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On semidefinite representations of plane quartics

Didier Henrion1,2

September 10, 2008

Abstract

Conditions are given for the convex hull of a plane quartic to be exactly semidef-

inite representable with at most 12 lifting variables. If the quartic is rationally

parametrizable, an exact semidefinite representation with 2 lifting variables can be

obtained. Various numerical examples illustrate the techniques and suggest further

research directions.
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1 Introduction

Let x ∈ R
2 7→ p(x) be a bivariate polynomial of degree 4, a quartic, and let

C = {x ∈ R
2 : p(x) = 0} (1)

be the corresponding algebraic curve. Alternatively, we can use the homogenization x ∈
P

2 7→ p(x), defined in the projective plane P
2, and such that p(x) = x

deg p
0 p(x1/x0,x2/x0)

and p(x) = p(1, x1, x2). Algebraic curve (2) can be defined equivalently in the projective
plane as

P = {x ∈ P
2 : p(x) = 0}.

See the appendix for more information on algebraic sets in the projective plane.

Let
P = conv C (2)

denote the convex hull of curve C, a semi-algebraic set. We assume that P has a non-
empty interior, and we denote by ∂P the boundary of P. For notational convenience, we
also assume that the sign of p(x) is such that the semialgebraic set {x ∈ P

2 : p(x) ≥ 0}
is included in P.
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We are interested in modeling P as a projection of a linear section of the semidefinite
cone:

{x ∈ P
2 : ∃ y ∈ P

m :

2
∑

i=0

Fixi +

m
∑

j=0

Gjyj � 0}

where Fi, Gj are real symmetric matrices of size n to be found, and � 0 means positive
semidefinite. Following the terminology of [1], we are seeking a semidefinite representation
of P. The yj are called lifting variables, or liftings for short, and the set is obtained by
projecting the feasible set of a linear matrix inequality (LMI).

Note that lifting variables are necessary in the above description, already in the particular
case when {x ∈ P2 : p(x) ≥ 0} is a convex set. Indeed, a generic line passing through set
P cuts its boundary C at real points only twice, which is less than the degree of p, and
this implies that P is not rigidly convex in the sense of [5]. It follows that P cannot be
represented without lifting variables (m = 0), or, equivalently, as a linear section of the
semidefinite cone.

2 Primal moment approximations

In [7], Jean-Bernard Lasserre proposed a hierarchy of semidefinite, or LMI relaxations for
polynomial optimization, based on the theory of moments and the dual representation of
non-negative polynomials as sum-of-squares (SOS). In particular [8], Lasserre’s relaxation
of order k for set P is given by

Pk = {x ∈ P
2 : ∃ y ∈ P

m : y00 = x0, y10 = x1, y01 = x2, Mk(y) � 0, Mk−2(py) = 0}

with
y = [ y00 y10 y01 y20 y11 y02 y30 · · · y0,2k] ∈ P

m

a (truncated) vector of bivariate moments with m + 1 = (k + 1)(2k + 1) entries,

Mk(y) =



















y00 y10 y01 y20

y10 y20 y11 y30

y01 y11 y02 y21

y20 y30 y21 y40

. . .

y0,2k



















a (truncated) moment matrix, and Mk(py) a (truncated) localising matrix. For example,
if p(x) = 1 − 2x3

1x2 we have p(x) = x4
0 − 2x3

1x2 and

Mk(py) =















y00 − 2y31 y10 − 2y41 y01 − 2y32

y10 − 2y41 y20 − 2y51 y11 − 2y42

y01 − 2y32 y11 − 2y42 y02 − 2y33

. . .

y0,2k − 2y3,1+2k















.
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In particular if k = 2 (the first relaxation in the hierarchy for quartic sets), the localising
matrix is the scalar linear form M0(py) = y00 − 2y31 obtained by lifting monomials of p.

Note also that by symmetry there are redundant constraints in the equation Mk−2(py) = 0
arising in the definition of Pk. For notational convenience, we however stick with this
matrix notation.

By definition, P ⊂ · · · ⊂ P3 ⊂ P2, and hence we have a hierarchy of embedded outer
semidefinite representable approximations for P.

