ) is the unit normal at integration point ξ, commas indicate partial
derivatives with respect to Cartesian components of ξ, k̂S and k̂P denote the
shear and longitudinal wavenumbers in the inclusion, respectively given by

k̂S = ω(ρ̂/̂µ)1/2, k̂P = γ̂k̂S, with γ̂2 =
1 − 2ν̂

2(1 − ν̂)
, (A.9)

and G(·; k) is the free-space Green’s function for the Helmholtz equation with
wavenumber k, given by

G(r; k) =
exp(−ikr)

4πr
(A.10)

(the minus sign in the exponential being consistent with the assumed implicit
time-harmonic factor exp(iωt)). Noting that

∂kG = −irG, G,i = −r,i

(

1

r
+ ik

)

G
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(where notation ∂k indicates partial differentiation w.r.t. k) one readily obtains

∂kG,i(r; k) = −krr,iG(r; k)

∂kG,ij(r; k) = −k
[

rr,iG,j(r; k) + δijG(r; k)
]

∂kG,ijℓ(r; k) = −k
[

rr,iG,jk(r; k) + δijG,k(r; k) + δikG,j(r; k)
]

With the help of the above identities, the partial derivatives of the Green’s
function (A.8a-b) with respect to the wavenumbers are found to be given by

µ̂k̂S ∂k̂S
Ûiℓ =

[

(1 + ik̂Sr)r,ir,ℓ + (1 − ik̂Sr)δiℓ
]

G(r; k̂S) − 2µ̂Ûiℓ (A.11a)

µ̂k̂P ∂k̂P
Ûiℓ = −γ̂2

[

(ik̂Pr + 1)r,ir,ℓ − δiℓ
]

G(r; k̂P) (A.11b)

k̂S ∂k̂S
T̂iℓ = −2T̂iℓ + 2rniG,ℓ(r; k̂P) − 2rr,ℓnjG,ij(r; k̂S)

− k̂2
Sr

(

δℓir,n + r,inℓ

)

G(r; k̂S) (A.11c)

k̂P ∂k̂P
T̂iℓ = γ̂2

[

2rr,ℓnjG,ij(r; k̂P) + (2k̂2
P− k̂

2
S)rr,ℓniG(r; k̂P)

+ 2r
(

nℓG,i(r; k̂P) − niG,ℓ(r; k̂P)
)]

(A.11d)

with γ̂ again given by (A.9), and having set r,n = r,jn,j. Then, noting that

∂k̂P

∂ρ̂
=
k̂P

2ρ̂
,

∂k̂P

∂µ̂
=

−k̂P

2µ̂
,

∂k̂P

∂ν̂
=

−γ̂2

(γ̂2−1)2
k̂P,

∂

∂µ̂
Ûiℓ = −

1

µ̂
Ûiℓ,

∂k̂S

∂ρ̂
=
k̂S

2ρ̂
,

∂k̂S

∂µ̂
=

−k̂S

2µ̂
,

∂k̂S

∂ν̂
= 0

the sensitivities of Û and T̂ with respect to the material parameters of the
inclusion are given in terms of expressions (A.11a-d) by

dÛiℓ

dρ̂
=

1

2ρ̂

(

k̂P∂k̂P
+ k̂S∂k̂S

)

Ûiℓ
dT̂iℓ

dρ̂
=

1

2ρ̂

(

k̂P∂k̂P
+ k̂S∂k̂S

)

T̂iℓ

dÛiℓ

dµ̂
= −

1

2µ̂

(

2 + k̂P∂k̂P
+ k̂S∂k̂S

)

Ûiℓ
dT̂iℓ

dµ̂
= −

1

2µ̂

(

k̂P∂k̂P
+ k̂S∂k̂S

)

T̂iℓ

dÛiℓ

dν̂
=

−γ̂2k̂P

(γ̂2−1)2
∂k̂P

Ûiℓ
dT̂iℓ

dν̂
=

−γ̂2k̂P

(γ̂2−1)2
∂k̂P

T̂iℓ

The total material-parameter sensitivities of kernels Û
′
and T̂

′
used in (43)

are finally given in terms of the above expressions by

Û
′
= ρ̂′

d

dρ̂
Û + µ̂′ d

dµ̂
Û + ν̂ ′

d

dν̂
Û , T̂

′
= ρ̂′

d

dρ̂
T̂ + µ̂′ d

dµ̂
T̂ + ν̂ ′

d

dν̂
T̂ (A.12)

Leading singularity of kernel sensitivities. It is useful to investigate the lead-
ing contributions to kernel sensitivities (A.12) for r → 0, e.g. for the purpose
of handling singular element integrals. Noting that the corresponding lead-
ing contributions for the elastodynamic kernels (A.8a-b) themselves are the
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corresponding components of the elastostatic Kelvin solution, given by

[Ûiℓ]1 =
1

8πµ̂r

[

(1 + γ̂2)δiℓ + (1 − γ̂2)r,ir,ℓ

]

, (A.13a)

[T̂iℓ]1 =
1

4πr2

[

3(γ̂2 − 1)r,ir,ℓr,jnj + γ̂2(r,ℓni − δiℓr,jnj − r,inℓ)
]

, (A.13b)

the leading contributions to (A.12) for r → 0 are easily obtained from

dÛiℓ

dρ̂
= 0 +O(1),

dT̂iℓ

dρ̂
= 0 +O(1),

dÛiℓ

dµ̂
= −

1

µ̂
[Ûiℓ]1 +O(1),

dT̂iℓ

dµ̂
= 0 +O(1),

dÛiℓ

dν̂
=

1

16πµ̂(1 − ν̂)2r
(r,ir,ℓ − δiℓ) +O(1),

dT̂iℓ

dν̂
=

1

8π(1 − ν̂)2r2

(

δℓir,n +r,inℓ−r,ℓni−3r,ir,ℓr,n

)

+O(1),

which coincide, as expected, with the corresponding material sensitivities of
the Kelvin solution (A.13a-b).

A.4 Inequality constraints

With reference to parametric descriptions (57) and (60) and the constrained
minimization problem (61), a lower and an upper bound is imposed on each
parameter bi (i = 1, 2, . . . . 9), resulting in the total of 18 constraints Ci(b). On
noting that the size of the square testing area Sobs in Fig. 1 is 4d × 4d, these
inequality constraints are specified so that

Centroid: −
5d

2
≤Ci ≤

5d

2
(i= 1, 2),

d

20
≤ c3−α3, c3 ≤ 5d,

Semi-axes:
d

20
≤αi ≤ d (i= 1, 2, 3), (A.14)

Material properties:
µ

100
≤ µ̂≤ 10µ, 0.01≤ 0̂.5− ν̂ ≤ 0.5,

ρ

100
≤ ρ̂≤ 3ρ,

where µ and ρ are the shear modulus and the mass density of the reference (i.e.
background) solid. Physically, the restrictions on ci require that the centroid
of the defect is located at least partially “under” the testing area, that the
defect is physically separated from the surface of the half-space, and that the
maximum search depth be commensurate with the size of the testing grid;
the bounds on the ellipsoid’s semi-axes are imposed to avoid overly distorted
shapes, while the additional restrictions on material parameters are used to
i) prevent ill-conditioning of the numerical solution (e.g. in terms of excessively
small values of µ̂), and ii) focus the search on the range of expected values.
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