Introduction Petkoviek's algorithm Generalization Local Data Super-Reduction The algorithm Examples References

Hypergeometric Solutions of Systems of Linear
Difference Equations

Moulay Barkatou
moulay.barkatou@unilim.fr

XLIM, Université de Limoges-CNRS
FRANCE.

June 24, 2008



Introduction

Introduction

» This talk is based on a joint work with Mark van Hoeij (MvH)
from FSU.

» We present a direct algorithm for computing hypergeometric
solutions of systems of linear difference equations.

» ‘“direct algorithm" means “without first reducing the system
to a single scalar equation by the use of a cyclic vector’

» Motivation: finding d'th order (d > 2) right-hand factors of a
given linear difference operator with polynomial coefficients.
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The differential case

> Beke (1894) gave two algorithms for factoring linear
differential operators.

» Given a differential operator L of order n, the first algorithm
computes the exponential solutions of L, or equivalently, the
first order right-hand factors of L.

» The second algorithm reduces the problem of finding d'th
order right-hand factors of L to computing 1'st order
right-hand factors of the so-called associated equations, which

have order ( Z, >

» This was improved by M. Bronstein (1994).
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» Bronstein's approach has several efficiency advantages:

(i)

Instead of computing exponential solutions of a number of
associated equations Li(y1) =0, La(y2) =0, ... one now
computes the exponential solutions of just one associated
system Y’ = AY.

Consequently: a combinatorial problem disappears, namely the
problem of deciding which exponential solution of each L;
should be combined with each other.

The most important advantage is: The coefficients of the
associated system are much smaller than the coefficients of the
associated equations.
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» A consequence of advantage (iii) is that solving this one
system Y’ = AY potentially takes less time, or even much less
time, than solving even one of the associated equations L;, let
alone solving all of them.

» We would not have this advantage if we used the cyclic vector
approach to solve Y’ = AY', because the resulting operator
would be an associated equation.

» Thus, to benefit fully from the advantages of Bronstein's
approach, we need to be able to directly compute the
exponential solutions of Y/ = AY without first reducing this
system to an operator by the use of a cyclic vector.

» Algorithms for directly computing the exponential solutions
are implemented in ISOLDE (a Maple package developed by
E. Pfluegel and Bark.) .
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The difference case

>

First order right-hand factors of a difference operator L
correspond to so-called hypergeometric solutions.

Algorithms for computing hypergeometric solutions of
difference operators are given in [Petkovsek (1992), Cluzeau-
van Hoeij (2006)].

For computing higher order factors, Bronstein's approach
works for the difference case as well in much the same way.

Again, one reduces the computation of a d'th order factor of
L to solving (hypergeometric solutions) of an associated
difference system

Y(x+1) = M(x)Y(x).
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Main Contributions

» We show that Petkovsek’s algorithm for hypergeometric
solutions of operators can be extended to computing
hypergeometric solutions of systems.

» As in the scalar case we need to compute first the local data
at infinity (the integer slopes of the Newton polygon and the
corresponding polynomials)

» In the operator case the local data can be easily obtained
from the coefficients of the operator.

» However, in the case of systems, we need a reduction
algorithm [Bark. 1989] to determine the local data.

» Algorithms for computing polynomial and rational solutions of
difference systems are given in [Abramov&Bark. (1998),
Barkatou (1999)].



Petkoviek's algorithm

Petkovsek's algorithm
Let C be a field of characteristic zero.

An operator
L=ap,"+...4 ap® € C(x)[r]

acts as follows:
If u= u(x) is a function then

L(u) = apu(x+n) +-- -+ aru(x + 1) + agu(x)

u(x+1)

u(x)
then u is called a hypergeometric solution and corresponds to a
right-hand factor 7 — r of L where

L(u)=0 and € C(x)

_ u(x+1)
u(x)



Petkoviek's algorithm

A hypergeometric solution u of L = ap7" + -+ 4 ap7°

be written as
u(x) = c*P(x) H M(x — ;)¢

can always

for some
ceC’ P(x)eClx], ajeC, €l
Write
A= H (x — ;)% and B = H (x —aj)" €
e >0 <0
so that
A

u(x) = c*P(x)Sol(T — E)



Petkoviek's algorithm

L=an(x)r" 4 -+ ag(x)7°.