3 Dual SOS approximations

Let
F = {f ∈ P

2 : f(x) = f0x0 + f1x1 + f2x2 ≥ 0 ∀x ∈ P}
denote the dual cone of P in the sense that if f ∈ F then the half-plane {x : f(x) ≥ 0}
contains P. It follows that either x ∈ P or there exists f ∈ F such that f(x) < 0.
Since P has a non-empty interior, these are mutually exclusive statements. A geometric
interpretation is that P is the intersection of the (generally infinite number of) half-planes
generated by all separating elements, i.e. P = {x ∈ P

2 : f(x) ≥ 0 ∀f ∈ F}. Set F admits
the following equivalent representation, dehomogenized with respect to x:

F = {f ∈ P
2 : f(x) = f0 + f1x1 + f2x2 ≥ 0 ∀x ∈ P}.

Let R[x]k denote the set of polynomials of degree at most k and S[x]2k the set of polyno-
mials that can be written as sums of squares (SOS) of polynomials of R[x]k. Let

Fk = {f ∈ P
2 : f(x) = s0(x) + s1(x)p(x), s0(x) ∈ S[x]2k, s1(x) ∈ R[x]2(k−2)}. (3)

Since SOS polynomials are only a subset of non-negative polynomials [10], it holds F ⊃
· · · ⊃ F3 ⊃ F2.

Lemma 1 Pk = {x ∈ R
2 : f(x) ≥ 0 ∀f ∈ Fk}.

Proof: The condition that an element x∗ ∈ R2, or, equivalently, an element x∗ ∈ P2,
belongs to Pk is the existence of a vector y satisfying the primal semidefinite constraints

Mk(y) =
∑

α Aαyα � 0
Mk−2(py) =

∑

α Bαyα = 0
y00 = x∗

0, y10 = x∗

1, y01 = x∗

2.
(4)

Given two symmetric matrices A and X of the same size, define the inner product 〈A, X〉 =
trace(AX). Build the Lagrangian L(y, X, f) = −〈Mk(y), X0〉−〈Mk−2(py), X1〉+ f0(y00−
x∗

0) + f1(y10 − x∗

1) + f2(y01 − x∗

2) with X0 � 0 and the corresponding dual function
infy L(y, X, f) to be maximized. Gathering the terms depending on y, the semidefinite
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problem dual to (4) consists in finding X and f maximizing the linear function −f(x∗)
subject to

〈A00, X0〉 + 〈B00, X1〉 = f0
〈A10, X0〉 + 〈B10, X1〉 = f1
〈A01, X0〉 + 〈B01, X1〉 = f2
〈Aα, X0〉 + 〈Bα, X1〉 = 0, |α| > 1
X0 � 0.

(5)

Notice that feasibility of dual problem (5) amounts to the existence of an SOS repre-
sentation for the affine expression f(x) = s0(x) + s1(x)p(x) with s0(x) ∈ S[x]2k and
s1(x) ∈ R[x]2(k−2), with respective Gram matrices X0 and X1, see e.g. [7].

Weak duality [2, Section 5.8.1] informs us that the optimal value of the dual objective
function −f(x∗) s.t. constraints (5) is always greater than or equal to zero. If this value
is strictly positive, i.e. if there exists an f such that f(x∗) < 0, then primal problem (4) is
infeasible. In turn, this implies that x∗ /∈ P2. Conversely, if x∗ ∈ P2 then for all f feasible
for problem (5), i.e. for all f ∈ Fk, it holds f(x∗) ≥ 0. �.

4 Exactness

Given any element f ∈ F , define the quartic

pf (x) = f(x) − p(x).

Lemma 2 The first relaxation is exact, i.e. P is semidefinite representable as P2 (with
at most 12 lifting variables) if and only if, for all f ∈ F , pf(x) ≥ 0 for all x.

Proof: Given any f ∈ F , the inequality pf(x) ≥ 0 implies that pf(x) = s0(x) ∈ S[x]4,
since bivariate quartics are non-negative if and only if they are polynomial SOS [10]. Since
f ∈ P

2 by homogeneity we can choose s1(x) = 1 (without loss of generality) such that
f(x) = s0(x) + s1(x)p(x), and thus f ∈ F2. Therefore F = F2 and hence P = P2. The
total number of liftings is equal to 15 (the number of monomials of a trivariate quartic),
subject to 3 equality constraints, leaving 12 degrees of freedom. �.

Define
F∗ = {f ∈ P

2 : f(x) ≥ 0 ∀x ∈ ∂P}.
as the subset of F consisting only of lines which are tangents to P.

Lemma 3 P = P2 if and only if, for all f ∈ F∗, pf(x) ≥ 0 for all x.

