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Solutions of some nonlinear parabolic

equations with initial blow-up

Waad Al Sayed Laurent Véron

Laboratoire de Mathématiques et Physique Théorique,

Université François Rabelais, Tours, FRANCE

Abstract We study the existence and uniqueness of solutions of ∂tu − ∆u + uq = 0 (q > 1) in

Ω×(0,∞) where Ω ⊂ R
N is a domain with a compact boundary, subject to the conditions u = f ≥ 0

on ∂Ω× (0,∞) and the initial condition limt→0 u(x, t) = ∞. By means of Brezis’ theory of maximal

monotone operators in Hilbert spaces, we construct a minimal solution when f = 0, whatever is the

regularity of the boundary of the domain. When ∂Ω satisfies the parabolic Wiener criterion and

f is continuous, we construct a maximal solution and prove that it is the unique solution which

blows-up at t = 0.

1991 Mathematics Subject Classification. 35K60.
Key words. Parabolic equations, singular solutions, semi-groups of contractions, maximal monotone operators,

Wiener criterion.

1 Introduction

Let Ω be a domain of R
N (N ≥ 1) with a compact boundary, QΩ

∞ = Ω × (0,∞) and q > 1.
This article deals with the question of the solvability of the following Cauchy-Dirichlet
problem PΩ,f















∂tu − ∆u + |u|q−1u = 0 in QΩ
∞

u = f on ∂Ω × (0,∞)

limt→0 u(x, t) = ∞ ∀x ∈ Ω.

(1.1)

If no assumption of regularity is made on ∂Ω, the boundary data u = f cannot be prescribed
in sense of continuous functions. However, the case f = 0 can be treated if the vanishing
condition on ∂Ω × (0,∞) is understood in the H1

0 local sense. We construct a positive
solution uΩ of (1.1 ) with f = 0 belonging to C(0,∞; H1

0 (Ω) ∩ Lq+1(Ω)) thanks to Brezis
results of contractions semigroups generated by subdifferential of proper convex functions in
Hilbert spaces. We can also consider an internal increasing approximation of Ω by smooth
bounded domains Ωn such that Ω = ∪nΩn. For each of these domains, there exists a
maximal solution uΩn of problem PΩn,0. Furthermore the sequence {uΩn} is increasing.
The limit function uΩ := limn→∞ uΩn is the natural candidate to be the minimal positive
solution of a solution of PΩ,0. We prove that uΩ = uΩ. If ∂Ω satisfies the parabolic Wiener
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criterion [9], there truly exist solutions of PΩ,0. We construct a maximal solution uΩ of this
problem. Our main result is the following:

Theorem 1. If ∂Ω is compact and satisfies the parabolic Wiener criterion, there holds

uΩ = uΩ.

In the last section, we consider the full problem PΩ,f . Under the same regularity and
boundedness assumption on ∂Ω we construct a maximal solution uΩ,f and we prove

Theorem 2. If ∂Ω is compact and satisfies the parabolic Wiener criterion, and if f ∈
C(0,∞; ∂Ω) is nonnegative, uΩ,f is the only positive solution to problem PΩ,f .

These type of results are to be compared with the ones obtained by the same authors [1]
in which paper the following problem is considered















∂tu − ∆u + |u|q−1u = 0 in QΩ
∞

limdist (x,∂Ω)→0 u(x, t) = ∞ locally uniformly on (0,∞)

u(x, 0) = f ∀x ∈ Ω.

(1.2)

In the above mentioned paper, it is proved two types of existence and uniqueness result
with f ∈ L1

loc(Ω), f ≥ 0: either if ∂Ω = ∂Ω
c

and 1 < q < N/(N − 2), or if ∂Ω is locally the
graph of a continuous function and q > 1.

Our paper is organized as follows: 1- Introduction. 2- Minimal and maximal solutions.
3- Uniqueness of large solutions. 4- Bibliography.

2 Minimal and maximal solutions

Let q > 1 and Ω be a proper domain of R
N , N > 1 with a non-empty compact boundary.

We set QΩ
∞ = Ω × (0,∞) and consider the following problem

{

∂tu − ∆u + uq = 0 in Ω × (0,∞)
u(x, t) = 0 on ∂Ω × (0,∞).

(2.1)

If there is no regularity assumption on ∂Ω, a natural way to consider the boundary condition
is to impose u(., t) ∈ H1

0 (Ω). The Hilbertian framework for this equation has been studied
by Brezis in a key article [2] (see also the monography [3] for a full treatment of related
questions) in considering the maximal monotone operator v 7→ A(v) := −∆v + |v|q−1v seen
as the subdifferential of the proper lower semi-continuous function

JΩ(v) =











∫

Ω

(

1

2
|∇v|2 +

1

q + 1
|v|q+1

)

dx if v ∈ H1
0 (Ω) ∩ Lq+1(Ω)

∞ if v /∈ H1
0 (Ω) ∩ Lq+1(Ω).

(2.2)

In that case, the domain of A = ∂JΩ is D(A) := {u ∈ H1
0 (Ω)∩Lq+1(Ω) : ∆u ∈ L2(Ω)}, and

we endow DΩ(−∆, ) with the graph norm of the Laplacian in H1
0 (Ω)

‖v‖DΩ(−∆) =

(
∫

Ω

(

(∆v)2 + |∇v|2 + v2
)

dx

)1/2

.
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Brezis’ result is the following.

Theorem 2.1 Given u0 ∈ L2(Ω) there exists a unique function v ∈ L2
loc(0,∞; DΩ(−∆)) ∩

C(0,∞; H1
0 (Ω) ∩ Lq+1(Ω)) such that ∂tv ∈ L2

loc(0,∞; L2(Ω)) satisfying

{

∂tv − ∆v + |v|q−1v = 0 a.e. in QΩ
∞

v(., 0) = u0 a.e. in Ω.
(2.3)

Furthermore the mapping (t, u0) 7→ v(t, .) defines an order preserving contraction semigroup
in L2(Ω), denoted by S∂JΩ(t)[u0], and the following estimate holds

‖∂tv(t, .)‖L2(Ω) ≤
1

t
√

2
‖u0‖L2(Ω) . (2.4)

From this result, we have only to consider solutions of (2.1 ) with the above regularity.

