
HAL Id: hal-00320192
https://hal.science/hal-00320192

Submitted on 11 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Flexible System Level Design Methodology Targeting
Run-Time Reconfigurable FPGAs

Fabienne Nouvel, Florent Berthelot, Dominique Houzet

To cite this version:
Fabienne Nouvel, Florent Berthelot, Dominique Houzet. A Flexible System Level Design Methodology
Targeting Run-Time Reconfigurable FPGAs. EURASIP Journal on Embedded Systems, 2008, 2008,
pp.ID 793919. �10.1155/2008/793919�. �hal-00320192�

https://hal.science/hal-00320192
https://hal.archives-ouvertes.fr


Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 793919, 18 pages
doi:10.1155/2008/793919

Research Article
A Flexible System Level Design Methodology Targeting
Run-Time Reconfigurable FPGAs

Florent Berthelot,1 Fabienne Nouvel,1 and Dominique Houzet2

1 CNRS UMR 6164, IETR/INSA Rennes, 20 avenue des Buttes de Coesmes, 35043 Rennes, France
2 GIPSA-Lab, INPG, 46 avenue Felix Viallet, 38031 Grenoble Cedex, France

Correspondence should be addressed to Florent Berthelot, florent.berthelot@irisa.fr

Received 31 May 2007; Revised 8 October 2007; Accepted 20 November 2007

Recommended by Donatella Sciuto

Reconfigurable computing is certainly one of the most important emerging research topics on digital processing architectures
over the last few years. The introduction of run-time reconfiguration (RTR) on FPGAs requires appropriate design flows and
methodologies to fully exploit this new functionality. For that purpose, we present an automatic design generation methodology
for heterogeneous architectures based on DSPs and FPGAs that ease and speed RTR implementation. We focus on how to take into
account specificities of partially reconfigurable components from a high-level specification during the design generation steps. This
method automatically generates designs for both fixed and partially reconfigurable parts of an FPGA with automatic management
of the reconfiguration process. Furthermore, this automatic design generation enables a reconfiguration prefetching technique to
minimize reconfiguration latency and buffer-merging techniques to minimize memory requirements of the generated design. This
concept has been applied to different wireless access schemes, based on a combination of OFDM and CDMA techniques. This
implementation example illustrates the benefits of the proposed design methodology.

Copyright © 2008 Florent Berthelot et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Applications such as multimedia, encryption, or wireless
communication require highly repetitive parallel computa-
tions and lead to incorporate hardware components into the
designs to meet stringent performance and power require-
ments. On the other hand, the architecture flexibility is the
key point for developing new multistandard and multiappli-
cation systems.

Application-specific integrated circuits (ASICs) are a par-
tial solution for these needs. They can reach high perfor-
mance, computation density, and power efficiency but to
the detriment of architecture flexibility as the computation
structure is fixed. Furthermore, the nonrecurring engineer-
ing costs (NREs) of ASICs have been increased dramatically
and made them not feasible or desirable for all the applica-
tions especially for bugfixes, updates, and functionality evo-
lutions.

Flexibility is the processor’s architecture paradigm. The
algorithm pattern is computed temporally and sequentially

in the time by few execution units from a program instruc-
tion stream. This programmability potentially occurs at each
clock cycle and is applied to a general computation structure
with a limited computation parallelism capacity. The data-
path can be programmed to store data towards fixed mem-
ories or register elements, but cannot be truly reconfigured.
This kind of architecture suffers from the memory controller
bottleneck and their power inefficiency. These architectures
have a very coarse-grained reconfiguration, reported as sys-
tem level.

Reconfigurable architectures can provide an efficient
platform that satisfy the performance, flexibility, and power
requirements of many embedded systems. These kinds of ar-
chitectures are characterized by some specific features. They
are based on a spatial computation scheme with high paral-
lelism capacity distributed over the chip. Control of the op-
erator behavior is distributed instead of being centralized by
a global program memory. Multiple reconfigurable architec-
tures have been developed [1, 2]. They can be classified by
their reconfiguration granularity.

mailto:florent.berthelot@irisa.fr


2 EURASIP Journal on Embedded Systems

Flexibility, specialization−1

GPP DSP
Parallelism

FPGA

Chameleon, rapid

Very coarse Coarse Fine

Reconfiguration
granularity

ASIC
Specialization

Performance, efficiency

Figure 1: Architecture flexibility in regard with granularity and per-
formance.

FPGAs have a logic level of reconfiguration. Com-
munication networks and functional units are bit-level
configurable.Their highly flexible structure allows to imple-
ment almost any application. A volatile configuration mem-
ory allows to configure the datapath and the array of config-
urable logic blocks.

Some reconfigurable architectures are based on coarse-
grained arithmetic units of larger sizes such as 32 bits for
algorithms needing word-width data paths, such as DART
[3], Chameleon [4], Rapid [5], or KressArray [6]. They use a
functional level of reconfiguration allowing to reach a greater
power efficiency and computational density. Moreover, the
amount of configuration data needed is limited. But coarse-
grained architectures target domain-specific applications.

Figure 1 represents the architecture flexibility in regard
with the granularity and performance of the above men-
tioned architectures. The architecture granularity elevation
allows either specialization and performance or the improve-
ment of architecture flexibility as for the processors.

The introduction of dynamically reconfigurable systems
(DRSs) has opened up a new dimension of using chip area.
Recently, run-time reconfiguration (RTR) of FPGA parts has
led to the concept of virtual hardware [7].

RTR allows more sections of an application to be mapped
into hardware through a hardware updating process. A larger
part of an application can be accelerated in hardware in con-
trast to a software computation. Partial reconfiguration abil-
ity of recent FPGAs allows updating only a specified part of
the chip while the other areas remain operational and un-
affected by the reconfiguration. These systems have the po-
tential to provide hardware with a flexibility similar to that
of software, while leading to better performance. In [8] an
extensive review of benefits of hardware reconfiguration in
embedded systems is addressed. Some applications like soft-
ware defined radios (SDR) [9] are from them. This emerging
radio technology allows the development of multiband, mul-
tifunctional wireless devices [10].

However, cutting-edge applications require heteroge-
neous resources to efficiently deal with the large variety of
signal and multimedia processing. This is achieved by mix-

ing various processing granularities offered by general pur-
pose processors (GPPs), digital signal processors (DSPs),
and reconfigurable architectures. Methodologies based on a
system-level design flow can handle these heterogeneous ar-
chitectures. Our proposed design flow uses graphs to repre-
sent both the application and the architecture and aims at
obtaining a near optimal scheduling and mapping of the ap-
plication tasks on an heterogeneous architecture [11].

This paper presents our methodology allowing a fast in-
tegration and use of run-time reconfigurable components,
especially FPGAs. This implies a convenient methodology
and conception flow which allows a fast and easy integra-
tion of run-time reconfiguration onto applications and an
automatic management of the reconfiguration process. The
design space exploration will benefit from this improvement
as operations of the application algorithm graph could be
mapped either on DSP/GPP devices or statically/dynamically
on FPGA devices thanks to run-time reconfiguration.

