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Introduction

I This talk is based on a joint work with Mark van Hoeij (MvH)
from FSU.

I We present a direct algorithm for computing hypergeometric
solutions of systems of linear difference equations.

I “direct algorithm” means “without first reducing the system
to a single scalar equation by the use of a cyclic vector”

I Motivation: finding d ’th order (d ≥ 2) right-hand factors of a
given linear difference operator with polynomial coefficients.
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The differential case

I Beke (1894) gave two algorithms for factoring linear
differential operators.

I Given a differential operator L of order n, the first algorithm
computes the exponential solutions of L, or equivalently, the
first order right-hand factors of L.

I The second algorithm reduces the problem of finding d ’th
order right-hand factors of L to computing 1’st order
right-hand factors of the so-called associated equations, which

have order

(
n
d

)
.

I This was improved by M. Bronstein (1994).
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I Bronstein’s approach has several efficiency advantages:

(i) Instead of computing exponential solutions of a number of
associated equations L1(y1) = 0, L2(y2) = 0, . . . one now
computes the exponential solutions of just one associated
system Y ′ = AY .

(ii) Consequently: a combinatorial problem disappears, namely the
problem of deciding which exponential solution of each Li

should be combined with each other.

(iii) The most important advantage is: The coefficients of the
associated system are much smaller than the coefficients of the
associated equations.
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I A consequence of advantage (iii) is that solving this one
system Y ′ = AY potentially takes less time, or even much less
time, than solving even one of the associated equations Li , let
alone solving all of them.

I We would not have this advantage if we used the cyclic vector
approach to solve Y ′ = AY , because the resulting operator
would be an associated equation.

I Thus, to benefit fully from the advantages of Bronstein’s
approach, we need to be able to directly compute the
exponential solutions of Y ′ = AY without first reducing this
system to an operator by the use of a cyclic vector.

I Algorithms for directly computing the exponential solutions
are implemented in ISOLDE (a Maple package developed by
E. Pfluegel and Bark.) .
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The difference case

I First order right-hand factors of a difference operator L
correspond to so-called hypergeometric solutions.

I Algorithms for computing hypergeometric solutions of
difference operators are given in [Petkovšek (1992), Cluzeau-
van Hoeij (2006)].

I For computing higher order factors, Bronstein’s approach
works for the difference case as well in much the same way.

I Again, one reduces the computation of a d ’th order factor of
L to solving (hypergeometric solutions) of an associated
difference system

Y (x + 1) = M(x)Y (x).
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Main Contributions

I We show that Petkovšek’s algorithm for hypergeometric
solutions of operators can be extended to computing
hypergeometric solutions of systems.

I As in the scalar case we need to compute first the local data
at infinity (the integer slopes of the Newton polygon and the
corresponding polynomials)

I In the operator case the local data can be easily obtained
from the coefficients of the operator.

I However, in the case of systems, we need a reduction
algorithm [Bark. 1989] to determine the local data.

I Algorithms for computing polynomial and rational solutions of
difference systems are given in [Abramov&Bark. (1998),
Barkatou (1999)].
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Petkovšek’s algorithm
Let C be a field of characteristic zero.

An operator
L = anτ

n + . . .+ a0τ
0 ∈ C(x)[τ ]

acts as follows:
If u = u(x) is a function then

L(u) = anu(x + n) + · · ·+ a1u(x + 1) + a0u(x)

If

L(u) = 0 and
u(x + 1)

u(x)
∈ C(x)

then u is called a hypergeometric solution and corresponds to a
right-hand factor τ − r of L where

r =
u(x + 1)

u(x)
.
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A hypergeometric solution u of L = anτ
n + · · ·+ a0τ

0 can always
be written as

u(x) = cxP(x)
∏
i

Γ(x − αi )
ei

for some

c ∈ C∗, P(x) ∈ C[x ], αi ∈ C, ei ∈ Z.

Write
A =

∏
ei>0

(x − αi )
ei and B =

∏
ei<0

(x − αi )
−ei

so that

u(x) = cxP(x)Sol(τ − A

B
).
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L = an(x)τn + · · ·+ a0(x)τ0.

I Petkovšek (1992) gave a criterion for A,B ∈ C[x ], namely:

A divides a0(x)

B divides an(x − n + 1)

I This leaves only a finite (but exponential) number of potential
A,B in the hypergeometric solutions:

u(x) = cxP(x)Sol(τ − A

B
)

= cxP(x)
∏
i

Γ(x − αi )
ei
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I Petkovšek’s algorithm (1992):

For all possible combinations of:

- a monic factor A ∈ C[x ] of a0,

- a monic factor B of an(x − n + 1),

- and c in some finite list

compute a recurrence LA,B,c that has P(x) as a solution, and
solve it to find hypergeometric solutions:

cxP(x)Sol(τ − A

B
)

I Another algorithm was given by Cluzeau and v.Hoeij (2006).
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Petkovšek’s algorithm extended to systems

I The system to solve looks like y1(x + 1)
...

yn(x + 1)

 = M

 y1(x)
...

yn(x)


where M is a n by n invertible matrix over C(x).

