
HAL Id: hal-00320246
https://hal.science/hal-00320246v1

Submitted on 3 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using nonsmooth analysis for numerical simulations of
contact mechanics

Pierre Alart, David Dureisseix, Mathieu Renouf

To cite this version:
Pierre Alart, David Dureisseix, Mathieu Renouf. Using nonsmooth analysis for numerical simulations
of contact mechanics. P. Alart, O. Maisonneuve, R.T. Rockafellar. Nonsmooth Mechanics and Anal-
ysis: Theoretical and Numerical Advances, Springer, pp.195-207, 2006, Advances in Mechanics and
Mathematics, �10.1007/0-387-29195-4_17�. �hal-00320246�

https://hal.science/hal-00320246v1
https://hal.archives-ouvertes.fr


USING NONSMOOTH ANALYSIS FOR

NUMERICAL SIMULATION OF

CONTACT MECHANICS

Pierre Alart
David Dureisseix
and Mathieu Renouf
LMGC, University Montpellier 2, CNRS UMR5508, CC048, Place Eugène Bataillon,

F-34095 Montpellier Cedex 5, France

alart@lmgc.univ-montp2.fr

dureisseix@lmgc.univ-montp2.fr

renouf@lmgc.univ-montp2.fr

Two different approaches for simulation of contact mechanics prob-lems are 
investigated. First, the equivalence of the Large Time INcre-ment (LATIN) method for 
unilateral contact problems, in terms of an augmented Lagrangian approach dedicated 
to nonsmooth problems, is proved (with the non trivial introduction of two constraints: 
an equal-ity constraint and an inequality-type constraint). Second, the Finite Element 
Tearing and Interconnecting method for Contact (FETI-C) is interpreted as a 
projected gradient with projection, acting on the dual problem. An extension to 
frictional contact is presented in the context of granular media.

1. Introduction

In nonsmooth analysis and mechanics, Jean Jacques Moreau pro-
claims to be firstly a mechanician and a mathematician who develops
only what is strictly necessary for mechanical modeling. He was not
initially a numerician even if his last works on granular material require
efficient computer resources and algorithms. His mathematical tools
proved to be very useful in physical / mechanical modeling (friction,
plasticity...) and in applied mathematics related to the solution of partial
differential equations and in optimization theory. The theory of duality
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in Convex Analysis plays an important role in the mathematical mod-
eling of the aforementioned fields and in the design of efficient solution
schemes based, for instance, on augmented Lagrangian functions. But
a lot of numerical developments in intensive computational mechanics,
when limited to linear large scale problems, did not call for sophisticated
notions of Convex Analysis. This research field led to specific concepts
already difficult to handle in a linear context (preconditioning, domain
decomposition methods...).

The motivation of this work is the re-engineering of algorithms arising
from ‘intuitive’ approaches of computational mechanics, using convex
and nonsmooth analysis. This could be a guide for algorithm extensions
and development of new approaches.

1.1 Model problem

To simplify the presentation, let us consider the case of the friction-
less Signorini problem depicted in Figure 1.1: only one elastic body Ω
pressed against a rigid plate, under small perturbations, with a quasi-
static evolution process. The potential contact area Γ will be called
an interface. n designates the outward unitary normal vector on the
boundary ∂Ω.
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Figure 17.1. Left: vertical stress field solution on the model problem (cylindrical
punch); right: convergence results for different iterative algorithms

If F is the force applied to the body by the plate, and if V is the
displacement of the body on the interface Γ, the interface behavior is:
(i) no friction, i.e. (1−nnT )F = 0, and (ii) complementarity conditions
(Karush-Khun-Tucker):
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no penetration: z = nT V ≥ 0, i.e. z ∈ C1 (the positive cone);

no adhesion: w = nT F ≥ 0, i.e. w ∈ C1;

no dissipation: wz = 0.

The problem consists in finding a displacement field U(M), and a
stress field σ(M), such that:

U is sufficiently regular (the strain field is: ε = (gradU)sym), and
equals some prescribed values on a first part of the boundary:
U |∂1Ω = Ud, and on the interface: nT U |Γ = z; a couple (U, z)
satisfying these conditions is said kinematically admissible (KA);

the stress field balances the external body force f
d

and the pre-
scribed forces on a second part of the boundary: div σ + f

d
= 0 in

Ω, σn|∂2Ω = F d, and on the interface: σn|Γ = wn; a couple (σ, w)
satisfying these conditions is said statically admissible (SA);

the constitutive relation of the body (linear elasticity with D as
Hooke tensor): σ = Dε, and of the interface (see above).