The rest of the paper is organized as follows. Following
the introduction, Section 2 gives an overview of related ap-
proaches, especially those which deal with run-time recon-
figuration from a high-level design specification. Section 3
introduces the system-level design methodology used in this
work based on the CAD tool named SynDEx [12], which is
used for the application partitioning stage of our method-
ology. Section 4 deals with the impact of run-time recon-
figuration on this methodology and the way of modeling
partially reconfigurable FPGAs from a system-level point of
view. Section 5 then addresses the automatic design gener-
ation targeting run-time reconfigurable architectures. The
overall design flow and the generated architecture layers are
described. We detail the way to generate an automatic man-
agement of run-time reconfiguration, along with the steps to
achieve design generation, memory minimization, and dy-
namic operator creation necessary for partial reconfigura-
tion. These design flow and methodology have been applied
in Section 6 for the implementation of a transmitter system
for future wireless networks for 4G air interface. Two imple-
mentation examples, based on a network on chip (NoC) and
a point to point communication scheme, are presented. Fi-
nally Section 7 provides a conclusion of this work and gives
some indication of future works.

2. RELATED WORK

Numerous researches are focused on reconfigurable architec-
tures and on the way to exploit efficiently their potentials.
Higher level of abstraction, design space exploration, hard-
ware/software partitioning, codesign, rapid prototyping, vir-
tual component design and integration for heterogeneous ar-
chitectures; all these topics are strong trends in architectures
for digital signal processing.

This section reviews several relevant propositions in
these fields with a special emphasis on frameworks which
enable run-time reconfigurations of applications from a
high-level design specification along with considerations of
hardware-dependent steps allowing partial reconfiguration.

Silva and Ferreira [13] present a hardware framework
for run-time reconfiguration. The proposed architecture is



Florent Berthelot et al. 3

based on a general-purpose CPU which is tightly connected
to a dynamically reconfigurable fabric (DRF). A tool named
BitLinker allows the relocation and assembly of bitstreams of
individual components and is used to automate these steps
which are very dependent on the underlying hardware’s or-
ganization. This approach is architecture-centered and the
application mapping steps on this specific platform are not
addressed.

This issue requires a higher level of abstraction for the
design specification. PaDReH [14] is a framework for the
design and implementation of run-time reconfigurable sys-
tems and deals only with the DRS hardware design flow.
The use of SystemC language enables a higher level abstrac-
tion for the design and validation. After a translation to
the RTL level a space-time scheduling and hardware parti-
tioning is performed allowing the generation of a run-time
reconfiguration controller. Bitstreams generation is based
on Xilinx [15] modular design flow. In [16], a technique
based on some modifications of the SystemC kernel is pre-
sented. It allows to model and simulate partial and dy-
namic reconfiguration. The acquired results can assist in the
choice of the best cost/benefit tradeoff regarding FPGA chip
area.

Craven and Athanas [17] present a high-level synthe-
sis (HLS) framework to create HDL. The hardware/software
partitioning is performed by the designer. Reconfiguration
simulations and reconfiguration controller generation is al-
lowed from a modified version of the Impulse C ANSI C-
based design language supporting HLS from C to RTL HDL.
Nevertheless, the final implementation steps are not ad-
dressed.

The EPICURE project [18] is a more comprehensive
methodology framework based on an abstraction tool that
estimates the implementation characteristics from a C-level
description of a task and a partitioning refinement tool that
realizes the dynamic allocation and the scheduling of tasks
according to the available resources in the dynamically re-
configurable processing unit (DRPU). An intelligent inter-
face (ICURE) between the software unit and the DRPU acts
as a hardware abstraction layer and manages the reconfigura-
tion process. Overlapping between computations and recon-
figurations is not supported.

In [19], Rammig and Al present an interesting tool-
assisted design space exploration approach for systems con-
taining dynamically hardware reconfigurable resources. A
SystemC model describes the application, while an architec-
ture graph models the architecture template. Next a multi-
objective evolutionary algorithm is used to perform auto-
matic system-level design space exploration. A hierarchical
architecture graph is used to model the mutual exclusion of
different configurations.

Most of these above methodologie frameworks assume a
model of external configuration control, mandating the use
of a host processor or are tightly coupled to a specific archi-
tecture [13, 18]. Hence custom heterogeneous architectures
are not supported. Few of them address methods for specify-
ing run-time reconfiguration from a high-level down to the
consideration of specific features of partially reconfigurable
components for the implementation.

Our proposed methodology deals with heterogeneous ar-
chitectures composed of processors, FPGA or any specific cir-
cuits. The implementation of run-time reconfiguration on
hardware components, especially FPGAs, is automated and
eased by the use of a high-level application and architec-
ture specification. This step is handled by the SynDEx tool
which allows the definition of both the application and the
hardware from a high level and realizes an automated Hard-
ware/software mapping and scheduling. Run-time reconfig-
uration and overall design control scheme are independent
of any specific architecture.

3. GENERAL METHODOLOGY FRAMEWORK

Some partitioning methodologies based on various ap-
proaches are reported in the literature [11, 20, 21].

They are characterized by the granularity level of the par-
titioning, targeted hardware, run-time-reconfiguration sup-
port, on-line/off-line scheduling policies, HW-SW relocation
[22], reconfiguration prefetching technique [23] and flow
automation.

As discussed in the previous section, few tools based on
these partitioning methodologies provide a seamless flow
from the specification down to the implementation.

To address these issues, this work uses the SynDEx CAD
tool for the high-level steps of our methodology, which
include automatic design partitioning/scheduling and RTL
code generation for FPGA.

3.1. AAA/SynDEx presentation

Our methodology aims at finding the best matching between
an algorithm and an architecture while satisfying constraints.
AAA is an acronym for adequation algorithm architecture,
adequation is a French word meaning efficient matching.
AAA methodology is supported by SynDEx, an academic
system-level CAD tool and is used in many research projects
[24, 25]. AAA methodology aims at considering simultane-
ously architecture and application algorithm, both are de-
scribed by graphs, to result in an optimized implementation.

The matching step consists in performing a mapping and
a scheduling of the algorithm operations and data transfers
onto the architecture processing components and the com-
munication media. It is carried out by a heuristic which
takes into account durations of computations and inter-
component communications to optimize the global appli-
cation latency. Operation durations and inter-component
communications are taken into account for that purpose.

3.1.1. Application algorithm graph

Application algorithm is represented by a dataflow graph
(DFG) to exhibit the potential parallelism between oper-
ations. Figure 2 presents a simple example. The algorithm
model is a direct data dependence graph. An operation is
executed as soon as its inputs are available, and this DFG
is infinitely repeated. SynDEx includes a hierarchical algo-
rithm representation, conditional statements and iterations
of algorithm parts. The application can be described in



4 EURASIP Journal on Embedded Systems

a hierarchical way by the algorithm graph. The lowest hier-
archical level is always composed of indivisible operations
(C2, F1, and F2). Operations are composed of several input
and output ports. Special inputs are used to create condi-
tional statements. Hence an alternative subgraph is selected
for execution according to the conditional entry value. As il-
lustrated in Figure 2, the conditional entry “X” of “C1” op-
eration represents such a possibility. Data dependencies be-
tween operations are represented by valued arcs. Each input
and output port has to be defined with its length and data
type. These lengths are used to express either the total re-
quired data amount needed by the operation before starting
its computation or the total amount of data generated by the
operation on each output port.

