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ABSTRACT

Field programmable gate arrays (FPGAs) become very pop-

ular for embedded cryptographic operations. In order to re-

sist side-channel attacks, FPGAs must implement reasoned

countermeasures. The most efficient way to mitigate attacks

is to adopt a gate-level protection. Two secure gates families

exist: those that “hide” and those that “mask” side-channel

leakage.

In this article, we detail methods to reduce the size of

wave dynamic differential logic (WDDL) implementations.

These circuits are designed to hide any physical leak by en-

suring a data-independent activity. This study is meant to be

generic, and thus applies to any 4 → 1 LUT-based FPGAs.
Further optimizations can be reached by taking advantage

of some FPGAs proprietary features. Our solutions include

RTL code modification, synthesizer usage (potentially in a

re-entrant way), and ad hoc mapping. We show that linear

parts of algorithms can be delegated to a synthesizer, but

that non-linear parts are better off to be handled with heuris-

tics. We present a 23 % area gain over the state-of-the-art

as for the positive WDDL triple-DES symmetric encryption

algorithm.

Keywords: FPGA security, cryptographic applications,

side-channel attacks mitigation, power-constant logic, posi-

tive dual-rail with precharge logic, synthesis optimization.

1. INTRODUCTION

High-end markets often resort to FPGAs because these de-

vices are affordable for small to medium volumes. The ap-

plications targeted by these markets require that data are

handled with confidentiality. Cryptographic techniques are

therefore used to protect the device internal data. How-

ever, side-channels [1] attacks are known to and have proved

concretely to wreak havoc with any cryptographic scheme.

Cryptographic applications thus need to be carefully pro-

tected against any kind of sneak attack that exploit whatso-

ever physical leak. Two families of protections have been

put forward in the literature.

Masked logics resort to an external random number gen-

erator to mislead any statistical attack. They have been widely

studied [2, 3]. However, those “masking” countermeasures

have many weaknesses: the random source must be unbi-

ased, second order attacks can be devised and the presence

of glitches [4] and the early evaluation [5] still remain a dif-

ficult problem to solve.

Hiding logics, such as wave dynamic differential logic

(WDDL, [6]), have been seldom studied in FPGAs. Some

results on combinatorial functions are reported in [7]. Area

performances for a complete algorithm are detailed in [8]

although little is said about synthesis optimization.

The goal of this article is to shed a new light on WDDL

netlists optimizations by using an improved synthesis flow.

The rest of the paper is structured as follows. The pro-

jection of a design into positive WDDL logic is detailed in

Sec. 2. The principle of area optimizations is also discussed

in this section. We then apply optimizations to the whole

DES [9] in Sec. 3. Then, we show in Sec. 4 that non-linear

parts of the algorithms can be compacted using heuristics.

Finally, the section 5 concludes on the area gain (namely

−23 %) obtained with the techniques exposed in the paper.

2. METHODOLOGY

In the article [10], Gaël Rouvroy et al. propose methods

to compact specifically a DES or a triple-DES hardware de-

scription. The authors use manual re-clustering and some

peculiarities of the target FPGA (a Xilinx Virtex-II) to achieve

area optimizations. For instance, the SSR (usage of LUT

memory to store some ROM or some shift registers) func-

tionality, proprietary of Xilinx, is taken advantage of in or-

der to implement the bit shifts needed for the key schedule

routine.

Instead, we intend to provide device-agnostic methods

to compact portable design flows. Our flow is suitable for

Xilinx, Altera, Lattice and Actel products. The basic struc-

ture we assume is that depicted in Fig. 1. It is available for

all the FPGAs sold by the four major vendors listed above.
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Fig. 1. Minimal structure used in our vendor neutral flow,

corresponding to the common denominator of usual FPGAs.