There are several ways to formulate this problem: minimization with
inequality-like constraints, variational inequalities, linear complemen-
tarity problems, differential inclusions... The formulations of the next
Sections can be derived from the following: the problem is to find
(U, z,σ, w) minimizing the so-called error in constitutive relation η for
contact problems (Coorevits et al., 1999):

η2(U, z,σ, w) =
1

2

∫

Ω
Tr[(σ − Dε(U))D−1(σ − Dε(U))]dΩ +

∫

Γ
wzdΓ

on the set of admissible fields (U, z) KA, (σ, w) SA, and z ∈ C1, w ∈
C1 (on this set, η2 is obviously positive, and is zero if and only if the
constitutive relations are satisfied).

Using Stoke’s theorem, for admissible fields, the expression of η2 can
be split into two uncoupled terms: η2 = η2

1(U, z) + η2
2(σ, w) with:

η2
1(U, z) =

1

2

∫

Ω
Tr[ε(U)Dε(U)]dΩ −

∫

Ω
f

d
· UdΩ −

∫

∂2Ω
F d · UdS

η2
2(σ, w) =

1

2

∫

Ω
Tr[σD−1σ]dΩ −

∫

∂1Ω
Ud · σndS

The minimization of the first part only leads to the primal formulation
of the problem, while the minimization of the second one leads to the
dual (in the Legendre-Fenchel way) formulation. Mixed formulations
can be obtained by dualizing each of them (in the Arrow-Hurwicz way)
using a Lagrange multiplier (De Saxce, 1989).
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1.2 Discretized formulations

The discretized version of the primal formulation, once finite elements
are used, is:

min
Bu≥0

1

2
uT Ku − uT f

where u is the set of finite element degrees of freedom (dof), K is the
stiffness matrix, and f are the prescribed generalized forces. B is a
Boolean operator that selects the dof on the interface; z = Bu. B

can also change to the local basis on normal direction; for the sake of
simplicity, we assume in all of the following that no such rotations are
required. Therefore, the previous problem is easily condensed on the
contact dof z and leads to

min
z≥0

φ(z) with φ(z) =
1

2
zT Mz + zT q (17.1)

where M is the condensed stiffness matrix, and q the opposite of the
condensed generalized forces.

Using the indicator function ψC1
of the discretized cone C1, this is

equivalent to:

min
z

φ(z) + ψC1
(z) ⇔ 0 ∈ ∇φ(z) + ∂ψC1

(z) (17.2)

The problem can therefore be re-stated as to find a ∈ ∂ψC1
(z) such that

∇φ(z) + a = 0. a must satisfy: ψ⋆
C1

(a) + ψC1
(z) − aT z ≤ 0, where

ψ⋆
C1

is the Legendre-Fenchel transform of ψC1
. As the Legendre-Fenchel

inequality should be satisfied, ψ⋆
C1

(a) + ψC1
(z) − aT z ≥ 0, the previous

inequality reduces to an equality. This equality is equivalent to: a ≤ 0,
z ≥ 0 and aT z = 0. Using w = −a, the problem is then to find (z, w)
such that

Mz − w = −q with 0 ≤ z ⊥ w ≥ 0 (17.3)

This is a classical linear complementarity problem (LCP), (Cottle
et al., 1992). The unknown is the couple (z, w).

A dual formulation can be built from (17.2): with the indicator func-
tion ψC1

(z) = supw≥0(−z)T w, it is equivalent to: infz [supw≥0 φ(z) −

zT w]. With sensible assumptions (convexity, semicontinuity) this is
again equivalent to: supw≥0[infz φ(z)− zT w]. The inner minimization

problem leads to z = M−1(−q + w). Substituting this last value in the
previous problem leads to the dual problem:

sup
w≥0

−
1

2
wT M−1w + wT M−1q (17.4)
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2. The LATIN method for contact problems

The LATIN method (Ladevèze, 1999) was originally designed for
time-dependent problems. However, it has been applied to different
situations, and among them domain decomposition, contact problems
(Champaney et al., 1995)... We are interested herein with the version
dealing with contact between substructures, for which the method can
be viewed as a mixed domain decomposition method, with nonlinear be-
havior of interfaces. We will focus on frictionless contact. The principles
of the LATIN method will be briefly recalled, especially the splitting it
introduces for the problem unknowns and constraints, since the aug-
mented Lagrangian approaches are often compared to operator splitting
methods (Fortin and Glowinski, 1982, Glowinski and Le Tallec, 1989).