3.1.2. Architecture graph

The architecture is also modeled by a graph, which is a
directed graph where the vertices are computation oper-
ators (e.g., processors, DSP, FPGA) or media (e.g., OCB
busses, ethernet) and the edges are connections between
them. So the architecture structure exhibits the actual par-
allelism between operators. Computation vertices have no
internal computation parallelism available. An example is
shown in Figure 3. In order to perform the graph matching
process, computation vertices have to be characterized with
algorithm operation execution times. Execution times are de-
termined during the profiling process of the operation. The
media are also characterized with the time needed to trans-
mit a given data type.

3.1.3. AAA results

The result of the graph matching process is a mapping and
scheduling of the application algorithm over the architecture.
These informations are detailed by the automatically gener-
ated files called “macrocodes.” Macrocodes are generated for
each computation vertex of the architecture graph. Figure 4
shows a possible macrocode file which describes the behav-
ior of the vertex named “FPGA1” when only the “C2” oper-
ation is mapped on. The macrocode is a high-level language
made of hardware independent primitives. Macrocodes are
always composed of several threads. There is one thread for
the computation controls where operations are called, like
the C2 operation with input and output buffers.

There is one thread for each communication port of the
operator as modeled in the architecture graph. Communica-
tion threads can receive and send data thanks to the “Recv ”
and “Send ” primitives. The primitives “Suc1 ,” “Suc0 ,”
“Pre0 ,” “Pre1 ” manipulate the semaphores to ensure mu-
tual exclusions and synchronizations between threads.

There are also macros for memory allocations. They de-
fine depth and data type of buffers used to store the com-
putation results of the operator (number of generated events
on the arc defined in the application algorithm graph). The
set of generated macrocode files represents a distributed syn-
chronized executive. This executive is dedicated to the ap-
plication and can be compared to an offline static operating
system.

Figure 5 depicts the overall methodology flow. Each
macrocode is translated toward a high-level language (HDL
or C/C++) for each HW and SW component. This trans-
lation produces an automatic dead-lock free code. The
macrocode directives are replaced by their corresponding
code from libraries (C/C++ for software components, VHDL
for hardware components). Many libraries have been devel-
oped for heterogeneous platforms and we present how we
extend SynDEx capacities to handle runtime reconfigurable
components.

4. RUN-TIME RECONFIGURATION CONSIDERATIONS

4.1. Architecture graph modeling of run-time
reconfigurable components

In our methodology, the algorithm graph application de-
scription is realized at the functional level representing
coarse-grained operations. This description is handled dur-
ing the design flow through the use of libraries containing IP
definitions for code generation. These coarse-grained IPs are
supposed to be developed to fully exploit parallelism of their
final implementation targets. This step is basically achieved
by the compiler for software components or the synthesizer
for hardware components. Hence, the logical-level architec-
ture granularity of FPGA is exploited by the RTL-synthesizer
to generate IP netlists.

With this high-level modeling, static components (which
do not provide reconfiguration support) and run-time re-
configurable components are modeled by vertices in the ar-
chitecture graph. We have defined two kinds of vertices to
match reconfiguration support of hardware components: the
static vertices and the run-time reconfigurable vertices. Run-
time reconfigurable vertices can be considered as an exten-
sion of static vertices in term of functional flexibility as their
operations can be changed dynamically.

As the last FPGA generations have reached high densities,
it can be advantageous to divide them in several independent
parts for architecture modeling. Example (b) in the left side
of Figure 6 presents the modeling of an FPGA divided in five
parts. One is considered as static (F1), two represent embed-
ded microprocessors (P1, P2), and the last two represent two
partially reconfigurable areas (D1, D2). We can also see the
architecture graph modeling of this FPGA made with several
vertices under SynDEx. The internal links named CC1, IL1,
IL2 and IL3 represent data communications between these
sub-FPGA parts. The modeling of a prototyping platform
(case (a), Figure 6) composed of two FPGAs, one CPLD and
a processor, can be represented with the same architecture
graph. Only the characterization of the communication me-
dia differs.

The top of Figure 6 shows a set of six operations compos-
ing an algorithm graph. Once the mapping process is done,
these operations are affected to the architecture graph ver-
tices. All operations mapped to a same vertex are sequen-
tially executed at run-time. Hence we have defined three
kinds of operators for the operation executions on the hard-
ware. The first is a static operator which can not be reconfigu-
rated, so dedicated to one operation. The two others, named



Florent Berthelot et al. 5

x = 1 x = 2 x = 3 x = 4

Sensor

Constant

Conditional entry

Hierarchical operation

cst1

x 1

x

Actuator

Subgraph

Operations

Output
port

Entry
port

Selected
subgraph

C1 C2
o

x o

i1

i2

o

o

o

a 1o 1

x

i1

i2

cst2

o

F1

F2a o
b

o

a
io

1o

Figure 2: Algorithm graph.

PAL to YUV (BT829)

VID IN

YUV to PAL (BT864a)

VID OUT

SDBa
SDBb

VID IN

VID OUT

Computation
vertices Communication vertices

Communication
ports

PC (pentium)

PCI

DSP2 (TMS320C6416)

SDBa
SDBb
CP0
CP1
PCI

FPGA1 (virtex)

SDBa
SDBb
CP0
CP1
CP2
CP3

DSP3 (TMS320C6414)

Bus 1 (SDB)

IN (VID IN)

OUT (VID OUT)

Bus 3 (SDB)

Bus 6 (CP)

PCI (BUS PCI)

SMT319

SMT358

SMT361

Figure 3: Architecture graph of a prototyping platform.



6 EURASIP Journal on Embedded Systems

Include (syndex.m4x)
Processor (Virtex, FPGA1)

Semaphores (
mem1 empty, mem1 full,
mem2 empty, mem2 full,

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Semaphore
allocation

Alloc (char, mem1, 92)
Alloc (char, mem2, 92)

}
Memory allocation

(data type, name, depth)

Thread (CP, Bus6)
Loop

Suc1 (mem1 empty)
Recv (mem1 , bus6)

Pre0 (mem1 full)
Suc1 (mem2 full)

Send (mem2 , bus6)
Pre0 (mem2 empty)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Communication
thread

Endloop
Endthread

Main
Loop

Suc0 (mem1 full)
C2(mem1, mem2)

Pre1 (mem1 empty)
Pre1 (mem2 full)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Computation
thread

Endloop
Endmain

Endprocessor

Figure 4: Simple SynDEx macrocode example generated for a com-
putation vertex.

Heuristic
AAA

mapping and scheduling

Architecture graphAlgorithm graph Redesign

Constraints Performance
predictions

Libraries
Synchronized

distributed executive

Design generation

Software
component

Hardware
component

Figure 5: SynDEx methodology flow.

parameterizable operator and dynamic operator, are able to
dynamically change their functionalities to match a given al-
gorithm graph operation. They differ by their ways to imple-
ment a new operation during the runtime.