2.1. Related Works

Power-constant logics are secure only provided the back-

end is also balanced. This has been emphasized in many

previous ASIC experiments, such as asynchronous [11] or

synchronous [12, 13] logic. However, without routing con-

straints, place-and-route algorithms (based on simulated an-

nealing and/or A*) will treat dual gates and dual wires in

the same fashion. Indeed, for each direct gate, one dual

gate exists. And for each direct wire, one dual wire also ex-

ists. Therefore, statistical algorithm are not expected to fa-

vor one gate or one net of a couple for another one. This ex-

plains why, at first order, the backend is naturally balanced.

Notice however, that at second order, dedicated place and

route methods must be used (if available). Such a method

has been presented for the first time by Pengyuan Yu and

Patrick Schaumont in [14]. The contribution of this paper

is to present a design-independent method to obtain secure

implementations in FPGA from both logical and physical

points of view.

In [15] a method to implement DES in masked logic is

described. The bottleneck of secured implementations of

symmetric ciphers is the overhead of the transformed sub-

stitution box (sbox). It is suggested in [15] to use memo-

ries in this respect. Using memories is a wise solution, since

these precious resources are otherwise wasted. Furthermore,

it enables for sboxes customization without recompiling the

design. The characteristics (e.g. performances, area foot-

print) remain the same whatever the sbox. However, using

memories forbids to secure the backend, since the pathes to

the true and false halves of the memory are unbalanced.

2.2. Synthesis Flow To Get a Positive Differential Netlist

To achieve differential and glitch-free netlists, only mono-

tonic (e.g. positive) cells must be used [8]. As FPGA CAD

tool cannot be constrained to use only some logical func-

tions, they are not suitable to synthesize secure designs. In-

stead, ASIC synthesizers are used. These tools require all

the same the presence of an inverter. To indicate that it can

be freely used, we reduce its to zero. Therefore, the synthe-

sizer does not feel any penalty when using it. This is much

desired, since in dual-rail netlists, the inversion of a cou-

ple of wires (at, af ) is simply a wire-crossing ˜(at, af ) =
(af , at). Other gates are all equivalent in terms of cost: they
are attributed the same (e.g. unitary) area. We studied het-

erogeneous strategies, that turned out to be worse than the

uniform area cost. Notably, the combinatorial alone, the

DFF alone, and the combined combinatorial+DFF have the

same area, because this is a reality in FPGAs. The genera-

tion of a positive library is implemented by genlut [16],

and the Verilog (IEEE standard # 1364) netlist duplication

by vDuplicate [17].

2.3. Area Optimization Techniques

We use in this paper several area optimization techniques:

• Source code modification (RTL description style). In-
deed, synthesizers are sensitive to the coding style.

• Identify static signals (e.g. registers enables), and sim-
plify them (enables are free in FPGAs). This opti-

mization is indeed device-agnostic.

• Pack the registers with orphan logic gates, that were
inferred as stand-alone gates by the ASIC synthesizer.

We separate the treatment of linear and non-linear parts

of the DES design. In the rest of the article, we take the

example of the architecture described in Fig. 6 of [18].

3. DES LINEAR PARTS

3.1. Combinatorial Parts

The ASIC synthesizer Cadence bgx shell infers positive

multiplexers as 2 × 2 LUT4 gates. Using the Cadence rc
synthesizer, two-input multiplexers are properly inferred as

2 LUT4 gates (refer to Eqn (1)). The other awkward syn-
theses of bgx shell are studied in Sec. 4 as for non-linear

DES parts.

3.2. Sequential Parts

FPGA design is very different from ASIC design, in the

sense that DFFs can be considered as free resources in FP-

GAs. Indeed, every elementary computation grain (cf. Fig. 1)

contains one flip-flop. This means that DFFs are much often

underutilized in FPGAs.

For this reason, it is tempting to replace single-ended ev-

ery DFF (either initialized to ‘0’ or ‘1’) by a cluster depicted

in Fig. 2. These structures are indeed suitable for WDDL,

because they are differential and have two stages, to memo-

rize simultaneously the precharge token and the actual dual-

rail data.
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compact in FPGAs.

Table 1. ASIC library contents for +ve WDDL synthesis.

1 Invertor, mandatory for the ASIC synthesizer.

2 Two-input AND gate (also required by ASIC synthe-

sizers for it to start its job).