Definition 2.2 We denote by I(QΩ
∞) the set of positive functions u ∈ L2

loc(0,∞; DΩ(−∆))∩
C(0,∞; H1

0 (Ω) ∩ Lq+1(Ω)) such that ∂tu ∈ L2
loc(0,∞; L2(Ω)) satisfying

∂tu − ∆u + |u|q−1u = 0 (2.5)

in the semigroup sense, i. e.

du

dt
+ ∂JΩ(u) = 0 a.e. in (0,∞). (2.6)

If Ω is not bounded it is usefull to introduce another class which takes into account the
Dirichlet condition on ∂Ω: we assume that Ωc ⊂ BR0

, denote by ΩR = Ω ∩ BR (R ≥ R0)
and by H̃1

0 (ΩR) the closure in H1
0 (ΩR) of the restrictions to ΩR of functions in C∞

0 (Ω), thus
we endow DΩR

(−∆, ) with the graph norm of the Laplacian in H̃1
0 (ΩR)

‖v‖DΩR
(−∆) =

(
∫

ΩR

(

(∆v)2 + |∇v|2 + v2
)

dx

)1/2

.

Definition 2.3 If Ω is not bounded but Ωc ⊂ BR0
, we denote by I(QΩloc

∞ ) the set of pos-
itive functions u ∈ L2

loc(Q
Ω
∞) such that, for any R > R0, u ∈ L2

loc(0,∞; DΩR
(−∆)) ∩

C(0,∞; H̃1
0 (ΩR) ∩ Lq+1(ΩR)), ∂tu ∈ L2

loc(0,∞; L2(ΩR)) and u satisfies (2.5 ) in a. e. in
QΩ

∞.

Lemma 2.4 If u ∈ I(QΩ
∞) or I(QΩloc

∞ ), its extension ũ by zero outside Ω is a subso-
lution of (2.1 ) in (0,∞) × R

N such that ũ ∈ C(0,∞; H1
0 (RN ) ∩ Lq+1(RN )) and ∂tũ ∈

L2
loc(0,∞; L2(RN )).

Proof. The proof being similar in the two cases, we assume Ω bounded. We first notice that
ũ ∈ C(0,∞; H1

0 (RN )) since ‖ũ‖H1
0 (RN ) = ‖u‖H1

0 (Ω). For δ > 0 we set

Pδ(r) =







r − 3δ/2 if r ≥ 2δ
r2/2δ − r + δ/2 if δ < r < 2δ
0 if r ≤ δ
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and denote by uδ the extension of Pδ(u) by zero outside QΩ
∞. Since uδ t = P ′

δ(u)∂tu, then
uδ t ∈ L2

loc(0,∞; L2(RN )) and ‖uδ t‖L2 ≤ ‖∂tu‖L2 . In the same way ∇uδ = P ′
δ(u)∇u, thus

uδ ∈ L2
loc(0,∞; H1

0 (RN )) and ‖uδ‖H1
0
≤ ‖u‖H1

0
. Finally −∆uδ = −P ′

δ(u)∆u − P ′′
δ (u) |∇u|2 .

Using the fact that P ′
δu

q ≥ uq
δ, we derive from (2.6 )

∂tuδ − ∆uδ + uq
δ ≤ 0

in the sense that
∫ ∫

QRN
∞

(∂tuδζ + ∇uδ.∇ζ + uq
δζ) dxdt ≤ 0 (2.7)

for all ζ ∈ C∞((0,∞) × R
N ), ζ ≥ 0. Actually, C∞((0,∞) × R

N ) can be replaced by
L2(ǫ,∞; H1

0 (RN )) ∩ Lq′

((ǫ,∞) × R
N ). Letting δ → 0 and using Fatou’s theorem implies

that (2.7 ) holds with uδ replaced by ũ. �

Lemma 2.5 For any u ∈ I(QΩ
∞), there holds

u(x, t) ≤
(

1

(q − 1)t

)1/(q−1)

:= φq(t) ∀(x, t) ∈ QΩ
∞. (2.8)

Proof. Let τ > 0. Since the function φq,τ defined by φq,τ (t) = φq(t − τ) is a solution of

φ′
q,τ + φq

q,τ = 0

and (u − φq,τ )+ ∈ C(0,∞; H1
0 (Ω)), there holds

1

2

d

dt

∫

Ω

(u − φq,τ )2+dx +

∫ ∫

QΩ
∞

(

∇u.∇(u − φq,τ )+ + (uq − φq
q,τ )(u − φq,τ )+

)

dxdt = 0.

Thus s 7→ ‖(u − φq,τ )+(s)‖L2 is nonincreasing. By Lebesgue’s theorem,

lim
s↓τ

‖(u − φq,τ )+(s)‖L2 = 0,

thus u(x, t) ≤ φq,τ (t) a.e. in Ω. Letting τ ↓ 0 and using the continuity yields to (2.8 ).
�

Theorem 2.6 For any q > 1, the set I(QΩ
∞) admits a least upper bound uΩ for the order

relation. If Ω is bounded, uΩ ∈ I(QΩ
∞); if it is not the case, then uΩ ∈ I(QΩloc

∞ ).

Proof. Step 1- Construction of uΩ when Ω is bounded. For k ∈ N
∗ we consider the solution

v = vk (in the sense of Theorem 2.1 with the corresponding maximal operator in L2(Ω)) of







∂tv − ∆v + vq = 0 in Ω × (0,∞)
v(x, t) = 0 in ∂Ω × (0,∞)
v(x, 0) = k in Ω.

