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RANKIN-COHEN BRACKETS AND ASSOCIATIVITY

MICHAEL PEVZNER

Abstract. Don Zagier introduced and discussed in [21] a particular algebraic
structure of the graded ring of modular forms. In this note we interpret it in
terms of an associative deformation of this graded ring.

1. Rankin-Cohen brackets and Zagier RC-algebras

What differential operators does preserve modularity? That question was an-
swered in 1956 by R.A. Rankin [13]. Nineteen years later H. Cohen [5] investigated
this problem in the framework of bi-differential operators. Namely, he introduced
a whole family of such operators transforming a given pair of modular forms into
another modular form of a higher weight. These operators are usually referred to
as Rankin-Cohen brackets and they have interesting applications in quantization
theory as well as in the representation theory of the Lie group SL(2, R). Notice
that their generalizations for different series of simple Lie groups were studied in
[1, 7, 8].

More precisely, let G be the simple Lie group SL(2, R) and K = SO(2) be its
maximal compact subgroup. Throughout this note we fix one particular arithmetic
subgroup of G, to wit Γ = SL(2, Z) ⊂ G, so that all arithmetic notions should be
understood as being defined with respect to Γ.

We say that a function f holomorphic in the upper half-plane Π = {z = x+ iy ∈
C | y > 0} is a modular form of weight k ∈ 2N if

f

(
az + b

cz + d

)
= (cz + d)kf(z), ∀z ∈ Π,

(
a b
c d

)
∈ Γ.

The set of such functions is denoted Mk(Γ) and we define

M∗(Γ) = ⊕k∈2NMk(Γ)

to be the graded ring of modular forms.

For a pair of modular forms f1 ∈ Mk1
(Γ) and f2 ∈ Mk2

(Γ) their j-th Rankin-
Cohen bracket is defined by

(1.1) [f1, f2]j(z) :=

j∑

ℓ=0

(−1)ℓ

(
k1 + j − 1

ℓ

)(
k2 + j − 1

j − ℓ

)
f

(j−ℓ)
1 (z)f

(ℓ)
2 (z),

where f (ℓ)(z) =
(

∂
∂z

)(ℓ)
f(z).

Notice that the specific normalization is chosen in such a way that [f1, f2]j ∈
Z[[q]], when f1, f2 ∈ Z[[q]], where q = e2iπz.
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Let πk denote a representation of G on the weighted Bergman space H2
k(Π) :=

O(Π) ∩ L2(Π, yk−2dxdy) defined for any integer k > 1 by :

(1.2) (πk(g))f(z) = (cz + d)−kf

(
az + b

cz + d

)
, g−1 =

(
a b
c d

)
.

This is an irreducible unitary representation of G referred to as the holomorphic
discrete series representation.

It turns out that for any g ∈ G and any fi ∈ H2
ki

(Π), i = 1, 2 one has

(1.3) [πk1
(g)f1, πk2

(g)f2]j = πk1+k2+2j(g)[f1, f2]j .

Particularly, this property remains valid for any g ∈ Γ and fi ∈ Mki
(Γ), i = 1, 2

and it implies therefore that [f1, f2]j ∈ Mk1+k2+2j(Γ) for such functions.
The fact 1.3 can be proved in different manners: rather analytically by use of

generating series or some properties of θ-functions [21] or purely algebraically by
use of underlying highest weight Harish-Chandra modules [11, 12]. In either cases
the main idea is to show that up to a constant the j-th Rankin-Cohen bracket is
the only bi-differential intertwining operator sending modular forms of weights k1

and k2 into a modular form of weight k1 + k2 + 2j.
It is well known [14, 18] that the restriction of the tensor product of two holo-

morphic discrete series representations πk1
⊗πk2

to the diagonal subgroup diag G ⊂
G × G decomposes multiplicity free into a direct discrete sum of irreducible repre-
sentations of the holomorphic discrete series:

πk1
⊗ πk2

=
⊕

j≥0

πk1+k2+2j .

Being chosen a concrete model for representations πk, to wit the weighted Bergman
spaces, the j-th Rankin-Cohen bracket may be interpreted as the orthogonal G-
equivariant projector of the tensor product’s representation space onto its j-th
irreducible component πk1+k2+2j .