3 The 166 [19], non-trivial WDDL positive pure combi-

natorial functions.

4 DFF with the 166 upstream positive combinatorial

function.

5 DFF with enable, without upstream combinatorial

function. This element is used for the tail register in

Fig. 3. It will be optimized by packing with an incom-

plete purely combinatorial cell (with at least one open

input), of by retiming. In the later case, the DFF is au-

tomatically swapped with downstream combinatorial

logic. This combinatorial logic and the DFF can thus

be merged to occupy a single logic element.

However, this choice is misleading when the DFFs are

enabled (e.g. to save energy when the module is not work-

ing): the built-in enable (cf Fig. 1) cannot be used, and an

external one is thus required, as shown on top of Fig. 3. It

is wiser to have in the ASIC library of cells sequential el-

ements that are “enabled”. The adequate description for a

compact “DFF with enable” is depicted in bottom of Fig. 3.

The contents of the ASIC library of cells that allow to

take advantage of the enable signal present in FPGAs se-

quential elements is given in Tab. 1. Notice that the descrip-

tion of a pure combinatorial function (item 3) and of a mixed

combinatorial+DFF cell (item 4) differs because timing arcs

are different. The table 2 provides snippets for the pure

AND and the AND+DFF cells, expressed in LIBERTY [20].

Indeed, this strategy allows to save 1, 104 LUT4s:

• (64 + 64 + 56)× 4 registers (namely LR, CD and IF,
see [18]), that are packed with existing logic,

• (64+64+56)×2multiplexors (muxs), that are turned
into enabled registers (cf. Fig. 3)

4. DES NON-LINEAR PARTS

4.1. Synthesis with Legacy ASIC Tools

In [8, § IV], the synthesis in LUT4 positive logic of DES
sboxes (6 → 4 random tables) is shown to always be larger
than a manual mapping1. We present a technique to reach

sometimes more compact DES sboxes using legacy ASIC

synthesizers. It consists in:

• using a coarse-level synthesizer, that breaks the design
into non-positive gates, and then in

• using a fine-level synthesizer, that remaps all the non-
positive instances into a sub-netlist of positive gates.

This last step involves an automatic re-clustering to

factor positive gates of adjacent sub-netlists that do

not use all their inputs.

This re-entrant synthesis technique is illustrated in Fig. 4

for 4 inputs primary synthesis, using quartus as a coarse

synthesizer.

As for DES sboxes, we have experienced the perfor-

mance of two synthesizers (for the re-entrant synthesis), namely

bgx shell and rc from Cadence, tuned to spend the max-

imal effort on the area optimization. Additionally, we tested

four HDL styles:

S: NIST original description,

T: The two-bit line decoder is put forward, whereas the

four 4 → 4 bijections are left tabulated,

U: assign statement in a linearly decoded way,

1This mapping is recalled in Sec. 4.2 at page 4.



/** In combinatorial instances, the function is expressed in the "output pin" section */

pin( y ) { direction: output; function: "a0*a1";

timing() { related_pin: "a1 a0"; intrinsic_rise: 1; intrinsic_fall: 1; }

}

/** In sequential instances, the function is expressed in the "internal state" section */

ff( iq, iqn )

{

clocked_on : "clk";

next_state : "ena*(a0*a1)+ena’*iq";

clear : "clr’";

preset : "pre’";

}

pin( y ) { direction: output ; capacitance : 0 ; function : "iq";

timing() { related_pin: "clk"; timing_type: rising_edge; intrinsic_rise: 1; intrinsic_fall: 1; }

}

Table 2. Expression of pure combinatorial (top) and of mixed combinatorial+sequential (bottom) logic in LIBERTY format.

RTL design (VHDL)

Netlist
of WDDL
+ve LUT4

+ve
WDDL

LUT4

Netlist
of WDDL
+ve LUT4

quartus

bgx shell

(flow #1)

Netlist
of LUT4

(flow #2)

or
rc

Fig. 4. Alternative synthesis flow (on the right) to end up

with a dual-rail WDDL positive netlist of LUT4.