(2.9)

When k → ∞, vk increases and converges to some uΩ. Because of (2.8 ) and the fact
that Ω is bounded, uΩ(t, .) ∈ L2(Ω) for t > 0. It follows from the closedness of maximal
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monotone operators that uΩ ∈ L2
loc(0,∞; DΩ(−∆)) ∩ C(0,∞; H1

0 (Ω) ∩ Lq+1(Ω)), ∂tuΩ ∈
L2

loc(0,∞; L2(Ω)) and
duΩ

dt
+ ∂JΩ(uΩ) = 0 a.e. in (0,∞). (2.10)

Thus uΩ ∈ I(QΩ
∞). For τ, ǫ > 0, the function t 7→ uΩ(x, t − τ) + ǫ is a supersolution of (2.1

). Let u ∈ I(QΩ
∞); for k > φq(τ), the function (x, t) 7→ (u(x, t) − uΩ(x; t − τ) − ǫ)+ is a

subsolution of (2.1 ) and belongs to C(τ,∞; H1
0 (Ω)). Since it vanishes at t = τ , it follows

from Brezis’ result that it is identically zero, thus u(x, t) ≤ uΩ(x, t− τ) + ǫ. Letting ǫ, τ ↓ 0
implies the claim.

Step 2- Construction of uΩ when Ω is unbounded. We assume that ∂Ω ⊂ BR0
and for

n > R0, we recall that Ωn = Ω ∩ Bn. For k > 0, we denote by uΩn
the solution obtained

in Step 1. Then uΩn
= limk→∞ vn,k where vn,k is the solution, in the sense of maximal

operators in Ωn of










dvn,k

dt
+ ∂JΩn

(vn,k) = 0 a.e. in (0,∞)

vn,k(0) = k.
(2.11)

It follows from Lemma 2.4 that the extension ṽn,k by 0 of vn,k in Ωn+1 is a subsolution for
the equation satisfied by vn+1,k, with a smaller initial data, therefore ṽn,k ≤ vn+1,k. This
implies ũΩn

≤ uΩn+1
. Thus we define uΩ = limn→∞ uΩn

. It follows from Lemma 2.5 and
standard regularity results for parabolic equations that u = uΩ satisfies

∂tu − ∆u + uq = 0 (2.12)

in QΩ
∞. Multiplying

duΩn

dt
+ ∂JΩn

(uΩn
) = 0 (2.13)

by η2uΩn
where η ∈ C∞

0 (RN ) and integrating over Ωn, yields to

2−1 d

dt

∫

Ωn

η2u2
Ωn

dx +

∫

Ωn

(

|∇uΩn
|2 + uq+1

Ωn

)

η2dx + 2

∫

Ωn

∇uΩn
.∇η ηuΩn

dx = 0.

Thus, by Young’s inequality,

2−1 d

dt

∫

Ωn

η2u2
Ωn

dx +

∫

Ωn

(

2−1|∇uΩn
|2 + uq+1

Ωn

)

η2dx ≤ 2

∫

Ωn

|∇η|2u2
Ωn

dx.

If we assume that 0 ≤ η ≤ 1, η = 1 on BR (R > R0) and η = 0 on Bc
2R, we derive, for any

0 < τ < t,

2−1

∫

Ωn

u2
Ωn

(., t)η2dx +

∫ t

τ

∫

Ωn

(

2−1
∣

∣∇uΩn

∣

∣

2
+ uq+1

Ωn

)

η2dxds

≤ 2

∫ t

τ

∫

Ωn

u2
Ωn

|∇η|2dxds + 2−1

∫

Ωn

u2
Ωn

(., τ)η2dx.

(2.14)

From this follows, if n > 2R,

2−1

∫

Ω∩BR

u2
Ωn

(., t)dx +

∫ t

τ

∫

Ω∩BR

(

2−1
∣

∣∇uΩn

∣

∣

2
+ uq+1

Ωn

)

dxds ≤ CRN(t + 1)τ−2/(q−1).

(2.15)
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If we let n → ∞ we derive by Fatou’s lemma

2−1

∫

Ω∩BR

u2
Ω(., t)dx +

∫ t

τ

∫

Ω∩BR

(

2−1 |∇uΩ|2 + uq+1
Ω

)

dxds ≤ CRN (t + 1)τ−2/(q−1).

(2.16)
For τ > 0 fixed, we multiply (2.13 ) by (t − τ)η2duΩn

/dt, integrate on (τ, t) × Ωn and get

(t − τ)

∫

Ωn

∣

∣

∣

∣

duΩn

dt

∣

∣

∣

∣

2

η2dx +
d

dt
(t − τ)

∫

Ωn

(

|∇uΩn
|2

2
+

uq+1
Ωn

q + 1

)

η2dx

=

∫

Ωn

(

|∇uΩn
|2

2
+

uq+1
Ωn

q + 1

)

η2dx − 2(t − τ)

∫

Ωn

∇uΩn
.∇η

duΩn

dt
ηdx.

Since

2(t−τ)

∣

∣

∣

∣

∫

Ωn

∇uΩn
.∇η

duΩn

dt
ηdx

∣

∣

∣

∣

≤ (t − τ)

2

∫

Ωn

∣

∣

∣

∣

duΩn

dt

∣

∣

∣

∣

2

η2dx+4(t−τ)

∫

Ωn

∣

∣∇uΩn

∣

∣

2 |∇η|2 dx,

we get, in assuming again n > 2R,

2−1

∫ t

τ

∫

Ω

(s − τ)

∣

∣

∣

∣

duΩn

dt

∣

∣

∣

∣

2

η2dxds + (t − τ)

∫

Ω

(

|∇uΩn
|2

2
+

uq+1
Ωn

q + 1

)

η2dx

≤ 4

∫ t

τ

(s − τ)

∫

Ω

∣

∣∇uΩn

∣

∣

2 |∇η|2 dxds,

(2.17)

from which follows,

2−1

∫ t

τ

∫

Ω∩BR

(s − τ)

∣

∣

∣

∣

duΩn

dt

∣

∣

∣

∣

2

dxds + (t − τ)

∫

Ω∩BR

(

|∇uΩn
|2

2
+

uq+1
Ωn

q + 1

)

dx

≤ 4

∫ t

τ

(s − τ)

∫

Ω∩B2R

∣

∣∇uΩn

∣

∣

2
dxds.