D. Zagier pointed out in [21] that Rankin-Cohen brackets satisfy an infinite series
of algebraic relations that he formalized as a RC-algebra structure. Let us recall
first such identities for fi ∈ Mki

(Γ), i = 1, 2, 3:

[f1, f2]j = (−1)j [f2, f1]j , ∀j ∈ N;

[[f1, f2]0, f3]0 = [f1, [f2, f3]0]0 ;

[f1, 1]0 = [1, f1]0 = f1, [f1, 1]j = [1, f1]j = 0, ∀j > 0;

0 = [[f1, f2]1, f3]1 + [[f2, f3]1, f1]1[[f3, f1]1, f2]1;

0 = k3[[f1, f2]1, f3]0 + k1[[f2, f3]1, f1]0 + k2[f3, f1]1, f2]0;

[[f1, f2]0, f3]1 = [[f2, f3]1, f1]0 − [[f3, f1]1 , f2]0 ;

[[f1, f2]1, f3]0 =
k1

k1 + k2 + k3
[[f3, f1]0, f2]1 −

k3

k1 + k2 + k3
[[f2, f3]0, f1]1.

Theses (redundant) relations say that the first two brackets [ , ]0 and [ , ]1 define
one M∗(Γ), and more generally on H = ⊕k>1H

2
k(Π), the structure of a Poisson

algebra.
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Let us mention some other relations satisfied by Rankin-Cohen brackets that can
be checked directly :

[[f1, f2]0, f3]2 = −
k3(k3 + 1)

(k1 + 1)(k2 + 1)
[[f1, f2]2, f3]0

+
k1 + k2 + 1

k2 + 1
[[f2, f3]2, f1]0 +

k1 + k2 + 1

k1 + 1
[[f3, f1]2, f2]0;

[[f1, f2]2, f3]0 =
(k1 + 1)(k2 + 1)

(k1 + k2 + k3 + 1)(k1 + k2 + k3 + 2)
[[f1, f2]0, f3]2

−
(k1 + 1)(k1 + k2 + 1)

(k1 + k2 + k3 + 1)(k1 + k2 + k3 + 2)
[[f2, f3]0, f1]2

−
(k2 + 1)(k1 + k2 + 1)

(k1 + k2 + k3 + 1)(k1 + k2 + k3 + 2)
[[f3, f1]0, f2]2;

[[f1, f2]1, f3]1 = [[f2, f3]0, f1]2 + [[f2, f3]2, f1]0

− [[f3, f1]0, f2]2 − [[f3, f1]2, f2]0.

These higher order relations might look complicated at the first glance but their
nature will be much clearer once one will have adopted an operadic point of view and
will have thought of the Rankin-Cohen brackets as of the bi-differential operators
acting on sections of an appropriate homogeneous line bundle. In order to set
up this framework we start by introducing a quantization map for a particular
homogeneous space of SL(2, R) and deducing some properties of Rankin-Cohen
brackets.

2. Covariant quantization of co-adjoint orbits.

Denote H = SO(1, 1) ⊂ SL(2, R) = G and g = sl2(R) the Lie algebra of G which
is identified with its dual space g∗ by the Killing form B(X, Y ) = tr(XY ). The set

X = G/H is an adjoint G-orbit passing through

(
1 0

0 −1

)
∈ g endowed with the

canonical Kostant- Kirillov symplectic form.
This symmetric space, which is nothing else but the one-sheeted hyperboloid in

R3 ≃ g∗, posses a para-Hermitian structure in the sense that its tangent bundle
splits into a G-equivariant direct sum of isomorphic sub-bundles : T (X ) = T (X )+⊕
T (X )−. We shall then distinguish local coordinates (s, t) on X according to this
splitting.

In [20] authors constructed and studied a G-covariant symbolic calculus on the
phase space X and showed that the Rankin-Cohen brackets arise from the compo-
sition formula of symbols of particular type.