Proof: Let xf ∈ ∂P be the solution of the convex (but possibly non-smooth) problem
of maximizing the linear function fT x subject to the constraint that x belongs to P.
The line fT (x − xf ) = 0 is the tangent to P at x = xf . Let f0 = −fT xf , so that
f(x) = fT (x − xf) = f0 + f1x1 + f2x2 ≥ 0 for all x ∈ P, and the corresponding element
f belongs to F . Given such an element, assume that the corresponding polynomial pf (x)
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is non-negative. Any other element f∗ ∈ F such that (f∗1 , f∗2 ) = f has a constant value
f∗0 which is larger than f0, and hence the corresponding polynomial pf∗(x) is also non-
negative. �

Checking the condition of Lemma 3 implies sweeping out over a real parameter (an angle),
and for each value, finding the tangent to P and checking non-negativity of the bivariate
quartic pf(x) (e.g. by solving a semidefinite programming problem). This can be com-
putationally demanding, and it makes sense to derive more tractable sufficient conditions
ensuring P = P2 or P 6= P2.

Let ∇p(x) ∈ R[x]23 denote the gradient of p(x).

Lemma 4 If P is bounded, then P = P2 if and only if, for all f ∈ F∗, pf(x) ≥ 0 for all
x such that ∇p(x) = f .

Proof: If P is bounded, then p(x) → −∞ and hence pf(x) → +∞ when ‖x‖ → +∞.
The polynomial pf (x) then achieves its minimum when its gradient vanishes, i.e. when
∇p(x) = f . �

Generically, there is a finite number (at most 4) of real points x satisfying ∇p(x) = f ,
and the sign of pf(x) should be tested only at these points, which is a significant saving
over assessing global non-negativity of pf(x) as in Lemmas 2 or 3. If P is not bounded,
we also have to check the sign of pf(x) at ∞.

Lemma 5 P = P2 if p(x) is concave and ∂P is smooth.

Proof: If p(x) is concave, then pf(x) = f(x) − p(x) is convex. This polynomial has a
unique minimum xf when its gradient ∇pf(x) = f − ∇p(x) vanishes, with f = (f1, f2).
Given f , the point xf solution to f = ∇p(x) is the point along the boundary ∂P at which
the line fT (x− xf ) = 0 is tangent to P. If ∂P is smooth, then such a point always exists
for any f . At this point, polynomial pf(x) vanishes. Since this is the unique minimum
and pf (x) is convex, it follows that pf(x) is globally non-negative. �

Testing concavity of p(x) is equivalent to testing negative semidefiniteness of its Hessian.
The Hessian is a 2-by-2 bivariate quadratic matrix, and it is negative semidefinite if and
only if its trace is non-positive and its determinant is non-negative. The first condition is
trivial to test, whether the second condition can be tested by semidefinite programming.

Testing smoothness of ∂P is equivalent to finding all singular points of C (points at which
p(x) = ∇p(x) = 0) and testing whether they belong to the convex hull P.

Lemma 6 If ∂P is non-smooth, then P 6= P2.

Proof: As in the proof of Lemma 3, given a direction f , let xf ∈ ∂P be the solution of
the convex problem of maximizing the linear function fTx subject to the constraint that
x belongs to P. Suppose that ∂P is non-smooth at xf , which implies that p(xf ) = 0 and
∇p(xf) = 0. Consider the Taylor expansion of the quartic pf (x) = f(x) − p(x) around
x = xf , which reads pf(x) = pf(x

f ) + ∇pf(x
f )T (x − xf ) + · · · = fT (x − xf ) + · · · where
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the dots indicate terms of degree two or higher. This polynomial has a non-zero first-
order term, and hence it cannot be globally non-negative. From Lemma 2, it follows that
P 6= P2. �

Lemma 6 states that smoothness of ∂P is necessary for the first relaxation to be exact.
However, it says nothing about semidefinite representability of P in general.

5 Examples

5.1 Egg
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Figure 1: Egg modeled by a 6-by-6 LMI with 12 liftings.

Let p(x) = 1 − 8x2
1 − (x2

1 − x2)
2 describe an egg curve. With the algcurves package for

Maple we can check that curve C has genus zero with a triple singular point x = (0, 0, 1)
at infinity.

The Hessian of p(x) is given by
[

−16 − 4x2 − 12x2
1 4x1

4x1 −2

]

and its evaluation at x = (0, −5) shows that it is indefinite and hence that quartic p(x)
is not concave, so that Lemma 5 cannot be applied.