2.1 The LATIN algorithm

To simplify the presentation, we will derive all the presentation for
the discretized problem (17.3), though the method is directly applicable
to the continuum media problem. In each case, the unknowns are both
the displacement z and the forces w. The LATIN method is based on
three mechanical principles:

splitting the difficulties: the linear equations (possibly global) are
collected into the set Ad, while the local equations (possibly non
linear) are collected into the second set Γ. The solution is the
intersection of these sets.

For the problem (17.3), (w, z) belongs to Ad iff Mz − w = −q,
and (ŵ, ẑ) belongs to Γ iff 0 ≤ ẑ ⊥ ŵ ≥ 0;

building a 2-stage iterative algorithm: the solution is searched with
the construction of two series of approximations belonging alter-
natively to Ad and Γ.

At iteration n, the local stage consists in finding (ŵ, ẑ) ∈ Γ with
a first search direction (ŵ−wn, ẑ − zn) ∈ E+. (wn,zn) is known
at this stage.

The linear stage consists in finding (wn+1,zn+1) ∈ Ad with a
second search direction (wn+1 − ŵ,zn+1 − ẑ) ∈ E−, while (ŵ, ẑ)
is known from the previous stage;

using an ad hoc representation of the unknowns. This last principle
is suited to time-dependent problems, and won’t be used herein.

The choice for the search direction is classically to use a parameter
k homogeneous to an interface stiffness. For the local stage, the search
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direction is: (ŵ − wn) − k(ẑ − zn) = 0. The local stage is a non-linear
and local updating problem, but its solution (ẑ, ŵ) is explicit:

ẑ = −k−1〈wn − kzn〉−

ŵ = 〈wn − kzn〉+

〈•〉− and 〈•〉+ designate respectively the negative part and the positive
part of their argument.

For the linear stage, the unknowns are (zn+1, ŵ) and the conjugate
search direction is used: (wn+1−ŵ)+k(zn+1− ẑ) = 0. The linear stage
is a global and linear updating problem: zn+1 is obtained with

(M + k1)zn+1 = (ŵ + kẑ) − q and wn+1 = (ŵ + kẑ) − kzn+1

Here, k is a parameter of the method. The value of k has no influence
on the solution at convergence, but it modifies the convergence rate.
Numerical simulations show that there is an optimal value, which is
related to the interface operator obtained when condensing the problem
on the interface. For the present model problem, this operator is M ,
and k can be diagonal values of M , or an average of these.

Figure 1.1 reports convergence results (with an energy-norm error)
for different iterative algorithms (CPG: conjugate gradient with projec-
tion (Renouf and Alart, 2004), NLGS: non-linear Gauss-Seidel (Moreau,
1999, Jean, 1999)). For this test case, the convergence rate comparison
is similar to the one that can be obtained in linear case, for which conju-
gate gradient has usually a higher convergence rate than LATIN, itself
higher than for Gauss-Seidel.

2.2 Interpretation as a nonsmooth augmented
Lagrangian approach

For perfect interfaces, the LATIN algorithm has been proved to be
equivalent to the augmented Lagrangian interpretation (Glowinski and
Le Tallec, 1990) of the approach proposed in (Lions, 1990), and more
precisely to the so-called ‘ALG3’ algorithm in (Fortin and Glowinski,
1982), see (Champaney et al., 1995). We proposed herein to prove the
equivalence to an augmented Lagrangian algorithm for the case of con-
tact without friction.

Beginning with the minimization problem (17.1), the first step is to
split the unknown z, using an intermediate unknown ẑ, an to introduce
an equality constraint z = ẑ, as well as an inequality-like on ẑ:

min
z=ẑ, ẑ≥0

φ(z) (17.5)
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The second step is to use two multipliers wc and ŵc and convex
analysis methodology for dualizing the previous constraints (Rockafel-
lar, 1976). The augmented Lagrangian is obtained with a classical dual-
ization and regularization of the equality constraint, while the Moreau-
Yosida technique is applied to the inequality-like constraint, using a
positive parameter k (Yosida, 1964, Moreau, 1965):

L(z, ẑ; wc, ŵc) = φ(z)+

−
1

2
wT

c k−1wc +
1

2
[wc + k(z − ẑ)]T k−1[wc + k(z − ẑ)]+

−
1

2
ŵT

c k−1ŵT
c +

1

2
〈ŵc + kẑ〉T−k−1〈ŵc + kẑ〉− (17.6)

The stationary conditions for this augmented Lagrangian are

∂L

∂z
=0 = Mz + q + wc + k(z − ẑ)