(2.18)

The right-hand side of (2.18 ) remains uniformly bounded by 8C(2R)N (t−τ)tτ−2/(q−1) from
(2.15 ). Then

2−1

∫ t

τ

∫

Ω∩BR

(s − τ)

∣

∣

∣

∣

duΩn

dt

∣

∣

∣

∣

2

dxds + (t − τ)

∫

Ω∩BR

(

|∇uΩn
|2

2
+

uq+1
Ωn

q + 1

)

dx

≤ 8C(2R)N (t − τ)tτ−2/(q−1)

(2.19)

By Fatou’s lemma the same estimate holds if uΩn
is replaced by uΩ. Notice also that this

estimate implies that uΩ vanishes in the H1
0 -sense on ∂Ω since ηuΩ ∈ H1

0 (Ω) where the
function η ∈ C∞

0 (RN ) has value 1 in BR and Ωc ⊂ BR. Moreover estimates (2.16 ) and
(2.19 ) imply that uΩ satisfies (2.12 ) a.e., and thus it belongs to I(QΩloc

∞ ).

Step 3- Comparison. At end, assume u ∈ I(QΩ
∞). For R > n0 let WR be the maximal

solution of
−∆WR + W q

R = 0 in BR. (2.20)
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Existence follows from Keller-Osserman’s construction [5],[8], and the following scaling and
blow-up estimates holds

WR(x) = R−2/(q−1)W1(x/R), (2.21)

and
WR(x) = Cq(R − |x|)−2/(q−1)(1 + ◦(1)) as |x| → R. (2.22)

For τ > 0 set v(x, t) = u(x, t) − uΩ(x, t − τ) − WR(x). Then v+ is a subsolution. Since
v(., τ) ∈ L2(Ω), lims↓τ ||v+(., s)||L2 = 0. Because ηuΩ ∈ H1

0 (Ω) for η as above, ηv+ ∈ H1
0 (Ω).

Next, supp v+ ⊂ Ω ∩ BR. Since u, uΩ are locally in H1, we can always assume that their
restrictions to ∂BR×[0, T ] are integrable for the corresponding Hausdorff measure. Therefore
Green’s formula is valid, which implies

−
∫ t

τ

∫

Ω∩BR

∆v+dxdt =

∫ t

τ

∫

Ω∩BR

|∇v+|2dxdt ∀t > τ.

Therefore
∫

Ω∩BR

v2
+(x, t)dx+

∫ t

τ

∫

Ω∩BR

(

|∇v+|2 + (u − (uΩ(., t − τ) + WR)q)v+

)

dxdt ≤
∫

Ω∩BR

v2
+(x, s)dx.

We let s ↓ τ and get v+ = 0, equivalently u(x, t) ≤ uΩ(x, t − τ) + WR(x). Then we let
R → ∞ and τ → 0 and obtain u(x, t) ≤ uΩ(x, t), which is the claim. �

Corollary 2.7 Assume Ω1 ⊂ Ω2 ⊂ R
N are open domains, then uΩ1 ≤ uΩ2 . Furthermore,

if Ω = ∪Ωn where Ωn ⊂ Ωn+1, then

lim
n→∞

uΩn = uΩ, (2.23)

locally uniformly in QΩ
∞.

Proof. The first assertion follows from the proof of Theorem 2.6. It implies

lim
n→∞

uΩn = u∗
Ω ≤ uΩ,

and u∗
Ω is a positive solution of (2.5 ) in QΩ

∞. There exists a sequence {u0,m} ⊂ L2(Ω) such
that S∂JΩ(t)[u0,m] ↑ uΩ as n → ∞, locally uniformly in QΩ

∞. Set u0,m,n = u0,mχ
Ωn ; since

u0,m,n → u0,m in L2(Ω) then S∂JΩ(.)[u0,m,n] ↑ S∂JΩ(.)[u0,m] in L∞(0,∞; L2(Ω)). If ṽm,n

is the extension of vm,n := S∂JΩn (.)[u0,m,n] by zero outside QΩn
∞ it is a subsolution smaller

than S∂JΩ(.)[u0,m,n] and n 7→ ṽm,n is increasing; we denote by ṽm its limit as n → ∞. Since

for any ζ ∈ C2,1
0 ([0,∞) × Ω) we have, for n large enough and s > 0,

−
∫ s

0

∫

Ω

(ṽm,n (∂tζ + ∆ζ)) dxdt =

∫

Ω

u0,m,nζ(x, 0)dx −
∫

Ω

ṽm,n(x, s)ζ(x, t)dx,

it follows

−
∫ s

0

∫

Ω

(ṽm (∂tζ + ∆ζ)) dxdt =

∫

Ω

u0,mζ(x, 0)dx −
∫

Ω

ṽm(x, s)ζ(x, t)dx.
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Clearly ṽm is a solution of (2.5 ) in QΩn
∞ . Furthermore

lim
t→0

ṽm(t, .) = u0,m a.e. in Ω.

Because
‖ṽm(t, .) − u0,m‖L2(Ω) ≤ 2 ‖u0,m‖L2(Ω) ,

it follows from Lebesgue’s theorem that t 7→ ṽm(t, .) is continuous in L2(Ω) at t = 0.
Furthermore, for any t > 0 and h ∈ (−t, t), we have from 2.4 ,

‖ṽm,n(t + h, .) − ṽm,n(t, .)‖L2(Ωn) ≤
|h|
t
√

2
‖u0,m,n‖L2(Ωn)

=⇒ ‖ṽm(t + h, .) − ṽm(t, .)‖L2(Ω) ≤
|h|
t
√

2
‖u0,m‖L2(Ω) .