We define “dynamic operator” as a special operator
which is managed to implement sequentially new operations
through run-time reconfiguration. On current FPGAs it can
be achieved thanks to partial reconfiguration technology and
is mainly dependent on the specific architecture features. The

Parameterizable operator is appropriate to enable fast opera-
tion switching through a parameter selection step.

Unlike to static vertex, a reconfigurable vertex can imple-
ment some static operators, some parameterizable operators
and some dynamic operators. As a result, additional func-
tionalities to control run-time reconfigurations in order to
implement dynamically new functionalities, are necessary.

By assigning parts of the design from a high level, we can
make run-time reconfiguration specification more flexible
and independent of the application coding style. Moreover
that allows to keep this methodology flow independent of the
final implementation of the run-time reconfiguration pro-
cess which is device dependent and tightly coupled to back-
end tools. This modeling can be applied on various compo-
nents of different granularities.

4.2. Operation selection criterions for
a dynamic implementation

Selection of operations for a dynamic implementation is
a multicriteria problem. Reconfiguration can be used as a
mean to increase functionality density of the architecture
or for flexibility considerations. However some general rules
can be brought out. The boundary between a fixed or a dy-
namic implementation is depending on the architecture abil-
ity to provide a fast reconfiguration process. This point is
generally linked to the reconfiguration granularity of the ar-
chitecture. When a set of common coarse grain operators
are used for the execution of several operations, the use of
a parameterized structure could be a more efficient solution
and could allow fast inter-operation switchings [26]. That is
achieved by increasing the operator granularity. As a result
the amount of data configurations needed is decreased.

Parametrization and partial reconfiguration concepts are
closely linked. In both cases the aim is to change the func-
tionality, only the amount of configuration data and their
targets differ. From the manager point of view both opera-
tors share a same behavior.

The choice of implementation style (static, partial re-
configuration, parameterized structure) of operations can be
based on the ratio between reconfiguration time of opera-
tor, computation time and activity rate. A good mapping and
scheduling is a tradeoff to avoid that reconfigurable surfaces
remain unused or under exploited.

To illustrate this, Figure 7 represents a set of eight opera-
tions composing an application. These operations can be or-
dered in a diagram. Operations which are placed closely have
a high degree of commonality and nearly the same complex-
ity (logical resources). Hence a parameterized operator can
be created, as for the case of operations B, C, and D. This
parameterized operator does not have any configuration la-
tency. Operations A, E, F, and H have nearly the same de-
gree of complexity but they doesn’t share a great amount of
commonality and have not a high activity rate. In this case
they can be implemented by a dynamic operator with run-
time reconfiguration. Operation G has a high activity rate, it
is desirable to implement it as a static operator.

The number of operations implemented on a same dy-
namic operator has a direct impact on the implementation



Florent Berthelot et al. 7

D2 (Vertex Dyn)

comm-1
comm-1

comm-1
comm-1

comm-1

comm-2

F1 (Vertex Fix)

P2 (Vertex PPC)

P1 (Vertex Proc)

D1 (Vertex Dyn)

FPGA
Xilinx Virtex2

FPGA
Xilinx Virtex2 Pro

a) Prototyping platform

b) Partitioning of a FPGA

Functional
equivalence

Processor

CPLD

D1
P1

F1

P2

D2
Architecture

modeling

Static
operator

(A)

Parameterizable
operator

(B1/B2)

Dynamic
operator

(C/D/E)

Operators

Architecture
graph vertices

CC1 (core connect)

AAA mapping
process

Algorithm graph

operations

IL1 (IL)

IL3 (IL)

IL2 (IL)

A B1 B2

C D

a

b

o a o a

b

o

a o a o

a o

E

Figure 6: Architecture graph example and vertex operations implementation style.

Small degree of

commonality

Static operator

Parameterized operator

Dynamic operator

No
reconfiguration
latency

Reconfiguration
latency

Operations
per operators

Area saving
performance−1

Mean complexities of operations Resulting implementation

G

B, C, D

A, E, F, H

Operation
complexity

Activity rate

H A

G

F

B
C

D

E

Small degree of

commonality

High degree of
commonality

Figure 7: Choice and influence of the implementation style of operations.

area and the performance. The extreme cases are those when
all the operations are implemented through only one dy-
namic operator or on the contrary when each operations
are static and consume more resources. The influence of the
number of operations per operator over the saving space is
decreasing when the mean complexity of the operations are
decreasing. So, we can consider that dynamic reconfigura-

tion is useful when applied to medium and complex opera-
tions which do not have high activity rates, thus avoiding to
waste too much time in reconfiguration. On the other hand,
operations of small complexities can remain static or param-
eterized.

As the heuristic does not yet support run-time reconfig-
urable vertices (reconfiguration latencies are not taken into



8 EURASIP Journal on Embedded Systems

account), the operations of the algorithm graph have to be
characterized to define their way of implementation (static
or dynamic). It is achieved by a manual mapping constraint
from the designer through SynDEx tool.

We plan to automate this step thanks to the extraction
of some metrics from the algorithm graph such as the op-
eration complexity, activity rate, and relative commonality.
These metrics could be used to guide the designer in the
static-dynamic functionality implementation tradeoff.

4.3. Minimizing the reconfiguration cost

Run-time partially reconfigurable components must be han-
dled with a special processing during the graph matching
process. A major drawback of using run-time reconfigura-
tion is the significant delay of hardware configuration. The
total runtime of an application includes the execution delay
of each task on the hardware combined with the total time
spent for hardware reconfiguration between computations.
The length of the reconfiguration is proportional to the re-
programmed area on the chip. Partial reconfiguration allows
to change only a specified part of the design hence decreas-
ing the reconfiguration time. An efficient way to minimize
reconfiguration overhead is to overlap it as much as possible
with the execution of other operations on other components.
It is known as configuration prefetching techniques [27].

Therefore the heuristic of SynDEx has to be improved to
take into account reconfiguration overhead with configura-
tion prefetching techniques to minimize it. A solution based
on a genetic heuristic is under development to integrate more
metrics during the graph matching process. This study ap-
plied on run-time reconfiguration is presented in [28]. How-
ever the architectural model considered is based on a proces-
sor and a single-context partially reconfigurable device which
acts as a coprocessor. The ideal graph matching process is
a completely automated selection of operation implementa-
tion styles (fixed, dynamic, parameterized) while satisfying
multiple constraints.

5. AUTOMATIC DESIGN GENERATION

5.1. General FPGA synthesis scheme

The overall design generation flow and hierarchical design
architecture are shown in Figure 8. For each vertex of the ar-
chitecture graph,after the mapping and scheduling processes,
a synchronized executive represented by a macrocode is gen-
erated.

A list defines the implementation way of each algorithm
graph function. The following cases are possible.

(i) For static vertices, only static operators are allowed.
(ii) For reconfigurable vertices, static operators, parame-

terizable operators, and dynamic operators can be im-
plemented.