More precisely, for any λ ∈ R the map Opλ defined by:

Opλ(f)u(s) = c−λ

∫

X

f(s, t)|s − t|−1−iλu(τ)|τ − t|−1+iλdτdt,

where cλ is a normalizing constant, is an isometry from the Hilbert space of square
integrable functions f ∈ L2(X ), called symbols, into the space of Hilbert-Schmidt
operators on the configuration space L2(R). This construction respects symme-
tries. Indeed, the Lie group G acts on L2(R) through the so-called principal series
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representations:

πiλ(g)u(s) = |cs + d|−1−iλu

(
as + b

cs + d

)
,

with g−1 =

(
a b

c d

)
, and one easily checks that

πiλ(g)Opλ(f)πiλ(g−1) = Opλ(f ◦ g−1).

One might notice that this phenomenon is rather natural because the map Opλ is
build up from the intertwining operators of the unitary principal series representa-
tions.

Composition of linear operators gives rise to a naturally associative non-commutative
product ♯λ on L2(X ) such that:

Opλ(f1♯λf2) = Opλ(f1) ◦ Opλ(f2).

Moreover, there is an integral representation for this product:

f1♯λf2(s, t) = |cλ|
2

∫

X

f1(s, x)f2(y, t)

∣∣∣∣
(s − x)(y − t)

(s − t)(x − y)

∣∣∣∣
−1−iλ

dµ(x, y),

where dµ(x, y) = (x − y)2dxdy is the G-invariant measure on X. Notice that
this integral is not well defined in general and must be understood in the sense of
distributions.

The regular action of G on the Hilbert space L2(X ) is reducible. Its decom-
position into irreducible representations is equivalent to the study of eigenspaces
of the Laplace-Beltrami operator ¤ of the pseudo-Riemannian manifold X and it
is well known [9, 19], that the spectrum of the G-invariant differential operator ¤

contains a continuous part with multiplicity two, corresponding to principal series
representations of G, and two infinite discrete parts: {D±

n , n > 1}, corresponding
to discrete holomorphic and anti-holomorphic series representations of G.

Particular geometric structure of para-Hermitian symmetric spaces implies that
they are densely embedded in the Cartesian product of two conjugate (in an ap-
propriate sense) maximal flag varieties as, for instance, X ⊂ RP1 × RP1. On the
other hand specific spectral properties of tensor products of highest weight Harish-
Chandra modules (underlying holomorphic discrete series representations), namely
their discrete decomposability in the sense of T. Kobayashi, guarantee that the set
⊕n>1D

+
n is an algebra with respect to the non-commutative and certainly associa-

tive product ♯λ and more precisely, that

(2.1) f1♯λf2 =
∑

n≥0

cλ(n)[f1, f2], ∀fi ∈ D+
ki

, i = 1, 2,

where cλ(n) are combinatorial expressions involving the spectral parameter λ and
depending on n but which should not be interpreted as some kind of powers of the
Plank constant. Their explicit form was obtained in [20] and by different methods
in [6, 22]. It is noteworthy that the right hand side in the above formula defines
an absolutely convergent series of holomorphic functions. The same phenomenon
remains valid for a wilder class of so-called conformal Lie groups. It was studied in
[7].
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Notice that in this approach the associativity of 2.1 is granted from the very
beginning and actually it implies the identities referred to as the RC-algebra struc-
ture1.

In order to make our statement clearer we give, in the next section, another
realization of the product ♯λ and show that its associativity governs the Zagier
RC-algebra axioms.

3. Main observation

The Plancherel formula for real reductive Lie groups says that ”essentially” all
unitary irreducible representations are obtained by induction from finite dimen-
sional representations of appropriate subgroups and according to the Mackey the-
ory an induced representation must be thought of as an action on sections of vector
bundles rather then on functions. Adopting this approach we will see that the
♯λ-product on H is related to the Moyal star-product on a flat symplectic vector
space.

Let GC = SL(2, C) be the complexification of the Lie group G and let B denote
its Borel subgroup. Let τk with k ∈ N+ be a holomorphic character of B and
let Lk be the homogeneous holomorphic line bundle over GC/B corresponding to
τk. Therefore a function f ∈ H2

k(Π) can be identified with a square integrable,
holomorphic section F ∈ Γ(Lk).

Proposition 3.1. Let f1(z1, w1) and f2(z2, w2) be two holomorphic functions on

C2 homogeneous of degree k1 and k2 respectively (with k1, k2 ∈ N+). Let f̃i(z) :=
fi(z, 1), i = 1, 2 be their projectivisations.