V: case statement in a linearly decoded way.

The synthesis results are shown in Tab. 3, respectively

for 4, 3, 2 primary synthesis level. The figures in boldface

are better than the state-of-the-art (130 positive LUT4 re-

ported in [8] and in Sec. 4.2). We observe that HDL de-

scription style (either U, V, S or T) and synthesizers choice

impact the quality of the netlist. However, no breakthrough

is obtained. We continue with a heuristic synthesis methods,

that happens to be very efficient.

4.2. Heuristic

A LUT being structured as a tree of 2-input multiplexers,

a simple way to get positive functions is to use a tree of

“positive” multiplexers in differential logic. A positive mul-

tiplexer is such that the selection variable sel is composed of

the couple (selt, self ) where the indext, as “true”, indicates
the non inverted signal and the indexf , as “false”, indicates

the inverted signal. These two signals are reset at zero dur-

ing the precharge phase of the differential logic as explained

in [21]. The positive WDDL multiplexer equation is then:

st = x0 · self + x1 · selt, (1)

where x0 and x1 are the 2-input of the multiplexer. This

positive multiplexer can be easily achieved by a cell com-

posed of a 4-input LUT. Hence one output of a positive sbox

is made of positive multiplexers would require 126 LUT4

(63 for the “true” output and 63 for the “false” output).

The heuristic consists in simplifying the first two columns

driven by the two LSBs variables a and b associated with

their dual rail signals (at, af ) and (bt, bf ). Actually only
sixteen positive multiplexers are enough to generate all the

functions of two positive variables. Hence the way to feed

the third column inputs driven by c consists in a specific

routing from these sixteen functions. Moreover there are

six trivial functions which need not to be generated, because

they are trivial and can therefore be implemented with pure

routing: 0, 1, at, af , bt, bf . This preprocessor, hereafter

called “global function generator”, needs only ten LUT4

cells and is global to the four sbox outputs. Hence the to-

tal number of cells for a complete sbox is: 10+(8+4+2+
1)×2×4 = 130. The originality of this heuristic is to share
cells between the true and false parts. This helps save area,

without compromising the security. If we note T the set of

non-trivial two-input gates, then ∀f ∈ T, f ∈ T , where f

is the complementary of f . Therefore, the constant activity

condition is met.

4.3. Specific Sboxes Optimizations

The tree of cells which is driven by the four MSB variables

cdef receives sixteen functions xi routed specifically from

the global function generator. This MSB tree can be opti-

mized by considering the four differential sbox outputs to-



Table 3. Synthesis with bgx( shell) and rc of the DES

sboxes in LUT{4,3,2} positive logic.

DES substitution boxes described as S, in LUT4

bgx 148 134 138 130 132 146 134 138

rc 160 146 152 156 156 154 156 152

DES substitution boxes described as T, in LUT4

bgx 140 132 146 136 130 140 130 138

rc 132 132 128 130 136 134 134 132

DES substitution boxes described as U, in LUT4

bgx 140 132 138 132 138 158 134 136

rc 158 156 158 154 160 160 152 154

DES substitution boxes described as V, in LUT4

bgx 140 132 138 130 138 158 134 138

rc 158 156 158 154 160 160 152 154

DES substitution boxes described as S, in LUT3

bgx 148 134 138 130 132 146 134 138

rc 160 148 152 158 154 152 152 158

DES substitution boxes described as T, in LUT3

bgx 140 132 146 136 130 140 130 138

rc 136 132 128 128 136 134 138 136

DES substitution boxes described as U, in LUT3

bgx 140 132 138 132 138 158 134 136

rc 156 156 164 144 160 162 152 158

DES substitution boxes described as V, in LUT3

bgx 140 132 138 130 138 158 134 138

rc 156 156 164 144 160 162 152 158

DES substitution boxes described as S, in LUT2

bgx 148 134 138 130 132 146 134 138

rc 154 150 152 152 156 154 150 158

DES substitution boxes described as T, in LUT2

bgx 140 132 146 136 130 140 130 138

rc 134 132 128 128 138 136 134 136

DES substitution boxes described as U, in LUT2

bgx 140 132 138 132 138 158 134 136

rc 154 156 156 144 158 162 150 160

DES substitution boxes described as V, in LUT2

bgx 140 132 138 130 138 158 134 138

rc 154 156 156 144 158 162 150 160
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Fig. 5. Optimization B incorrectly (since partially) and cor-

rectly implemented on a redundant design.

gether. These optimizations are implemented in the software

fpgasbox [22].