(2.24)

Thus ṽm ∈ C([0,∞); L2(Ω). By the contraction principle, ṽm = S∂JΩ(t)[u0,m] is the unique
generalized solution to (2.3 ). Finally, there exists an increasing sequence {u0,m} ⊂ L2(Ω)
such that for any ǫ > 0, and τ > 0,

0 < uΩ − S∂JΩ(t)[u0,m] ≤ ǫ/2

on [τ,∞) × Ω. For any m, there exists nm such that

0 < S∂JΩ(t)[u0,m] − ṽm,n ≤ ǫ/2

Therefore
0 < uΩ − uΩn ≤ ǫ,

on [τ,∞) × Ωn. This implies (2.23 ). �

We can also construct a minimal solution with conditional initial blow-up in the following
way. Assuming that Ω = ∪Ωm where Ωm are smooth bounded domains and Ωm ⊂ Ωm+1.
We denote by um the solution of















∂tum − ∆um + |um|q−1um = 0 in QΩm

∞

um = 0 in ∂Ωm × (0,∞)

limt→0 um(x, t) = ∞ locally uniformly on Ωm.

(2.25)

Such a um is the increasing limit as k → ∞ of the solutions um,k of the same equation,

with same boundary data and initial value equal to k. Since Ω
m ⊂ Ωm+1, um < um+1.

We extend um by zero outside Ωm and the limit of the sequence {um}, when m → ∞ is
a positive solution of (2.5 ) in QΩ

∞. We denote it by uΩ. The next result is similar to
Corollary 2.7, although the proof is much simpler.

Corollary 2.8 Assume Ω1 ⊂ Ω2 ⊂ R
N are open domains, then uΩ1 ≤ uΩ2 . Furthermore,

if Ω = ∪Ωn where Ωn ⊂ Ωn+1, then

lim
n→∞

uΩn = uΩ, (2.26)

locally uniformly in QΩ
∞.
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Proposition 2.9 There holds uΩ = uΩ.

Proof. For any m, k > 0, ũm,k, the extension of um,k by zero in QΩmc

∞ is a subsolution,
thus it is dominated by uΩ. Letting successively k → ∞ and m → ∞ implies uΩ ≤ uΩ.
In order to prove the reverse inequality, we consider an increasing sequence {uℓ} ⊂ I(QΩ

∞)
converging to uΩ locally uniformly in QΩ

∞. If Ω is bounded there exists a bounded sequence
{uℓ,0,k} which converges to uℓ(., 0) = uℓ,0 in L2(Ω) and S∂JΩ(.)[uℓ,0,k] → S∂JΩ(.)[uℓ,0] in
L∞(0,∞; L2(Ω)). Therefore

S∂JΩ(.)[uℓ,0,k] ≤ uΩ =⇒ S∂JΩ(.)[uℓ,0] ≤ uΩ =⇒ uΩ ≤ uΩ. (2.27)

Next, if Ω is unbounded, Ω = ∪Ωn, with Ωn ⊂ Ωn+1 are bounded, we have

lim
n→∞

uΩn = uΩ

and
lim

n→∞
uΩn = uΩ

by Corollary 2.7 and Corollary 2.8. Since uΩn = uΩn from the first part of the proof, the
result follows. �

Remark. By construction uΩ is dominated by any positive solution of (2.12 ) which satisfies
the initial blow-up condition locally uniformly in Ω. Therefore, uΩ = uΩ is the minimal
solution with initial blow-up.

If Ω has the minimal regularity which allows the Dirichlet problem to be solved by any
continuous function g given on ∂Ω × [0,∞), we can consider another construction of the
maximal solution of (2.1 ) in QΩ

∞. The needed assumption on ∂Ω is known as the parabolic
Wiener criterion [9] (abr. PWC).

Definition 2.10 If ∂Ω is compact and satisfies PWC, we denote by JQΩ
∞

the set of v ∈
C((0,∞) × Ω) ∩ C2,1(QΩ

∞) satisfying (2.1 ).

Theorem 2.11 Assume q > 1 and Ω satisfies PWC. Then JQΩ
∞

admits a maximal element
uΩ.

Proof. Step 1- Construction. We shall directly assume that Ω is unbounded, the bounded
case being a simple adaptation of our construction. We suppose Ωc ⊂ BR0

, and for n > R0

set Ωn = Ω ∩ Bn. The construction of un is standard: for k ∈ N∗ we denote by v∗k = v∗n,k

the solution of (2.9 ). Lemma 2.5 is valid for v∗k. Notice that uniqueness follows from the
maximum principle. When k → ∞ the sequence {vk} increases and converges to a solution
un of (2.12 ) in QΩn

. Because the exterior boundary of Ωn is smooth, the standard equi-
continuity of the sequence of solutions applies, thus un(x, t) = 0 for all (x, t) s.t. |x| = n
and t > 0. In order to see that un(x, t) = 0 for all (x, t) s.t. x ∈ ∂Ω and t > 0, we see that
un(x, t) ≤ φτ (x, t) on (τ,∞) × Ωn, where







∂tφτ − ∆φτ + φτ q = 0 in QΩ
∞

φτ (x, τ) = φq(τ) in Ω
φτ (x, t) = 0 in ∂Ω × [τ,∞)

(2.28)

9



Such a solution exists because of PWC assumption. Since v∗n,k is an increasing function of n

(provided the solution is extended by 0 outside Ωn) and k, there holds ũn ≤ un+1 in Ωn+1.
If we set

uΩ = lim
n→∞

ũn,

then uΩ ≤ φτ for any τ > 0. Clearly uΩ is a solution of (2.12 ) in QΩ
∞. This implies that

uΩ is continuous up to ∂Ω × (0,∞), with zero boundary value. Thus it belongs to JQΩ
∞

.