Let Ω =
∂2

∂z1∂w2
−

∂2

∂z2∂w1
be the second order differential operator corresponding

to the canonical symplectic form on C2 × C2. Then,

Ω(f1(z1, w1) ⊗ f2(z2, w2))˛

˛

˛

˛

˛

˛

z = z1 = z2

w1 = w2 = 1

= [f̃1, f̃2]1(z).

More generally,
˜Ωn(f1 ⊗ f2) = n![f̃1, f̃2]n.

The proof is straightforward. Indeed, for i = 1, 2 we have fi(z, w) = w−ki f̃i

(
z
w

)

and

∂fi

∂w
(z, w) = −kiw

−ki−1f̃i

( z

w

)
− zw−ki−2f̃i

′
( z

w

)
,

∂fi

∂z
(z, w) = w−ki−1f̃i

′
( z

w

)
.

Thus

Ω(f1(z1, w1) ⊗ f2(z2, w2)) =

w−k1−1
1 f̃1

′
(

z1

w1

)(
−k2w

−k2−1
2 f̃2

(
z2

w2

)
− z2w

−k2−1
2 f̃2

′
(

z2

w2

))

− w−k2−1
2 f̃2

′
(

z2

w2

)(
−k1w

−k1−1
1 f̃1

(
z1

w1

)
− z1w

−k1−1
1 f̃1

′
(

z1

w1

))

1The remark on the fact that this infinite series of identities should be interpreted as the
graded counter-part of the associativity of some non-commutative product was already made in
the addendum of D. Zagier’s original paper [21]. But the kind of star-product mentioned there
was not associative and no proof was given.
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Putting z = z1 = z2 and w1 = w2 = 1 in the above expression we get k1f̃1(z)f̃2

′
(z)−

k2f̃1

′
(z)f̃2(z). The last statement is proved in a similar way.

Notice that the successive powers of Ω, usually called transvectants, was already
used by P. Gordan in 1887 in order to construct the so called binary invariants [10].

Let Λ be the canonical Poisson structure on C2 × C2 given by

Λ =
∑

Λij∂i ∧ ∂j ,

with Λij = −Λji. Then the Moyal product associated with Λ is defined on the set
of formal power series with smooth coefficients C∞[[~]](C4), by:

f ⋆M g (z) = exp(iπ~ Λrs∂xr
∂ys

)(f(x)g(y))|x=y=z.

The previous proposition implies therefore the following statement.

Theorem 3.2. For f1(z1, w1) and f2(z2, w2) being two holomorphic functions on
C2 homogeneous of degree k1 and k2 respectively (with k1, k2 ∈ N+) we can specialize
the formal parameter ~ = 1 and then, for any λ ∈ R one has,

˜f1 ⋆M f2(z) = f̃1♯f̃2(z).

Notice that P. Olver did already mention in [15] the link between transvectants
and star-products. The same idea, to wit the fact that the Rankin-Cohen brackets
do define an associative deformation of the graded ring of modular forms were
discussed in [4, 6, 3, 16, 17, 22].

The associativity of the Moyal product, granted by the previous theorem ( it
also can be proved in a different way, see for instance [2]) induces an infinite series
of relations for bi-differential operators Λrs∂xr

∂ys
. Once restricted to sections of

appropriate homogeneous line bundles these conditions, by use of the proposition
3.1 transform precisely into the identities defining the RC-algebra structure of the
graded ring M(Γ). More precisely we have:

Proposition 3.3. The RC-algebra structure of the graded ring M(Γ) is the prejec-
tivization of the associative algebra structure on the set of corresponding sections
of holomorphic homogeneous line bundles Lk over the flag manifold GC/B.

In conclusion we should say that the similar approach to the quantization of
pseudo-Riemannian symmetric spaces allows a generalization of the above construc-
tion for the whole class of conformal Lie groups for which the notion of generalized
Rankin-Cohen brackets was defined in [7]. According to some arguments of the rep-
resentation theory of underlying semi-simple Lie groups, these bi-differential oper-
ators are parameterized by integral lattices. The associativity of the corresponding
♯-product implies therefore a very interesting, from the combinatorial point of view,
family of identities that must be understood.
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