Macrocodes generated for these vertices must be handled
by specific libraries during the design generation to include
dynamic reconfiguration management. The design genera-
tion is based on the translation of macrocodes to the VHDL

code. This translation uses the GNU macro processor M4
[29] and macros defined in libraries in addition to commu-
nication media and IP operators. Each macrocode is com-
posed of one computation thread to control the sequencing
of computations, and communication threads for each in-
dependent communication port. These threads are synchro-
nized through semaphores. This high-level description has a
direct equivalence in the generated design and corresponds
to the highest design level which globally controls datapaths
and communications. A lower level is in charge of resources
management, typically in case of simultaneous accesses on
buffers for computations or communications. The configura-
tion manager process belongs to this design level. The next
level brings together resource controls. Resources are oper-
ators, media and buffers. The protocol builder functionality,
which is detailed later, has access to the underlying configu-
ration memory.

A same operator can be reused many times over different
data streams but only one instantiation of each kind of oper-
ator appears in VHDL. We have defined a standard interface
for each operator through encapsulation, as described in the
next section.

These points lead to build complex data paths automati-
cally. Our libraries can perform these constructions by using
conditional VHDL signal assignments. In next sub-sections,
we deal with some important issues: optimization of mem-
ory for exchanged data through buffer merging, operators
merging for dynamic instantiation and design generation for
run-time reconfiguration management.

5.2. Macrocode preprocessing for memory
minimization

SynDEx is based on a synchronous dataflow model of com-
putation, processes communicating through buffers and
reading/writing a fixed number of tokens each time they are
activated. Hence this kind of representation allows to de-
termine completely the scheduling at compile-time. Appli-
cations often have many possible schedules. This flexibility
can be used to find solutions with reduced memory require-
ments or to optimize the overall computation time. Memory
minimization is essential for an implementation on reconfig-
urable hardware devices which have limited on-chip memory
capabilities.

Currently only the latency optimization is taken into ac-
count during the matching step of SynDEx. Macrocodes are
generated without memory minimization considerations.
The latest SynDEx version operates a macrocode memory
minimization analysis on the macrocodes. A graph color-
ing based heuristic is used to find which buffers have to
be merged. Buffers allocated by SynDEx can be heteroge-
neous as they store computation results of operations work-
ing on various data depths and widths. The integrated mem-
ory minimization of SynDEx allows to merge buffers of vari-
ous depth and same data widths. In the other cases a manual
analysis must be made by the designer to merge buffers of
different widths. Table 1 sums up the cases.

The result is a list of buffers which must be merged into a
global one. Hence, global buffers are automatically generated



Florent Berthelot et al. 9

IPs medias
IPs functions

VHDL
structure

FPGA

List to define:
Global buffers

Dynamic operators

Macrocodes generation

Libraries

Automatic design generation
RTL design

Macrocode

Synchronized

executive

SynDEx

Application
algorithm

graph

Architecture
graph

Datapath, computation,
synchronization, global
control

Communication
Ctrl

Access Ctrl
medias

Medias R/W Ctrl Buffers R/W Ctrl

Semaphores

Medias Buffers Operators

Operator Ctrl

Computation
Ctrl

Access controls

Resources controls

Resources

Underlying FPGA
configuration

∗Generated only for reconfigurable vertices

Access Ctrl
buffers

Configuration
manager∗

Protocol builder∗

Configuration memory

Figure 8: Hierarchical architecture design generation for hardware components.

Table 1: Buffer minimization cases.

Depth Width

Same Different∗

Same SynDEx Manual

Different∗ SynDEx Manual
∗
Buffers widths must be multiple.

according to the operator data types. We have the following
denotations:

(i) L : {b1, b2, . . . , bn}: A list of n buffers which can be
merged, where L(k) = bk,

(ii) Dk: the depth of buffer k.
(iii) Wk: the data width of buffer k.

Hence the total amount of memory needed is

(i) without buffer merging: Mbm =
∑n

i=1 DL(i)∗WL(i),
(ii) with buffer merging: Mbm = max(DL(i)∗WL(i))

for 1 ≤ i ≤ n.

So, the amount of memory saved is

Smem =Mbm −Mbm. (1)

Global buffers are automatically generated in VHDL. We
have developed a parameterizable memory IP able to work
on various depths and data widths and providing fast ac-
cesses. This IP is implemented either on dedicated hard-
ware (i.e., Xilinx blockram) or on distributed on-chip FPGA
memory (look-up tables).

5.3. Generic computation structure

After selection of candidates among all the operators of the
algorithm graph for partial reconfiguration or parameteriza-
tion, we obtain a set of operators that must be implemented
into a run-time reconfigurable device. To achieve design gen-
eration, a generic computation structure is employed. This
structure is based on buffer merging technique and function-
ality abstraction of operators. The aim is to obtain a single
computation structure able to perform through run-time re-

configuration or parameterization the same functionalities as
a static solution composed of several operators.

Encapsulation of operators through a standard interface
allows us to obtain a generic interface access. This encapsula-
tion eases the IP integration process with this design method-
ology and provides functionality abstraction of operators.
This last point is helpful to easily manage reconfigurable op-
erators with run-time reconfiguration or configuration for
parameterized operators.

This encapsulation is suitable for coarse-grained opera-
tors with dataflow computation. It is a conventional interface
composed of an input data stream, an output data stream
along with “enable” and “ready” signals to control the com-
putation. In the case of parameterized operators, a special
input is used to select the configuration of the operator.

As operators can work on various data widths, the result-
ing operator interface has to be scaled for the most demand-
ing case. Next, we have to apply our buffer merging tech-
nique, which allows us to create global buffers able to work
on various depths and data widths, as presented in the previ-
ous section.

Figure 9 presents such a transformation operated on
two operators (Op A and Op B), working on different data
widths and depths. A generic reconfigurable operator named
Op Dyn is created and its interface is adapted. Its function-
ality will be defined through run-time reconfiguration by
the configuration manager process. Only the Config Select
input is added in the case of a parameterizable operator
(Op Param).

5.4. Design generation for run-time
reconfiguration management

In order to perform reconfiguration of the dynamic part we
have chosen to divide this process in two subparts: a con-
figuration manager and a protocol builder. The “configura-
tion manager” is automatically generated from our libraries
according to the sequencing of operations expressed in the
macrocode. A “configuration manager” is attached to each pa-
rameterizable or dynamic operator.

The configuration manager is in charge of operation se-
lection which must be executed by the configurable opera-
tor by sending configuration requests. These requests are sent
only when an operation has completed its computation and



10 EURASIP Journal on Embedded Systems

Buffer in A
[W : 8, D: 128]

Buffer in B
[W : 32, D: 64]

Buffer in
[W : 32, D: 64]

Buffer in
[W : 32, D: 64]

32

8

32

32

16

32

32

32

Config Select

Op A

Op B

Op Dyn

Op Param

Buffer out A
[W : 32, D: 64]

Buffer out B
[W : 16, D: 128]

Buffer out
[W : 32, D: 64]

Buffer out
[W : 32, D: 64]

W : Data width
D: Buffer depth

Figure 9: Buffers and operators merging example.

if a different operation has to be executed after. So recon-
figurations are performed as soon as the current operation is
completed in order to enable configuration prefetching as de-
scribed before. This functionality provides also information
on the current state of the operator. This is useful to start
operator computations (with “enable” signal) only when the
configuration process is ended.

Figure 10 shows a simple example based on two oper-
ations (j and k) which are executed successively. Labels M
and P show where the functionalities “configuration man-
ager” and “protocol builder” are, respectively, implemented.