Step 2- Comparison. In order to compare uΩ to any other u ∈ JQΩ
∞

, for R > R0 we set
vR,τ (x, t) = uΩ(x, t − τ) + WR(x), where WR is the maximal solution of (2.20 ) in BR.
The function (u − vR,τ )+ is a subsolution of (2.12 ) in Ω ∩ BR × (τ,∞). It vanishes in a
neighborhood on ∂(Ω ∩ BR) × (τ,∞) and of Ω ∩ BR × {τ}. Thus it is identically zero. If
we let R → ∞ in the inequality u ≤ vR,τ and τ → 0, we derive u ≤ uΩ, which is the claim.
�

Proposition 2.12 Under the assumptions of Theorem 2.11, uΩ ∈ I(QΩ
∞) if Ω is bounded

and uΩ ∈ I(QΩloc
∞ ) if Ω is not bounded.

Proof. Case 1: Ω bounded. Let Ωn be a sequence of smooth domains such that

Ωn ⊂ Ωn ⊂ Ωn+1 ⊂ Ω

and ∪nΩn = Ω. For τ > 0, let un,τ be the solution of















∂tun,τ − ∆un,τ + uq
n,τ = 0 in Ωn × (τ,∞)

un,τ (., τ) = uΩ(., τ) in Ωn

un,τ (x, t) = 0 in ∂Ωn × [τ,∞)

(2.29)

Because uΩ(., τ) ∈ C2(Ω
n
), un,τ ∈ C2,1(Ω

n × [τ,∞)). By the maximum principle,

0 ≤ uΩ(., t) − un,τ(., t) ≤ max{uΩ(x, s) : (x, s) ∈ ∂Ωn × [τ, t]} (2.30)

for any t > τ . Because uΩ vanishes on ∂Ω × [τ, t], we derive

lim
n→∞

ũn,τ = uΩ (2.31)

uniformly on Ω× [τ, t] for any t ≥ τ , where ũn,τ is the extension of un,τ by zero outside Ωn.
Applying (2.15 ) and (2.19 ) with η = 1 to ũn,τ in Ω yields to

2−1

∫

Ω

ũ2
n,τ (., t)dx +

∫ t

τ

∫

Ω

(

|∇ũn,τ |2 + ũq+1
n,τ

)

dxds ≤ C(t + 1)τ−2/(q−1). (2.32)

and

2−1

∫ t

τ

∫

Ω

(s − τ)(∂sũn,τ)2dxds + (t − τ)

∫

Ω

(

|∇ũn,τ |2
2

+
ũq+1

n,τ

q + 1

)

(t, .)dx ≤ C(t − τ)tτ−2/(q−1).

(2.33)
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Letting n → ∞ and using (2.31 ) yields to

2−1

∫

Ω

u2
Ω(., t)dx +

∫ t

τ

∫

Ω

(

|∇uΩ|2 + uq+1
Ω

)

dxds ≤ C(t + 1)τ−2/(q−1). (2.34)

and

2−1

∫ t

τ

∫

Ω

(s − τ)(∂suΩ)2dxds + (t − τ)

∫

Ω

(

|∇uΩ|2
2

+
uq+1

Ω

q + 1

)

(t, .)dx ≤ C(t − τ)tτ−2/(q−1).

(2.35)
Since L2(τ, t; H1

0 (Ω)) is a closed subspace of L2(τ, t; H1(Ω)), for any 0 < τ < t, uΩ ∈
L2

loc(0,∞; H1
0 (Ω)). Furthermore ∂suΩ ∈ L2

loc(0,∞; L2(Ω)). Because uΩ satisfies (2.12 ), it
implies uΩ ∈ I(QΩ

∞).

Case 2: Ω unbounded. We assume that Ωc ⊂ BR0
. We consider a sequence of smooth

unbounded domains {Ωn} ⊂ Ω (n > 1) such that sup{dist (x, Ωc) : x ∈ ∂Ωn} < 1/n as
n → ∞, thus ∪nΩn = Ω. For m > R0 we set Ωn

m = Ωn ∩ Bm. Therefore Ωn
m ⊂ Ωn

m ⊂ Ωn+1
m+1

and ∪n,mΩn
m = Ω. For τ > 0, let u = um,n,τ be the solution of



























∂tu − ∆u + uq = 0 in Ωn
m × (τ,∞)

u(., τ) = uΩ(., τ) in Ωn
m

u(x, t) = 0 in ∂Ωn × [τ,∞)

u(., τ) = uΩ(., τ) in ∂Bm × (τ,∞).

(2.36)

By the maximum principle,

0 ≤ uΩ(., t) − um,n,τ (., t) ≤ max{uΩ(x, s) : (x, s) ∈ ∂Ωn × [τ, t]} → 0, (2.37)

as n → 0. Next we extend um,n,τ by zero in Ω \ Ωn and apply (2.15 )-(2.19 ) with η as in
Theorem 2.6 and m > 2R. We get, with ΩR = Ω ∩ BR,

2−1

∫

ΩR

u2
m,n,τ (., t)dx +

∫ t

τ

∫

ΩR

(

2−1 |∇um,n,τ |2 + uq+1
m,n,τ

)

dxds ≤ CRN (t + 1)τ−2/(q−1),

(2.38)
and

2−1

∫ t

τ

∫

ΩR

(s − τ)

∣

∣

∣

∣

dum,n,τ

dt

∣

∣

∣

∣

2

dxds + (t − τ)

∫

ΩR

(

|∇um,n,τ |2
2

+
uq+1

m,n,τ

q + 1

)

dx

≤ 8C(2R)N (t − τ)tτ−2/(q−1)

(2.39)

We let successively m → ∞ and n → ∞ and derive by Fatou’s lemma and (2.37 ) that
inequalities (2.38 ) and (2.39 ) still hold with uΩ instead of um,n,τ . If we denote by H̃1

0 (ΩR)
the closure of the space of C∞(ΩR) functions which vanish in a neighborhood on ∂Ω, then
(2.38 ) is an estimate in L2(τ, t; H̃1

0 (ΩR)) which is a closed subspace of L2(τ, t; H1(ΩR)).
Therefore uΩ ∈ L2

loc(0,∞; H̃1
0 (ΩR)). Using (2.39 ) and equation (2.12 ) we conclude that

uΩ ∈ I(QΩloc
∞ ). �

We end this section with a comparison result between uΩ and uΩ.
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Theorem 2.13 Assume q > 1 and Ω satisfies PWC. Then uΩ = uΩ.