∂L

∂wc
=0 = −k−1 {wc − [wc + k(z − ẑ)]}

∂L

∂ẑ
=0 = −wc − k(z − ẑ) + 〈ŵc + kẑ〉−

∂L

∂ŵc
=0 = −k−1 {ŵc − 〈ŵc + kẑ〉−}

One can then remark that for the solution, z = ẑ and wc = ŵc = −w.
Designing an iterative Uzawa-like algorithm consists in expressing the
successive stationary conditions with the previous obtained values of the
unknowns. With the previous remark, the latest values of z or ẑ can be
substituted one to the other, and similarly for wc and ŵc. The successive
steps are the following:

step 1: assuming that the values ŵ(n)
c and ẑ(n) are the latest ones,

the stationary with respect to z gives the next value of z(n+1):

Mz(n+1) + q + k(z(n+1) − ẑ(n)) + ŵ(n)
c = 0

step 2: with this last updated value z(n+1), the stationary with

respect to wc gives the next value of w
(n+1)
c :

w
(n+1)
c − [ŵ(n)

c + k(z(n+1) − ẑ(n))] = 0

step 3: with these last values z(n+1) and w
(n+1)
c , the stationary

with respect to both ẑ and ŵc allows to update their values: first,

−w
(n+1)
c − k(z(n+1) − ẑ(n+1)) + 〈w

(n+1)
c + kz(n+1)〉− = 0
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that leads to

ẑ(n+1) = k−1
{

(w(n+1)
c + kz(n+1)) − 〈w(n+1)

c + kz(n+1)〉−

}

= k−1〈w(n+1)
c + kz(n+1)〉+

and second, ŵ(n+1)
c − 〈w

(n+1)
c + kz(n+1)〉− = 0

The steps 1 and 2 are the linear stage of the LATIN, while the step 3
is the local stage.

Though other permutations may lead to other augmented Lagrangian
versions for nonsmooth problems, the proposed one recovers the LATIN
method that appears to be efficient for the simulation of large scale
assemblies of deformable parts (Champaney et al., 1997).

3. Gradient methods for large scale contact
problems

We focuss herein on two kinds of large scale problems. Such large
scale problems require sophisticated tools arising from the optimization
field, traditionally relying on convex and nonsmooth analysis (Bonnans
et al., 2003). The first one is related to finite element simulation of
assemblies with a dual domain decomposition method. This method is
well suited to problems with a large number of degrees of freedom and a
few contact conditions between subdomains. The second one deals with
simulation of granular materials and structures: the contact conditions
are numerous in this case, between rigid bodies in a large collection.

3.1 Structural frictionless contact problems

The FETI-C method has been built as an extension of the Finite El-
ement Tearing and Interconnecting (FETI) method (Farhat and Roux,
1991) for the case of contact without friction between subdomains (Du-
reisseix and Farhat, 2001). The numerical and parallel scalability (i.e.
the ability to converge with a number of iterations depending weakly on
the number of subdomains) of the FETI method have been examplified,
thanks to the presence of a ‘coarse’ problem acting on the rigid body dis-
placement of the floating subdomains (subdomains without prescribed
displacement). Nevertheless, for simplification, no floating subdomain
will be considered here, and only one subdomain is assumed to have an
interface with a rigid plate (as for the model problem of Figure 1.1).

The extension to interfaces that exhibit an unilateral contact behavior
is performed with the following remarks:

the procedure should act on admissible reaction forces: w ≥ 0;
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the classical residual z, which is the displacement jump across the
interfaces, should be replaced by the contact residual z̃ = 〈z〉− to
monitor the convergence;

the ‘gluing’ condition should act on the active contact interface
(defined as the part Γa of Γ where w > 0), using an adapted

Boolean operator: Bwr =

{
r on Γa

0 on Γ\Γa

With BT
w as the transpose of the matrix Bw for a given w, one gets

the optimization problem (non quadratic due to the dependence of Bw
on w):

min
w≥0

1

2
wT (BT

wM−1Bw)w − wT (BT
wM−1q) (17.7)

The straightforward extension of FETI approach consists in applying
formally a conjugate gradient algorithm to the problem (17.7) as if this
problem is quadratic, driving z̃ to zero, and reusing classical precondi-
tioners. It appears to be scalable for the case where there are floating
subdomains, for which an additional projection is used (Dureisseix and
Farhat, 2001). Of course, the conjugating property is not satisfied for
all of the previous search directions because the Bw operator projects
the iterate, and the BT

w operator projects the gradient.
Therefore, this algorithm can be interpreted as a projected conjugate

gradient with projection, applied to the classical quadratic dual prob-
lem as expressed in (17.4). Work is in progress on adapting FETI-DP
version (Farhat et al., 2001) to contact and friction. Such an adaptation
would take advantage of the aforementioned interpretation, and of the
developments presented in the next Section.