Case (a) shows the design generated for a nonreconfig-
urable component. The two operators are physically imple-
mented and are static. Case (b) is based on a parameteriz-
able operator; the selection of configurations is managed by
the configuration manager. There is no configuration latency;
the operator is immediately available for computation. The
signal Config Select is basically a request of configuration, it
results in the selection of a set of parameters among all in-
ternally stored. The third case (case (c)) is based on a dy-
namically reconfigurable operator which implements succes-
sively the two operations thanks to run-time reconfiguration.
The reconfigurable part provides a virtual hardware, so at a
time only one operator is physically implemented on this dy-
namic part. The configuration requests are sent to the proto-
col builder which is in charge to construct a valid reconfigura-
tion stream in agreement with the used protocol mode (e.g.,
selectmap).

The configuration manager can perform reconfiguration
(parametrization or partial reconfiguration) during other
communications or computations scheduled on the same
vertex. If the next configuration is conditional, this one is
performed as soon as its value is known, allowing reconfigu-
ration prefetching.

Encapsulation of operators with a standard interface al-
lows to reconfigure only the area containing the operator
without altering the design around. Buffers and functional-
ities involved in the overall control of the dynamic area re-
main on a static part of the circuit. This partitioning allows
to reduce the size of the bitstream which must be loaded and
decreases the time needed to reconfigure.

5.5. Reconfiguration control implementation cases

This way of proceeding must be adapted according to archi-
tecture considerations. There are many ways to reconfigure
partially an FPGA. Figure 11 shows five solutions of archi-
tectures for this purpose.

Case (a) shows a standalone self-reconfiguration where
the fixed part of the FPGA reconfigures the dynamic part.
This case can be adapted for small amounts of bitstream data
which can be stored in the on-chip FPGA memory. However,
bitstreams require often a large amount of memory and can-
not fit within the limited embedded memory provided by
FPGAs, so bitstreams are stored in an external memory as
depicted in case (b).

Case (c) shows the use of a microprocessor to achieve the
reconfiguration. In this case, the FPGA sends reconfiguration
requests to the processor through hardware interrupts, for
instance. This microprocessor can be considered as a slave for
the FPGA. The CPLD is used to provide some “glue logic”
to link these two components. In case (c), the FPGA is still
the initiator of the reconfiguration requests but they are per-
formed through a microprocessor. This case is probably the
most time consuming as the “protocol builder” functional-
ity is a task on the microprocessor which can be activated
through an hardware interrupt. Hence a noticeable latency is
added, which is due to the program loading and fetching and
hardware/software handshake.

In case (d), the FPGA can be seen as a slave as the recon-
figuration control is fully managed by the microprocessor. In
such a case the FPGA is used as a coprocessor for hardware
acceleration. Last FPGA generations have embedded micro-
processors and allow the last case of reconfiguration control.
Implementation of these functionalities have a direct impact
on the reconfiguration latency.

6. IMPLEMENTATION EXAMPLE

Our design flow and methodology have been applied for the
implementation of a transmitter for future wireless networks
in a 4G-based air interface [30]. In an advanced wireless ap-
plication, SDR does not just transmit. It receives informa-
tions from the channel networks, probes the propagation
channel and configures the system to achieve best perfor-
mance and respond to various constraints such as bit-error
rate (BER) or power consumption. We have considered here
a configurable transmitter which can switch between three
transmission schemes.

The basic transmission scheme is a multicarrier modu-
lation based on orthogonal frequency division multiplexing
(OFDM). OFDM is used in many communications systems
such as: ADSL, Wireless LAN 802.11, DAB/DVB, or PLC. The
first scheme corresponds to the most simple transmitter con-
figuration named OFDM.

The second configuration uses a multicarrier code divi-
sion multiple access (MC-CDMA) technique [30]. This mul-
tiple access scheme combines OFDM with spreading allow-
ing the support of multiple users at the same time.

The third configuration uses a spread-spectrum mul-
ticarrier multiple access with frequency hopping pattern



Florent Berthelot et al. 11

Buffer
k

Buffer
j

Operator k

Operator j

Start
operation

Operation
complete

Operator
controller

Operator
controller

General
computation

controller

Enable

Ready

Enable

Ready

(a) Static operator based structure

Config Select

State
reconfigurable

partBuffer
k

Buffer
j

Op Param

Start
operation

Operation
complete

Operator
controller

General
computation

controller

Enable

Ready
Configuration

manager

P M

(b) Parameterizable operator-based structure

Bitstream
memory

Bitstream

State
reconfigurable

partBuffer
k

Buffer
j

Op dyn

Reconfigurable part
Start

operation
Operation
complete

Operator
controller

General
computation

controller

Enable

Ready

Protocol
configuration

builder

Configuration requests

Acknowledgements

Configuration
manager

P

M

(c) Dynamic operator-based structure

Figure 10: Architecture comparison between a fixed/parameterized or dynamic computation-based structure.

(FH-SS-MC-MA), as used in 802.11b standard (WiFi). It is
a spread spectrum modulation technique where the signal is
repeatedly switching frequencies during radio communica-
tion, minimizing probability of jamming/detection.

SynDEx algorithm graph, depicted by Figure 12(a),
shows the numeric computation blocks of this configurable
multimode transmitter.

These three transmission schemes use channel coding
and perform a forward correction error (FEC), correspond-
ing to the Channel coding block. The DSP can change the

FEC to select a Reed-Solomon encoder or a convolutional en-
coder. Next, a modulation block performs an adaptive mod-
ulation between QPSK, QAM-16, or QAM-64 modulations.
For MC-CDMA and FH-SS-MC-MA schemes, a spread-
ing block implements a fast Hadamard transform (FHT).
This block is inactive for OFDM scheme. A chip mapping
(Chip mapping block) is used in order to take into account
the frequency diversity offered by OFDM modulation. This
block performs either an interleaving on OFMD symbols
for MC-CDMA, whereas the interleaving in FH-SS-MC-MA



12 EURASIP Journal on Embedded Systems

Bitstream

Reconfigurable part

Fixed part
P

M

M
em

or
y

FPGA

(a) Standalone self recon-
figuration with on-chip bit-
stream memory

Bitstream
Reconfigurable part

Fixed part
P

M

Memory

FPGA
Address

Data

(b) Standalone self reconfiguration with off-
chip bitstream memory

Bitstream

Reconfigurable part

Fixed part

P

P

M

Memory

FPGA

CPLD

Address

Data

Configuration requests

M
ic

ro
pr

oc
es

so
r

(c) Reconfiguration through a microprocessor

Bitstream

Reconfigurable part

Fixed part

P

PM

Memory

FPGA

CPLD

Address

Data

M
ic

ro
pr

oc
es

so
r

(d) Microprocessor reconfiguration control (FPGA as a slave)

Bitstream

Reconfigurable part

P

M

Memory

FPGA

Address

Data

μP

(e) Standalone self-reconfiguration with embedded mi-
croprocessor

Figure 11: Different ways to reconfigure dynamic parts of an FPGA.

scheme is a frequency hopping (FH) pattern to allow the
user data to take advantage of the diversity in time and
frequency. The OFDM modulation is performed by an in-

verse fast Fourier transform thanks to IFFT block which
also implements zero-padding process. For complexity and
power consumption this IFFT can be implemented in radix-2
(IFFT-R2) or radix-4 (IFFT-R4) mode. Configuration selec-
tion (conditional entry Config) and data generation are han-
dle by the Data Gen block, whereas DAC If block represents
the interface to the digital-to-analog converter (DAC) device
of the platform.