I The solution we search for is hypergeometric, meaning that it
can be written as y1(x)

...
yn(x)

 = cx

 P1(x)
...

Pn(x)

 Sol(τ − A

B
)

where A,B,P1, . . . ,Pn ∈ C[x ] and c ∈ C∗.
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I The goal: Find a solution

Y = cx

 P1(x)
...

Pn(x)

 Sol(τ − A

B
)

of the system τ(Y ) = MY .

I Once you have A,B and c , then you can compute P1, . . . ,Pn

using Abramov-Barkatou algorithm for polynomial solutions of
difference systems (1998).
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How to find A, B?

Y = cx

 P1(x)
...

Pn(x)

 Sol(τ − A

B
)

We may assume that the gcd of P1, . . . ,Pn is 1.
Now look at

τ(Y ) =
A

B
cx+1

 P1(x + 1)
...

Pn(x + 1)

 Sol(τ − A

B
)

I The denominator B in τ(Y ) does not appear in Y , and since
τ(Y ) = MY it follows that the denominator B must divide
the denominator of M.

I A similar argument shows that A divides the denominator of
M−1.
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So one can generalize Petkovšek’s algorithm to systems:

I B has to divide denominator(M),

I and A has to divide denominator(M−1).
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How to find c?

I If the system τY = MY has a hypergeometric solution

cxSol(τ − A

B
) P(x), P(x) ∈ C[x ]n

then it has a formal solution of the form

Y (x) = Γ(x)scxxdF (x)

where

(s, c , d) ∈ Z× C∗ × C

F (x) is an n–dimensional vector with entries in C[[x−1]]:

F (x) =
(
F0 + x−1F1 + . . .

)
F0 6= 0.
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In fact, if we write A,B as

A = x` + α`−1x`−1 + · · ·+ α0

B = xm + βm−1xm−1 + · · ·+ β0

then

s = `−m

and

d = α`−1 − βm−1 + deg P.



Introduction Petkovšek’s algorithm Generalization Local Data Super-Reduction The algorithm Examples References

Local Hypergeometric Solutions

Consider a difference system

τY = MY .

We call local hypergeometric solution (lhs, in short) any nonzero
formal solution of the form

Y (x) = Γ(x)scxxdF (x)

where s ∈ Z, c ∈ C∗, d ∈ C and where F (x) is an n–dimensional
vector with entries in C[[x−1]]:

F (x) =
(
F0 + x−1F1 + . . .

)
F0 6= 0.
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If a formal solution of the form

Y (x) = Γ(x)scxxdF (x), F (x) ∈ C[[x ]]n.

exists then

I s is a slope of the τ−Newton polygon of the system
τY = MY ,

I c is a root of the Newton polynomial associated with s

I and d is then a root of the indicial equation associated with
the slope zero in the ∆−Newton polygon of the system

∆Z (x) := Z (x + 1)− Z (x) = (x−sc−1M(x)− I )Z (x).
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Y (x) = Γ(x)scxxdF (x), F (x) ∈ C[[x ]]n.

I The pairs (s, c) are invariants under gauge transformations:

Y (x) 7→ T (x)Y (x) T ∈ GL(n,C((x−1))).

I However, the d ’s may change into d + ν, for some ν ∈ Z.
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I We are interested in the computation of all the triplets
(s, c , d) ∈ Z× C∗ × C that appear in the lhs of our system.

I In general, the triplets (s, c , d) cannot be obtained directly
from the matrix system M(x).

I However, we show that all the possible pairs (s, c) can be
obtained from a supper-irreducible form of the matrix
M̂ := M − In.

I Once a pair (s, c) is obtained, the corresponding d ’s can be
computed from a supper-irreducible form of the matrix

(x−sc−1M(x)− In).
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Super–irreducible Forms
The notion of super–reduced forms of linear difference systems had
been developed in [Bark 1989].

Notation

I ∆ = τ − 1 denotes the difference operator defined by

∆f (x) = f (x + 1)− f (x)

for any function f of x .
I Any difference system

τY = MY ,

can be rewritten as

∆Y = M̂Y

where
M̂ := M − In.
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Gauge transformations

Let T (x) be an invertible matrix.

The gauge transformation

Y = TZ

yields the following equivalent system

τZ = NZ N = Tτ [M] := τT−1MT

and in the ∆−form

∆Z = N̂Z N̂ = T∆[M̂] := τT−1M̂T − τT−1∆T .
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Super–irreducible Forms

I Consider a difference system of the form :

∆Y (x) = A(x)Y (x),

with

A(x) = xq
∞∑
ν=0

x−νAν , q ∈ Z, A0 6= 0.