> Petkoviek (1992) gave a criterion for A, B € C[x], namely:

A divides ap(x)
B divides ap(x — n+ 1)

» This leaves only a finite (but exponential) number of potential
A, B in the hypergeometric solutions:
A

u(x) = cXP(x)Sol(T—E)

= c*P(x) H M(x — o)
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> Petkovsek’s algorithm (1992):

For all possible combinations of:
- a monic factor A € C[x] of ap,

- a monic factor B of a,(x — n+1),

- and c in some finite list
compute a recurrence Lg g ¢ that has P(x) as a solution, and
solve it to find hypergeometric solutions:

P(x)Sol(r g)

» Another algorithm was given by Cluzeau and v.Hoeij (2006).
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Petkovsek's algorithm extended to systems

» The system to solve looks like
nx+1) n(x)
: =M :
Yn(x +1) Yn(x)

where M is a n by n invertible matrix over C(x).

» The solution we search for is hypergeometric, meaning that it
can be written as

y1(x) P1(x)
: =c* : Sol(t — =)
Yn(x) Pn(x)

where A, B, P1,...,P, € C[x] and ¢ € C*.



Generalization

» The goal: Find a solution

Pi(x
Y =" 1'( ) Sol(1 — é)
= : T B
Pn(x)
of the system 7(Y) = MY,
» Once you have A, B and ¢, then you can compute Py,..., P,

using Abramov-Barkatou algorithm for polynomial solutions of
difference systems (1998).
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How to find A, B?

P1(x
Y =¢c 1'( ) Sol( é)
= : ollr — 5
Pn(x)
We may assume that the ged of Py,..., P, is 1.
Now look at
Pl(XJr 1)
A A
T( Y) = ECX+1 SOI(T — E)
Pn(x + 1)

» The denominator B in 7(Y) does not appear in Y, and since
7(Y) = MY it follows that the denominator B must divide
the denominator of M.

» A similar argument shows that A divides the denominator of
M1,



Generalization

So one can generalize Petkoviek's algorithm to systems:

» B has to divide denominator(M),

» and A has to divide denominator(M~1).
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How to find c?

» If the system 7Y = MY has a hypergeometric solution

Sol(r — g) P(x), P(x) € C[x]"

then it has a formal solution of the form
Y(x)= r(X)SCXXdF(X)

where
(s,c,d)eZxC*xC

F(x) is an n—dimensional vector with entries in C[[x~!]]:

F(X):(F0+X71F1+...) Fo # 0.
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In fact, if we write A, B as

A=x"4 o X1+ 4+

B =x"+ Bm1x™ 1+ + 3

then

and

d=oy_1— Bm_1+degP.
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Local Hypergeometric Solutions

Consider a difference system

TY = MY.

We call local hypergeometric solution (lhs, in short) any nonzero
formal solution of the form

Y(x) = r(X)SCXXdF(X)

where s € Z, ¢ € C*, d € C and where F(x) is an n—dimensional
vector with entries in C[[x~1]]:

F(x)=(Fo+x'Fi+...) Fo#0.



Local Data

If a formal solution of the form
Y(x) = I'(x)scXXdF(x), F(x) € C[[x]]".

exists then

> s is a slope of the 7—Newton polygon of the system
TY = MY,

» cis a root of the Newton polynomial associated with s

» and d is then a root of the indicial equation associated with
the slope zero in the A—Newton polygon of the system

AZ(x) =Z(x+1)— Z(x) = (x 5cIM(x) — NZ(x).
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Y(x) =T(x)°c*x9F(x), F(x) e C[[x]]".

» The pairs (s, ¢) are invariants under gauge transformations:

Y(x)— T(x)Y(x) Te€ GL(n,C((X_l))).

» However, the d's may change into d + v, for some v € Z.



Local Data

We are interested in the computation of all the triplets
(s,c,d) € Z x C* x C that appear in the lhs of our system.

In general, the triplets (s, c,d) cannot be obtained directly
from the matrix system M(x).

However, we show that all the possible pairs (s, ¢) can be
obtained from a supper-irreducible form of the matrix
M:=M— I,

Once a pair (s, ¢) is obtained, the corresponding d’s can be
computed from a supper-irreducible form of the matrix

(xS IM(x) — 1,).
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Super—irreducible Forms

The notion of super-reduced forms of linear difference systems had
been developed in [Bark 1989].

Notation
» A =71 — 1 denotes the difference operator defined by
Af(x) =f(x+1) — f(x)
for any function f of x.

» Any difference system

7Y = MY,

can be rewritten as

AY = MY

where R
M:=M— I,



Super-Reduction

Gauge transformations

Let T(x) be an invertible matrix.

The gauge transformation
Y=TZ
yields the following equivalent system
7Z=NZ N=T.[M]:=rTMT
and in the A—form

AZ=NZ N=Ta[M:=7T *MT —7T'AT.
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Super—irreducible Forms

» Consider a difference system of the form :
AY(x) = Ax) Y (x),

with -
A(x) = qux*l’Ay, qgeZ, Ay #£D0.
v=0

» For k=1,...,9g+1, put

where n; is the number of rows of A with valuation —q + /.
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» Define
wuk(A) = mTin mi(Tal[A]).
» The matrix A is said to be k-irreducible if
mk(A) = ,uk(A).
Otherwise A is called k-reducible.