4.3.1. Optimizations A & B

The first optimization (A) consists merely in removing the

cell of column c if x2i = x2i+1. In this case the LUT which

is a positive multiplexer can be removed and leave place to

the x2i net. The second optimization (B) finds identical cells

in column c. Two cells are said to be identical if they have

the same inputs. This can be formalized by: optimize =

(x2i = x2j) and (x2i+1 = x2j+1). In case of identity, a
factorization can be done and one cell is removed.

4.3.2. Security Analysis of the Optimizations

Once again, we notice that the optimizations do not jeopar-

dize the constant-activity condition mandatory for WDDL

to be secure. Indeed, if the same Boolean variable f is

computed in both the true and the false netlists halves, then

the dual g of f exists in the both networks. Therefore, the

optimizations consists in transforming 2 × (f, g) (which is
obviously functionally redundant) into 1 × (f, g). The last
couple remains constant in activity, and so do not disclose

their individual value. As an example, the balancedness

of optimization B is illustrated in Fig. 5. In this figure,

∀i ∈ [0, 3], gi is the dual of fi. We assume that (f2, f3) =
(g1, g0). By duality, f0(x) = g0(x) = f3(x) = g3(x),
which means that (f0, f1) = (g3, g2). Hence a pairwise op-
timization, that does not unbalance the dual networks.

In order to further improve the security of the netlists,

it is desirable to respect at the layout level the symmetry at

the netlist level [23]. This requires to form couples between

dual instances. We attract the reader’s attention to the dan-

ger of forming couples before the optimization. Indeed, the

optimization consists in removing two multiplexors by the

same token, as explained in Fig. 5. However, depending on

the optimization implementation (descent in the graph rep-

resenting the netlist), the two multiplexors can be removed
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destruction (b) by the proposed optimization algorithm.

Table 4. Optimization A & B gain for the DES sboxes con-

sidered separately, expressed in differential LUT4 positive

logic.

#1 #2 #3 #4 #5 #6 #7 #8 Total

Before 130 130 130 130 130 130 130 130 1,040

After 102 98 98 64 106 98 96 86 748

Gain 28 32 32 66 24 32 34 44 292

from two different couples. This is illustrated in Fig. 6:

(a) the two related muxs are removed from the same cou-

ple C1, which leaves a secure set of couples,

(b) the two related muxs are removed from two different

couples (C1 and C2), leave the dual muxs in two dif-

ferent couples, which does not guarantee that they will

be placed and routed in a balanced way.

To avoid this pitfall, we therefore suggest to form the cou-

ples after the optimization. Afterwards, we recognize mul-

tiplexors to place in the same couple by the analysis of the

function they compute.

4.3.3. Results

Optimizations are done by permuting the inputs value of

each sbox in order to find the optimum. Table 4 indicates the

overall gain for every sbox of DES. A total of 292 LUT4s

can be saved. The functionality of the netlists has been

proved by their actual programmation in a Stratix EP1S25.

5. CONCLUSIONS

The design of cryptographic applications in FPGA require

the use of secure logics. We have illustrated how to im-

plement an area-efficient hiding logic style, called positive

WDDL. We provide for a LUT usage gain of 1, 104 LUT4s
as for linear (registers, cf Sec. 3) logic and 292 LUT4s as for
non-linear logic (sboxes only, cf Sec. 4). The overall area

saving is equal to: 6,038−1,104−292

6,038
= 4,642

6,038
= 77 % . This

means that a 23 % surface optimization is made possible by

packing registers and optimizing sboxes synthesis.
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