3.2 Granular frictional contact problems

Independently, P. Alart and M. Renouf developed a conjugate gradient
type algorithm for granular media characterized with a large number of
bodies and consequently of contacts (Renouf and Alart, 2003).

A granular material is by essence a discrete medium, where each ‘sub-
domain’ is a rigid body. The problem is therefore stated from the point
of view of interactions between these bodies. As an example, Figure 3.2
illustrates the simulation of a sandbox experiment, useful in geomechan-
ics for soil layer formation. About 40 000 grains in interaction (involving
88 000 contact conditions) are modeled.

Each interaction, as an ‘interface’, deals with the relative velocity
between bodies, z = Bv (where v stores the velocities of the bodies),
as well as the contact impulsion w. This is of course a time-dependent
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Figure 17.2. Sandbox simulation (40 000 grains)

problem, and for a given time step, the dynamic evolution of the bodies
is Mv = BT w−q where q stores external impulsions and contributions
of relative velocities at the end of the previous time step. M is in this
case the block-diagonal mass matrix of all the bodies.

For the case of frictionless interaction, the constitutive relations are
simply 0 ≤ z ⊥ w ≥ 0. Expressing v from the dynamic evolution,
one gets z = Ww − q̃, with W = BM−1BT and q̃ = BM−1q. The
resulting problem is therefore similar to the previous ones.

For the case of frictional contact, normal and tangential components
at each node have to be separated, and we will use lowerscript n and t

to designate them. For simplicity, we will consider only bidimensional
analysis. The constraints on impulsion w must belong to the Coulomb’s
friction cone, i.e. w ∈ C(µwn), with µ as the Coulomb’s friction coeffi-
cient, wn the normal component of the impulsion, and

C(µwn) =

nc∏

α=1

R
+ × [−µwα,n, µwα,n]

where nc is the number of potential contact nodes. As for the friction-
less contact, the matrix W = BM−1BT is semi definite positive and
therefore can be singular. The resulting quasi-optimization problem is:

w ∈ argmin
x∈C(μwn)

1

2
xT Wx − xT q̃ (17.8)

The solving procedure relies on a fixed point method for the Tresca
threshold µwn and on an inner conjugate projected gradient. The pro-
posed approach is a diagonalized version of this procedure (with a one
shot single loop). The projection operators are replaced by specific cor-
rections which are not exactly projections, but may be derived from a
mathematical analyses in such a way that the converged solution satisfies
the relation (17.8), (Renouf and Alart, 2004).
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Figure 17.2 is related to the first time step of the compaction under
gravity of a box filled with 33 000 grains. The convergence of 3 differ-
ent algorithms (CPG: conjugate projected gradient, NLGS: non-linear
Gauss-Seidel, and PCPG: preconditioned conjugate projected gradient)
is compared for increasing values of Coulomb’s friction coefficient µ. For
all of them, the convergence requires more iterations when friction in-
creases. The conjugate gradient methods are more efficient than the
Gauss-Seidel one, but the gain decreases as the friction increases.

0 1000 2000 3000 4000 5000

10
0

10
1

10
2

10
3

10
4

μ = 0.4

0 400 800 1200 1600
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

μ = 0

0 1500 3000 4500 6000

μ = 0.8

0 900 1800 2700 3600 4500

μ = 0.1

NLGS
NLGS

NLGS

NLGS

CPG
CPG

CPGCPG

PCPG PCPG

PCPGPCPG

Figure 17.3. Influence of friction coefficient on convergence

4. Structural versus granular

Different scientific communities usually develop different dedicated
tools that can sometimes be re-unified. Such a gap bridging is done in
Section 2.2 where the LATIN algorithm for frictionless contact is reinter-
preted as a Lagrangian approach for nonsmooth problems. Convergence
results in this case can be transferred to Lagrangian approches as con-
vergence is proved (Ladevèze, 1999) for 0 < k < ∞. The construction
of the equivalence can also lead to other versions of the method.

Moreover, between structural analysis and granular simulation com-
munities, the approach used for frictional contact and gradient-based
simulations of a large number of grains can guide the development of ex-
tensions to frictional case for dual domain decomposition methods. The
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primal domain decomposition method already got benefits from convex
and nonsmooth analysis (Alart et al., 2004).
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