» Ais k—reducible <= there exits T s.t.
mk(TA[A]) < mk(A)

» The matrix A is said to be super—irreducible, if it is
k-irreducible for every k, or equivalently if

mq1(A) = pig+1(A).-
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A Criterion for k—reducibility
» For 1 < k < g+ 1 define

0, (\) = x~ A det (x*TIA(x) — Al,)

‘x:oo

where

fk(A) = kng + (k — 1)n1 + 4Ny
» One can check that () belongs to C[\].

Theorem[Bark 1989]
The matrix A is k—irreducible, if and only if the polynomials

01(A), 02(N), ..., 0k(N)

do not vanish identically in A.
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Theorem[Bark 1989]
Given a difference system

AY =AY

one can construct a nonsingular matrix T, which is
polynomial in x, such that the change of variable

Z=TY
leads to an equivalent system
AZ = BZ

which is super-irreducible.

This algorithm is implemented in Maple.
Given a difference system it computes an equivalent

super-reduced form as well as the corresponding polynomials
0;(N).
J
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How to compute the pairs (s, ¢)
We look for lhs of the form
Y(x) =T(x)°xY(Fo+ Fix '+ 0(x71) Fo#0

Write our system 7Y = MY in the A-form :
AY(x) = M(x) Y (x),
with
~ s o~ o~
M(x) = XqZX_VMV Moy # 0
v=0

We can always suppose that g > 0.
The possible values of s are then such that: 0 < s <gq.

We can suppose that our system is supper-irreducible and denote
by

01(N), 02(N), ..., 0q+1(N)
the corresponding polynomials.



Super-Reduction

Let 0 < s < g be fixed.
Rewrite the system as

L(Y):= D(x)AY(x) — N(x)Y(x) = 0.
with

D(x) = diag(x™,...,x"") and N(x)= D(X)/\/}I(X).

where

vi = min (V(I\Aﬂ,-’.), —s)

M;.. denoting the ith row of the matrix M.
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The matrices D and N can be expanded as:

D(x)=x"°(Do+0O(x"")) and N(x)= No+O(x").

Compute

L(Y) = T(x)*c*x? (((c — es)Do — No)Fo + O(x_l))
where e = 1, when s = 0 and €5 = 0, otherwise.
If the system has a local hypergeometric solution

Y(x) =T(x)°cx9(Fo + Fix 1+ 0(x72) Fo #0
then one must have

((C — €S)D0 — N())Fo = 0.
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If a nonzero local hypergeometric solution
Y (x) = [(x)°c*x9F(x)
exists then ¢ must annihilate the polynomial
Es()\) :=det(Ng — (A — &5)Dyp).
Proposition

Es(A) = 0q—s(A —&5)

where es = 1, when s = 0 and &5 = 0, otherwise.



The algorithm

Algorithm A-HS

Input: A field C of characteristic 0, a variable x, and an n by n
matrix M with entries in C(x).
Output: A basis B of the hypergeometric solutions that are
defined over C.
> Let dy resp. dys-1 be the denominator of M resp. M~1.
» Compute the local data of 7(Y) = MY.
This produces a list L consisting of the triplets
(s,c,d) € Z x C* x C that occur in the local hypergeometric
solutions of 7(Y) = MY.
» Form the AB-list.
This produces a set
S= {[Al, Bl, 51, C1, dl], ey [A/, B/,S/7 cl, d/]} of pairs (A, B)
of monic factors Aldy,-1 and B|dy with A, B € K[x] that
match the local data in L.



Introduction Petkovsek's algorithm Generalization Local Data Super-Reduction The algorithm Examples References

Algorithm A-HS

> Let B =10.
» For all i from 1 to / do

> N,' = B,’/(C,‘A,‘) - M.

» Compute a basis Py, ..., Py € K[x]" of polynomial solutions
for 7(Y) = N;Y.

If m; >0 then for j=1,..., m; do:

A

> Let u=Sol(T — ¢ )P

» B:=BJ{u}.

» Return B and stop.



The algorithm

The algorithm we implemented in Maple includes efficiency
improvements obtained by adapting ideas from [Cluzeau&
Hoeij 2006] to the case of systems.

We use modular computations (namely, p—curvature test) to
reduce the number of pairs (A, B) to check.

We also use a method to partially desingularize systems.

Examples show that this provides significant efficiency
benefits.
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