Let us test the sign condition of Lemma 2 for a given direction f ∈ F∗. Choose e.g. the
point xf = (0, 1) ∈ C at which ∇p(xf) = (0, −2) and hence f = (2, 0, −2). We have
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pf(x) = 2− 2x2 − p(x) = 1− 2x2 + 8x2
1 + (x2

1 − x2
2)

2. With YALMIP [9] we could find the
SOS decomposition pf(x) = (1 − x2 + x2

1)
2 + 6x2

1 certifying non-negativity of pf (x).

Sweeping over all points along ∂P = C, we can check that the condition of Lemma 2 is
satisfied, and the convex set P = P2 is represented on Figure 1.

5.2 Bean

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x 2

Figure 2: Bean curve (thick line) and its first four embedded outer semidefinite approxi-
mations (thin lines and shaded regions).

Let p(x) = x1(x
2
1 + x2

2) − x4
1 − x2

1x
2
2 − x4

2 define the so-called bean quartic. The curve has
genus zero, and a triple singular point at the origin x = (1, 0, 0).

At this point the gradient ∇p(x) vanishes, whereas the curve P has a tangent f(x) = x1.
Polynomial pf (x) = x1 − p(x) has a non-zero linear term, and hence it cannot be non-
negative. By Lemma 6 we have P strictly included in P2.

Inspection of the constant and linear terms in the expression (3) arising in the definition
of Pk in Lemma 1 shows that actually P is strictly included in Pk for all k.

On Figure 2 we see embedded semidefinite representable sets Pk for k = 2, 3, 4, 5 (thin
lines and shaded regions) and the convex set P (thick line). It seems that P is smooth
but actually there is a singularity at the origin. We see the global consequences of the
pointwise singularity on the shape of the sets Pk.

For interested readers, semidefinite sets Pk can be visualized with the following Matlab
script, mixing features from GloptiPoly 3 [6] and YALMIP [9]:
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mpol x 2

p = x(1)*(x(1)^2+x(2)^2)-x(1)^4-x(1)^2*x(2)^2-x(2)^4;

k = 3; % relaxation order

P = msdp(p==0, k);

[F,h,y] = myalmip(P);

plot(F,y(1:2)); % projection on first degree moments

The impact in polynomial optimization of the non-exactness of semidefinite relaxations
can be observed with the help of the following Matlab script using GloptiPoly 3:

bounds = [];

for k = 2:10

P = msdp(min(x(1)), p==0, k);

[status,obj] = msol(P);

bounds = [bounds obj];

end

We obtain the following sequence of lower bounds on the minimum value of x1 such
that p(x) vanishes: −0.1315, −0.02915, −0.009705, −0.01022, −0.009319, −0.009320,
−0.009646, −0.009346, −0.009371, . . . We expect the sequence to converge from below to
zero, the genuine minimum, but numerically, it stagnates around −9 · 10−3.

5.3 Water drop

Let p(x) = −x2
1 − x3

2 − (x2
1 + x2

2)
2 define a water drop quartic. The curve has genus two,

with a singular point (a cusp) at the origin. On Figure 3 we see semidefinite representable
embedded sets Pk for k = 2, 3, 4, 5 (thin lines and shaded regions) and the non convex
curve C (thick line). The set P5 and the convex hull P = convC are almost undistinguish-
able. However, as for Example 5.2, it can be shown that Pk cannot be equal to P for k
finite.

5.4 Lemniscate

Let p(x) = x2
1 − x2

2 − (x2
1 + x2

2)
2 define a lemniscate, a curve of genus zero, with singular

points at the origin and at the infinite complex points x = (0,±i, 1). Even though C is
singular, the boundary ∂P is smooth.

Sweeping over all directions f indicates that pf(x) is always non-negative, and hence that
P = P2, see Figure 5.4. Here, the singularity of C is in the interior of P, and it does not
prevent the first relaxation to be exact.

5.5 Folium

Let p(x) = −x1(x
2
1 − 2x2

2)− (x2
1 +x2

2)
2 define a folium, a curve of genus zero, with a triple

singular point at the origin. As in Example 5.4, the singularity of C is the interior of P,
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Figure 3: Water drop quartic (thick line) and its first four embedded semidefinite approx-
imations (thin lines and shaded regions).

hence the boundary ∂P is smooth, and we may expect that the first relaxation is exact.