6.1. Implementation on a prototyping platform

We have implemented this reconfigurable transmitter on a
prototyping board from Sundance Technology (Matignon,
France) [31]. This board is composed of one DSP (C6701
from Texas Instrument) and one partially reconfigurable
FPGA (Xc2v2000 from Xilinx with 10752 slices). Its Syn-
DEx representation is shown in Figure 12(b). Communica-
tions between DSP and FPGA are ensured by SHB (Sundance
high-speed bus) and CP (communication Port) communi-
cation medium from Sundance Technology. We have cho-
sen to divide the FPGA in four vertices. One is static (Inter-
face) and represents pre-developed logic for FPGA interfac-
ing. The three remaining vertices (FPGA Dyn, FPGA Dyn 1,
and FPGA Dyn 2) are run-time reconfigurable vertices. In-
ternal communications between these parts are ensured by
the LI media.

Table 2 details the configurations and complexities of the
reconfigurable transmitter computational blocks (depending
on the transmission schemes). These complexities are ob-
tained on a Xilinx VirtexII FPGA, where each slice includes
two 4-input function generators (LUT). Some of these func-
tions can be implemented thanks to the available Xilinx IPs
[32].

6.1.1. Functions mapping

From the characterization of the computational blocks we
can determine a possible implementation of the transmitter
on the prototyping board. Table 3 summarizes this mapping.

IFFT block will be implemented thanks to a parameteri-
zable IP from Xilinx, and mapped on the FPGA Dyn vertex.
Two static operators used for the Reed-Solomon encoder and
convolutional encoder are also mapped on FPGA Dyn ver-
tex.

Functionalities Interleaving and FH of the Chip mapping
block will be sequentially implemented by a dynamic opera-
tor with run-time reconfiguration on the FPGA Dyn 1 ver-
tex.

Spreading block (FHT) will be performed through a
static operator implemented on the FPGA dyn 2 vertex. On
the same vertex the modulation is a parameterizable opera-
tor.

The Data Gen and DAC If blocks are mapped on the In-
terface vertex to ensure DSP’s data and configurations trans-
mission. They will not be detailed as we focus on the genera-
tion for the run-time reconfigurable vertices.



Florent Berthelot et al. 13

Input

o
o 1

Data Gen

input
input 1

Transmitter DAC if

Data out
Config

Data in
Config

out i o
o 1

i
i 1

Output

data in

Config

Channel
coding

in
y

out in
x

out

Modulation Spreading

in
z

out

Chip mapping

in
v

out

IFFT

i
w

out o

DSP

DAC

dsp C67 (dsp)

DAC (DAC)

cp0
cp1
shba
shbb

shbc
shbd

CP0 (CP)

SHB1 (SHB)

SHB2 (SHB)

SHB3 (SHB)

FPGA

LI0 (LI)

LI A (LI)

fpga dyn 2 (fpga dyn)
LI0
LI1
LI2
LI3

fpga dyn 1 (fpga dyn)
LI0
LI1
LI2
LI3

fpga dyn (fpga dyn)
LI0
LI1
LI2
LI3

Interface (fpga interface)
LI0
LI1
cp0
cp1
shbb
shbc
shbd

LI0 2 (LI)

LI0 1 (LI)

LI B (LI)

(a) Algorithm graph of the configurable transmitter

(b) Prototyping board architecture graph

Figure 12: Algorithm and architecture graphs of the configurable transmitter.

Table 2: Configurations and complexities.

Transmitter
configuration

Computational
blocks

Channel coding Modulation Spreading Chip mapping IFFT

(1) Sampling
frequency =
20 Mhz

Configurations
and
complexities

A
B
C

Reed-Solomon
encoder: 120
slices.

A
B
C

QPSK,
16QAM,
64QAM B

C

FHT
(spreading
factor: 32):
873 slices.

A
B

Interleaving:
186 slices, 2
BlockRam.

A
B
C

IFFT-R2 (256-points, 16
bits): 752 slices, 3
BlockRam, 3 Mult18∗18 –
IP Xilinx COREGen xFFT
v3.1.

(2) Number of
users = 32
(3) FFT = 256
points
(4) OFDM
symbol
duration =
12.8 us

A
B
C

Convolutional
encoder: 43
slices Xilinx
Convolution
Encoder v5.0.

A
B
C

Parameter-
izable
operator: 60
slices

C

Frequency
Hopping
Pattern (FH):
246 slices, 2
Block-Ram.

A
B
C

IFFT-R4 (256-points, 16
bits): 1600 slices, 7
BlockRAM, 9 Mult18∗18 –
IP Xilinx COREGen xFFT
v3.1.

(5) Frame
duration =
1.32 ms

Parameterizable operator:
1600 slices - IP Xilinx
COREGen xFFT v3.1.

Transmission schemes: OFDM (A), MC-CDMA (B), FH-SS-MC-MA (C).

6.1.2. Resulting FPGA architecture

The code, both for the fixed and dynamic parts, has been au-
tomatically generated with SynDEx thanks to the libraries.
However, the generation of bitstreams needs a specific flow
from Xilinx called modular design [15]. Modular design
is based on a design partitioning in functional modules
which are separately implemented and allocated to a specific
FPGA area. Each module is synthesized to produce a netlist
and then placed and routed separately. Reconfigurable mod-
ules communicate with the other ones, both fixed and re-
configurable, through a special bus macro (3-state buffers
or slice-based bus macros) which is static. They guarantee
that each time the partial the reconfiguration is performed
the routing channels between modules remain unchanged.

Partial bitstreams are created from the individual module
designs.

Case (b) of Figure 11 represents our architecture. Virtex
II integrates the ICAP FPGA primitive. ICAP is an acronym
for internal configuration access port providing a direct ac-
cess to the FPGA configuration memory and so enables a
self-partial reconfiguration.

Figure 13 shows the resulting design of the reconfigurable
transmitter which is compliant with the modular design flow
for partial reconfiguration.

The nonreconfigurable part of the FPGA is composed
of four areas resulting from the design generation of the
four architecture graph vertices. Reconfigurable vertices ar-
chitectures are detailed. Each one is composed of a gen-
eral computation/communication controller with buffers.



14 EURASIP Journal on Embedded Systems

Table 3: Functional blocks mapping (design automatically generated).

Computation
vertice

FPGA Interface FPGA Dyn FPGA Dyn 1 FPGA Dyn 2
DSP
C67

DAC

Functional
Block

Data Gen (1)
DAC if (1)

IFFT (2)
Chip Mapping (3)

FHT (1)
Input OutputReed Solomon

Encoder(1)
Modulation (2)

Convolutional
Encoder (1)

(1): Static operator, (2): parameterizable operator, (3): dynamic operator.