Proof. By Proposition 2.9 and Theorem 2.11-Step 2, uΩ ≤ uΩ. If Ω is bounded, we can
compare uΩ(., .) and uΩ(. + τ, .) on Ω × (0,∞). Since uΩ, the least upper bound of I(QΩ

∞)
belongs to I(QΩ

∞), and uΩ(. + τ, .) ∈ I(QΩ
∞) we derive uΩ(. + τ, .) ≤ uΩ(., .), from which

follows uΩ ≤ uΩ. Next, if Ω is not bounded, we can proceed as in the proof of Theorem 2.6
by comparing uΩ(., .) + WR and uΩ(. + τ, .) on ΩR × (0,∞), where WR is defined in (2.20 ).
Because (uΩ(. + τ, .) − uΩ(., .) − WR(.))+ is a subsolution of (2.12 ) in QΩR

∞ which vanishes
at t = 0 and near ∂ΩR × (0,∞); it follows uΩ(. + τ, .) ≤ uΩ(., .) + WR(.). Letting R → ∞
and τ → 0 completes the proof. �

3 Uniqueness of large solutions

Definition 3.1 Let q > 1 and Ω ⊂ R
N be any domain. A positive function u ∈ C2,1(QΩ

∞)
of (2.12 ) is a large initial solution if it satisfies

lim
t→0

u(x, t) = ∞ ∀x ∈ Ω, (3.40)

uniformly on any compact subset of Ω.

We start with the following lemma

Lemma 3.2 Assume u ∈ C2,1(QΩ
∞) is a large solution of (2.12 ), then for any open subset

G such that G ⊂ Ω, there holds

lim
t→0

t1/(q−1)u(x, t) = cq :=

(

1

q − 1

)1/(q−1)

uniformly in G. (3.41)

Proof. By compactness, it is sufficient to prove the result when G = Bρ and Bρ ⊂ Bρ′ ⊂ Ω.
Let τ > 0; by comparison, u(x, t) ≥ uBρ′

(x, t + τ) for any (x, t) ∈ QΩ
∞. Letting τ → 0 yields

to u ≥ uBρ′
. Next for τ > 0,

φq(t + τ) ≤ uBρ′
(x, t) + uBc

ρ′
(x, t) + WR(x) ∀(x, t) ∈ QR

N

∞ .

Similarly

max{uBρ′
(x, t + τ), uBc

ρ′
(x, t + τ)} ≤ φq(t) + WR(x) ∀(x, t) ∈ QR

N

∞ .

Letting R → ∞ and τ → 0,

max{uBρ′
, uBc

ρ′
} ≤ φq ≤ uBρ′

+ uBc
ρ′

in QR
N

∞ .

For symmetry reasons, x 7→ uBc
ρ′

(x, t) is radially increasing for any t > 0, thus, for any

ρ < ρ′ and T > 0, there exists Cρ,T > 0 such that

uBc
ρ′

(x, t) ≤ Cρ,T ∀(x, t) ∈ Bρ × [0, T ].
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Therefore
lim
t→0

t1/(q−1)uBρ′
(x, t) = cq uniformly on Bρ.

Because
uBρ′

(x, t) ≤ u(x, t) ≤ φq(t) ∀(x, t) ∈ QΩ
∞,

(3.41 ) follows. �

As an immediate consequence of Lemma 3.2 and (2.23 ), we obtain

Proposition 3.3 Assume q > 1 and ∂Ω is compact. Then uΩ is a large solution.

We start with the following uniqueness result

Proposition 3.4 Assume q > 1, Ω satisfies PWC, ∂Ω is bounded, and either Ω or Ωc is
strictly starshaped with respect to some point. Then uΩ is the unique large solution belonging
to J (QΩ

∞).

Proof. Without loss of generality, we can suppose that either Ω or Ωc is strictly starshaped
with respect to 0. By Theorem 2.11, uΩ exists and, by (2.23 ) and Lemma 3.2, it is a large
solution. Let u ∈ J (QΩ

∞) be another large solution. Clearly u ≤ uΩ. If Ω is starshaped, then
for k > 1, the function uk(x, t) := k2/(q−1)u(kx, k2t) is a solution in QΩk

, with Ωk := k−1Ω.
Clearly it is a large solution and it belongs to J (QΩk

). For τ ∈ (0, 1), set uk,τ (x, t) =
uk(x, t − τ). Because ∂Ω is compact,

lim
k↓1

dH(∂Ω, ∂Ωk) = 0,

where dH denotes the Hausdorff distance between compact sets. By assumption uΩ ∈
C([τ,∞)×Ω) vanishes on [τ,∞)× ∂Ω, thus, for any ǫ > 0, there exists k0 > 1 such that for
any

k ∈ (1, k0] =⇒ sup{uΩ(x, t) : (x, t) ∈ [τ, 1] × ∂Ωk} ≤ ǫ.