However, along the direction f = (1, 3/4, 3
√

2/2) corresponding to a bitangent of C
(obtained computationally by finding singular points of the dual curve), polynomial
pf(x) = f(x) − p(x) has a strictly negative minimum achieved at x ≈ (0.2040, −0.8762).

On Figure 5 we see curve C (thick line) and semidefinite sets P2 (exterior thin line, dark
shaded region) and P3 (interior thin line, shaded region). We observe that P = conv C
is strictly included in P2, whereas, apparently, P3 = P (but I am not able to prove this
identity).

5.6 Smooth and convex

Let p(x) = x1 +x2
1−2x4

1 −x4
2 define a convex quartic curve of genus three. Note that p(x)

is not concave. There is no singularity, so we may expect that the first relaxation is exact.
However, for the tangent f(x) = x1, polynomial pf(x) = f(x) − p(x) is not non-negative
(consider e.g. its sign along the line x2 = 0) and hence P 6= P2. As in Example 5.5,
apparently P = P3.

This example was prepared with the help of Bill Helton and Jiawang Nie.
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Figure 4: Lemniscate (thick line) and its convex hull modeled by a 6-by-6 LMI with 12
liftings.

5.7 Fermat

The Fermat quartic p(x) = 1 − x4
1 − x4

2 (also called the TV-screen quartic) is smooth, so
its convex hull is semidefinite representable as a 6-by-6 LMI with 12 liftings. However,
inspection reveals that there is a semidefinite representation with only 2 liftings:

P = {x ∈ P
2 : ∃y ∈ P :

















x0 + y0 y1

y1 x0 − y0

x0 x1

x1 y0

x0 x2

x2 y1

















� 0}.

However, I do not know how to derive this reduced representation with 2 liftings from the
generic representation with 12 liftings.

6 Rational curves

In this section we restrict the class of C to algebraic curves of genus zero [3], i.e. curves
which admit a polynomial parametrization

C = {x ∈ P
2 : ∃ t ∈ P : xi = pi(t), i = 0, 1, 2} (6)
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Figure 5: Folium curve and its first two embedded outer semidefinite approximations
(thin lines and shaded regions).

with pi(t) bivariate quartic forms in t ∈ P. Given p(x) in implicit representation (1),
there are algorithms to compute the pi(t) in the above explicit representation, see e.g.
the Maple package algcurves for an implementation.

Let us define the Hankel moment matrix

M2(y) =

4
∑

α

yαHα =





y0 y1 y2

y1 y2 y3

y2 y3 y4





and, given the quartic p(t) =
∑4

α pαt
α, the localising linear form

M0(py) =
4

∑

α

pαyα.

Lemma 7 P = {x ∈ P
2 : ∃ y ∈ P

4 : xi = M0(piy), i = 0, 1, 2, M2(y) � 0}.

Proof: We closely follow the proof of Lemma 2. Given f ∈ F and x ∈ C, consider the
bivariate form g(t) = fTx =

∑2
i=0 fixi =

∑2
i=0 fipi(t) =

∑4
α(gT

α f)tα with t ∈ P and
coefficients gα ∈ R

3. This non-negative bivariate form is always SOS [10], hence there
exists a 3-by-3 matrix X such that

trace(HαX) = gT
α f , α = 0, 1, . . . , 4

X � 0,
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Figure 6: Smooth convex quartic and its first two embedded outer semidefinite approxi-
mations (thin lines and shaded regions).

hence the dual formulation of Lemma 7.�

An alternative, more direct proof suggested by Roland Hildebrand, consists in viewing P
as the image through a linear mapping of the convex hull of a Veronese variety, namely
the image of the nonlinear map sending t ∈ P into [t4

0 t3
0t1 t2

0t
2
1 t0t

3
1 t4

1] ∈ P
4, see [3]. This

Veronese variety is also called sometimes the moment curve, and its convex hull is indeed
the cone of positive semidefinite Hankel matrices.

Jean-Bernard Lasserre informed me that Pablo Parrilo presented a related semidefinite
representation of the convex hull of rational plane curves at a workshop at Banff, Canada,
in October 2006. At the time of writing of these notes (March 2008), the result is not
available in electronic or printed form, however.

Note that the relations xi = M0(piy) in Lemma 7 form a consistent linear system of 3
equations with 5 indeterminates, so the number of lifting variables can always be reduced
to 5-3=2.