I For k = 1, . . . , q + 1, put

mk(A) =

{
0 if q ≤ −1

q + 1 + n0
n + n1

n2 + · · ·+ nk−1

nk if q > −1

where ni is the number of rows of A with valuation −q + i .
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I Define
µk(A) = min

T
mk(T∆[A]).

I The matrix A is said to be k-irreducible if

mk(A) = µk(A).

Otherwise A is called k-reducible.

I A is k−reducible ⇐⇒ there exits T s.t.
mk(T∆[A]) < mk(A).

I The matrix A is said to be super–irreducible, if it is
k-irreducible for every k , or equivalently if

mq+1(A) = µq+1(A).
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A Criterion for k−reducibility

I For 1 ≤ k ≤ q + 1 define

θk(λ) = x−rk (A) det (xk−qA(x)− λIn)|x=∞

where

rk(A) = kn0 + (k − 1)n1 + · · ·+ nk−1.

I One can check that θk(λ) belongs to C[λ].

Theorem[Bark 1989]
The matrix A is k–irreducible, if and only if the polynomials

θ1(λ), θ2(λ), . . . , θk(λ)

do not vanish identically in λ.
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Theorem[Bark 1989]
Given a difference system

∆Y = AY

one can construct a nonsingular matrix T , which is
polynomial in x , such that the change of variable

Z = TY

leads to an equivalent system

∆Z = BZ

which is super-irreducible.

I This algorithm is implemented in Maple.
Given a difference system it computes an equivalent
super-reduced form as well as the corresponding polynomials
θj(λ).
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How to compute the pairs (s, c)
We look for lhs of the form

Y (x) = Γ(x)scxxd(F0 + F1x−1 + O(x−1)) F0 6= 0

Write our system τY = MY in the ∆-form :

∆Y (x) = M̂(x)Y (x),

with

M̂(x) = xq
∞∑
ν=0

x−νM̂ν M̂0 6= 0

We can always suppose that q ≥ 0.
The possible values of s are then such that: 0 ≤ s ≤ q.

We can suppose that our system is supper-irreducible and denote
by

θ1(λ), θ2(λ), . . . , θq+1(λ)

the corresponding polynomials.
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Let 0 ≤ s ≤ q be fixed.

Rewrite the system as

L(Y ) := D(x)∆Y (x)− N(x)Y (x) = 0.

with

D(x) = diag(xν1 , . . . , xνn) and N(x) = D(x)M̂(x).

where
νi = min (v(M̂i ,.),−s)

M̂i ,. denoting the ith row of the matrix M̂.
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The matrices D and N can be expanded as:

D(x) = x−s
(
D0 + O(x−1)

)
and N(x) = N0 + O(x−1).

Compute

L(Y ) = Γ(x)scxxd
(
((c − εs)D0 − N0)F0 + O(x−1)

)
where εs = 1, when s = 0 and εs = 0, otherwise.

If the system has a local hypergeometric solution

Y (x) = Γ(x)scxxd(F0 + F1x−1 + O(x−2)) F0 6= 0

then one must have

((c − εs)D0 − N0)F0 = 0.
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I If a nonzero local hypergeometric solution

Y (x) = Γ(x)scxxdF (x)

exists then c must annihilate the polynomial

Es(λ) := det (N0 − (λ− εs)D0).

Proposition

Es(λ) = θq−s(λ− εs)

where εs = 1, when s = 0 and εs = 0, otherwise.
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Algorithm ∆-HS

Input: A field C of characteristic 0, a variable x , and an n by n
matrix M with entries in C(x).
Output: A basis B of the hypergeometric solutions that are
defined over C.

I Let dM resp. dM−1 be the denominator of M resp. M−1.

I Compute the local data of τ(Y ) = MY .
This produces a list L consisting of the triplets
(s, c , d) ∈ Z× C∗ × C that occur in the local hypergeometric
solutions of τ(Y ) = MY .

I Form the AB-list.
This produces a set
S = {[A1,B1, s1, c1, d1], . . . , [Al ,Bl , sl , cl , dl ]} of pairs (A,B)
of monic factors A|dM−1 and B|dM with A,B ∈ K [x ] that
match the local data in L.
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Algorithm ∆-HS

I Let B = ∅.

I For all i from 1 to l do

I Ni := Bi/(ciAi ) ·M.

I Compute a basis P1, . . . ,Pmi ∈ K [x ]n of polynomial solutions
for τ(Y ) = NiY .

If mi > 0 then for j = 1, . . . ,mi do:

I Let u = Sol(τ − ci
Ai
Bi

)Pj .

I B := B
S
{u}.

I Return B and stop.
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I The algorithm we implemented in Maple includes efficiency
improvements obtained by adapting ideas from [Cluzeau&
Hoeij 2006] to the case of systems.

I We use modular computations (namely, p−curvature test) to
reduce the number of pairs (A,B) to check.

I We also use a method to partially desingularize systems.

I Examples show that this provides significant efficiency
benefits.
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