Since uk,τ + ǫ is a super solution in QΩk
which dominates uΩ on [τ, 1]× ∂Ωk and at t = τ , it

follows that uk,τ +ǫ ≥ uΩ in (τ, 1]×Ωk. Letting successively k → 1, τ → 0 and using the fact
that ǫ is arbitrary, yields to u ≥ uΩ in (0, 1] × Ω and thus in QΩ

∞. If Ωc is starshaped, then
the same construction holds provided we take k < 1 and use the fact that, for R > 0 large
enough, uk,τ +ǫ+WR is a super solution in QΩk∩BR

which dominates uΩ on [τ, 1]×∂Ωk∩BR

and at t = τ . Letting successively R → ∞, k → 1, τ → 0 and ǫ → 0 yields to u ≥ uΩ

�

As a consequence of Section 2, we have the more complete uniqueness theorem

Theorem 3.5 Assume q > 1, Ω ⊂ R
N is a domain with a bounded boundary ∂Ω satisfying

PWC. Then for any f ∈ C(∂Ω × [0,∞)), f ≥ 0, there exists a unique positive function
u = uΩ,f ∈ C(Ω × (0,∞)) ∩ C2,1(QΩ

∞) satisfying















∂tu − ∆u + |u|q−1u = 0 in QΩ
∞

u = f in ∂Ω × (0,∞)

limt→0 u(x, t) = ∞ locally uniformly on Ω.

(3.42)
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Proof. Step 1: Existence. It is a simple adaptation of the proof of Theorem 2.11. For
k, τ > 0, we denote by u = uk,τ,f the solution of















∂tu − ∆u + |u|q−1u = 0 in Ω × (τ,∞)

u = f in ∂Ω × (τ,∞)

u(x, τ) = k on Ω.

(3.43)

Notice that uk,τ,f is bounded from above by uΩ(., . − τ) + vf,τ , where vf,τ = v solves















∂tv − ∆v + |v|q−1v = 0 in Ω × (τ,∞)

v = f in ∂Ω × (τ,∞)

v(x, τ) = 0 on Ω.

(3.44)

If we let k → ∞ we obtain a solution u∞,τ,f of the same problem except that the condition
at t = τ becomes limt→τ u(x, t) = ∞, locally uniformly for x ∈ Ω. Clearly u∞,τ,f dominates
in Ω× (τ,∞) the restriction to this set of any u ∈ C(Ω×∞))∩C2,1(QΩ

∞) solution of (3.42 ),
in particular uΩ. Therefore u∞,τ,f ≥ u∞,τ ′,f in Ω× (τ,∞) for any 0 < τ ′ < τ . When τ → 0,
u∞,τ,f converges to a function uf which satisfies the lateral boundary condition uΩ,f = f .
Therefore uΩ,f satisfies (3.42 ).

Step 2: Uniqueness. Assume that there exists another positive function u := uf ∈ C(Ω ×
(0,∞)) ∩ C2,1(QΩ

∞) solution of (3.42 ). Then uf < uΩ,f . For τ > 0, consider the solution
v := vτ of















∂tv − ∆v + |v|q−1v = 0 in Ω × (τ,∞)

v = 0 in ∂Ω × (τ,∞)

v(x, τ) = uf(x, τ) on Ω.

(3.45)

Then vτ ≤ uf in Ω × (τ,∞). In the same way, we construct a solution v : ṽτ of the same
problem (3.45 ) except that the condition at t = τ is now v(x, τ) = uΩ,f (x, τ) for all x ∈ Ω.
Furthermore vτ ≤ ṽτ ≤ uΩ,f . Next we adapt a method introduced in [6], [7] in a different
context. We denote

Zf = uΩ,f − uf and Z0,τ = ṽτ − vτ , (3.46)

and, for (r, s) ∈ R
2
+,

h(r, s) =

{ rq − sq

r − s
if r 6= s

0 if r = s.

Since r 7→ rq is convex on R+, there holds

{

r0 ≥ s0, r1 ≥ s1

r1 ≥ r0, s1 ≥ s0
=⇒ h(r1, s1) ≥ h(r0, s0).

This implies
h(uΩ,f , uf) ≥ h(ṽτ , vτ ) in Ω × [τ,∞). (3.47)
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Next we write

0 = ∂t(Zf − Z0,τ ) − ∆(Zf − Z0,τ ) + uq
Ω,f − uq

f − (ṽq
τ − vq

τ )

= ∂t(Zf − Z0,τ ) − ∆(Zf − Z0,τ ) + h(uΩ,f , uf )Zf − h(ṽτ , vτ )Z0,τ .
(3.48)

Combining (3.47 ), (3.48 ) with the positivity of Zf and Z0,τ , we derive

∂t(Zf − Z0,τ ) − ∆(Zf − Z0,τ ) + h(uΩ,f , uf )(Zf − Z0,τ ) ≤ 0, (3.49)

in Ω × (τ,∞). On ∂Ω × [τ,∞) there holds Zf − Z0,τ = f − f = 0. Furthermore, at
at t = τ , Zf(x, τ) − Z0,τ (x, τ) = uΩ,f (x, t) − uf(x, τ) − uΩ,f (x, t) + uf (x, τ) = 0. By
the maximum principle, it follows Zf ≤ Z0,τ in Ω × [τ,∞). Since τ > τ ′ > 0 implies
vτ (x, τ) = uf (x, τ) ≥ vτ ′(x, τ) and ṽτ (x, τ) = uΩ,f (x, τ) ≥ ṽτ ′(x, τ), the sequences {vτ} and
ṽτ converge to some functions {v0} and ṽ0 which belong to C(Ω × (0,∞)) ∩ C2,1(QΩ

∞) and
satisfy (3.42 ) with f = 0 on ∂Ω × (0,∞). Furthermore

uΩ,f − uf ≤ ṽ0 − v0. (3.50)

Since uΩ,f ≥ uΩ, ṽ0 ≥ uΩ, which implies that ṽ0 = uΩ by the maximality of uΩ. If Ω′ is

any smooth bounded open subset such that Ω
′ ⊂ Ω there holds by an easy approximation

argument v0 ≥ uΩ′ in Ω′ × (0,∞). Therefore v0 ≥ uΩ = uΩ = uΩ, by Proposition 2.9 and
Theorem 2.13. Applying again Theorem 2.13 we derive that the right-hand side of (3.50 )
is zero, which yields to uΩ,f = uf �
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