6.1 Folium revisited

Consider again the folium quartic of Example 5.5. With the algcurves package of Maple,
we obtain the following rational parametrization: p0(t) = 1 + 2t21 + t41, p1(t) = −1 + 2t21,
p2(t) = −t1 + 2t31.

The lifting variables in the representation of Lemma 7 satisfy the linear system of equa-
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tions x0 = y0 + 2y2 + y4, x1 = −y0 + 2y2, x2 = −y1 + 2y3. From this we derive
y2 = 1

2
(x1 + y0), y3 = 1

2
(x2 + y1), y4 = x0 − x1 − 2y0 that we can report in the Hankel

matrix constraint to produce a semidefinite representation of the convex hull of C with 2
liftings:

P = {x ∈ P
2 : ∃y ∈ P :





2y0 2y1 x1 + y0

2y1 x1 + y0 x2 + y1

x1 + y0 x2 + y1 2x0 − 2x1 − 4y0



 � 0}.

6.2 Bean revisited

Consider again the bean quartic of Example 5.2. A rational parametrization (6) is given
by p0(t) = 1 + t21 + t41, p1(t) = 1 + t21 and p2(t) = t1 + t31, from which follows a semidefinite
representation with 2 liftings:

P = {x ∈ P
2 : ∃y ∈ P :





y0 y1 x1 − y0

y1 x1 − y0 x2 − y1

x1 − y0 x2 − y1 y0 − y1



 � 0}.

7 Conclusion

This note investigated semidefinite representations of convex plane quartics, and more
specifically the exactness of the first semidefinite relaxation in Lasserre’s hierarchy. Also
described was an elementary exact semidefinite representation of the convex hull of ratio-
nally parametrized quartics. Exactness conditions followed from the well-known fact that
non-negative polynomials can be represented as sum-of-squares in the bivariate quartic
case and in the univariate case. It follows that the exactness result of Section 6 is valid
for rationally parametrizable curves of arbitrary degree and dimension, but the exactness
result of Section 4 is limited to plane quartics. Also unclear is what kind of conditions
should be enforced to ensure exactness of the second, third, and in general higher-order
relaxations.

In [8], Lasserre proposed sufficient conditions for convex semialgebraic sets to be semidefi-
nite representable. In [4], Helton and Nie derived sufficient conditions in terms of negative
definiteness of the Hessian along the tangent space along the boundary of the set, pro-
vided the gradient does not vanish along this boundary. In contrast with these general
statements, our focus was more on computational aspects and examples, the driving force
being that if we do not understand well the simplest non-trivial case (plane quartics) it
is likely that we will not understand more complicated configurations.

As illustrated in Example 5.7, a given quartic may have different semidefinite represen-
tations with a different number of lifting variables. Given a representation, it could be
interesting to design a systematic algorithm to remove redundant lifting variables. Simi-
larly, the problem of finding a representation with a minimum number of lifting variables
seems to be open.
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Since projections of LMIs are convex semialgebraic sets, and the essential difficulty when
building semidefinite representations seems to be singularities (points at which the gradi-
ent vanishes), one may be tempted to conjecture that convex regions delimited by higher
degree smooth curves admit an exact semidefinite representation. Helton and Nie go even
farther in the conclusion of [4] by conjecturing that every convex semialgebraic set is
semidefinite representable.

Appendix

In this paper we use projective spaces P
k over the field R, together with affine spaces R

k.
By projective space P

k, we mean the set of all one-dimensional subspaces of R
k+1. Equiv-

alently, P
k is the quotient space of equivalence classes of R

k+1 − 0 under the equivalence
relation (x0,x1, . . . ,xk) ∼ (ax0, ax1, . . . , axk) for all nonzero a ∈ R. Projective space P

k is
a compact space under the Zariski topology where a closed set is defined as the zero set of
homogeneous polynomials. When x0 6= 0, it holds (x0,x1, . . . ,xk) ∼ (1,x1/x0, . . . ,xk/x0),
and we can identify a point (x1, . . . , xk) ∈ R

k with a point (1, x1, . . . , xk) ∈ P
k. Then the

affine space R
k is the open subset of the projective space P

k defined by x0 6= 0. Points
(0,x1, . . . ,xk) with x0 = 0 corresponds to points at infinity, and P

k can be also viewed
as the affine space R

k extended with points at infinity. See e.g. [3, Chapter 1] for an
elementary introduction.
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