Non reconfigurated part

Reed Solomon
Encoder

Convolutional Encoder

xFFT
configuration

manager

External memory

xFFT

Protocol builder
ICAP

Op Dyn
configuration

manager

Logic automatically generatedPartially reconfigurable areaParameterizable operatorStatic operator

O
p

D
yn

B
u

s
m

ac
ro

FHT

Modulation
Modulation

configuration
manager

FPGA Dyn 2
Computation-communications

controls-buffers

Encapsulated operator signals LI0

LI 2

LI A

LI0 1

LI B

FPGA Dyn 1
Computation-

communications
controls-buffers

Xilinx Xc2v2000 FPGA

FPGA Dyn

Computation-
communications
controls-buffers

CP

SHBB

SHBC

SHBD

Header

Full
bitstream

832 KB

Bitstream
interleaving

69 KB

Bitstream
frequency
hopping

69 KB

DSP
TI C6701

Interface

Data Gen

DAC if

CP : low speed digital communication bus for transmitter configuration
SHB : high speed digital communication bus for data transmission
ICAP : internal configuration access port

Figure 13: Reconfigurable transmitter architecture.

Parameterizable and run-time reconfigurable operators have
their own configuration manager. The Dynamic operator
configuration manager can address reconfiguration requests
to the protocol builder. The protocol builder performs par-
tial reconfigurations thanks to the ICAP primitive and bit-
streams stored in an external memory (interleaving and fre-
quency hopping bitstreams).

Only the left FPGA side is a run-time reconfigurable area
and implements the dynamic operator. Encapsulated signals
of the dynamic operator are accessed through bus macros as
circumscribed by the modular Design flow. The size of the
reconfigurable area has to be scaled to the most demanding
function in logical resources, here FH function (246 slices,
2 BlockRam). Besides the shape of the reconfigurable area
is constrained by the modular design and leads to allocate a
greater area size than really necessary. In this case, the area
takes the full FPGA height and 12 slices width (1300 slices).

This area is the only run-time reconfigurated, other areas re-
main unchanged and are defined once during the full FPGA
configuration.

Recently, this area constraint has been removed by the
early-access partial reconfiguration design environment (EA-
PR) [32], which now allows partial reconfiguration mod-
ules of any rectangular size. This new modular design flow
for run-time reconfiguration is supported by the PlanAhead
floorplanner tool [33]. The VHDL files automatically gen-
erated by SynDEx are input source files for such floorplan-
ning tools. Hence placement of bus macros, modules floor-
planning, and partial bitstreams generation are performed
with this target specific design environment. Nevertheless,
our high-level methodology is independent of these back-
end steps concerning the final physical implementation. Any
module-based flow for partial reconfiguration is compatible
with our methodology.



Florent Berthelot et al. 15

6.1.3. Numerical results of implementation

The reconfiguration operates at 50 Mhz. The first and full
configuration of the device takes 16 milliseconds while the
partial reconfiguration process of chip mapping functional-
ity (operator Op Dyn) is about 2 milliseconds. That is of the
order of several data frames, thus partial reconfiguration is
suitable for a transmission scheme switching, as in the case
of chip mapping functionality which is changed for MC-
CDMA and FH-SS-MC-MA schemes. On the other hand,
partial reconfiguration is too time consuming to be used for
intratransmission scheme reconfiguration. It is the case if the
channel coding and IFFT are implemented on the same dy-
namic operator.

6.1.4. Implementation comparison of chip mapping

As shown in Table 4, chip mapping operation is implemented
either using “Interleaving” or “Frequency hopping” algo-
rithms. Both have different complexities when implemented
separately and statically (resp, 186 and 246 slices). With a
dynamic implementation a same FPGA area is allocated for
both (12% of the device) and each version requires 69 KB of
external memory for the partial bitstreams (EA-PR flow [32]
could reduce these needs).

FPGA resources needed to implement logic controls of
the chip mapping functionality are more important with
a dynamic reconfiguration implementation scheme (107 +
550 = 657 slices) as for a static and hand-made imple-
mentation (200 slices). The overhead is about 450 slices to
allow run-time reconfiguration of the chip mapping func-
tionality. This overhead is due to the generic VHDL struc-
ture generation, based on the macrocode description. How-
ever, this gap is decreasing with a greater number of config-
urations implemented on the same dynamic operator. The
aim is to take advantage of the virtual hardware ability of
the architecture. However, the flexibility and implementa-
tion speed up, through the automatic VHDL generation
given by this methodology, can overcome this hardware re-
source overhead. For instance, we can add a Turbo convo-
lutional encoder for the channel coding block (1133 slices, 6
BlockRam—IP Xilinx3GPP Compliant Turbo Convolutional
Codec v1.0). As the size of the reconfigurable part is fixed by
the designer, any design able to be satisfied with this area con-
straint can be implemented.

6.2. Implementation based on a network on chip

We have implemented the previous application on a specific
architecture topology based on a Network on Chip. The goal
is to combine the functional flexibility given by the run-time
reconfiguration with the regular and adaptable communica-
tion scheme of an NoC. Hence allowing us to skip the need to
redesign the architecture graph when the application is mod-
ified.

Network on Chip (NoC) is a new concept developed
since several years and intended to improve the flexibility
of IP communications and the reuse of intellectual prop-
erty (IP) blocks. NoCs provide a systematic, flexible and scal-

able framework to manage communications between a large
set of IP blocks. It can also reduce IP connection wires and
optimize their usage. The dynamic reconfigurability of the
communication paths responds to the fluctuating processing
needs of embedded systems.

Dataflow IPs can be connected either through point to
point links or through a NoC. Tools have been proposed in
order to design and customize NoCs according to their ap-
plication needs. We have developed both a NoC and its cor-
responding tool. This NoC is one possible target of the pre-
sented methodology. This NoC is adapted and optimized to
allow the plug and the management of dynamically reconfig-
urable IPs. Reconfigurability is one important source of flex-
ibility when combined with a flexible communication mech-
anism.

6.2.1. MicroSpider NoC presentation

Our NoC [34] is built with routing nodes using a worm-
hole packet switching technique to carry messages. Operators
are linked to the routing nodes through network interfaces
(NIs) with an FIFO-like protocol. Our NoC is customizable
through an associated CAD tool [34]. Our CAD Tool is a de-
cision and synthesis tool to help designers to obtain the had-
hoc NoC depending on the application and implementation
constraints. It is able to configure the various functionalities
of our NoC. Finally, this tool generates an optimized dedi-
cated NoC VHDL code at RTL level.

Network interfaces

Network interfaces are flexible and configurable to be
adapted with the connected processing elements. They im-
plement the network protocol. NIs connect IP blocks to the
NoC. For NoC standardization reasons, we made the choice
of the OCP interface [35] for the communication between
NI and IPs. NI uses a table to transform OCP addresses map
in packet header routing information according to the NoC
configuration. The network interface architecture is strongly
related to SynDEx scheduling technique that requires a vir-
tual channel controller and buffering capabilities.

6.2.2. Implementation

The operations from the previous application example
(Figure 12(a)) are dataflow operations. Dataflow operators
have FIFO like protocols. We have added specific features to
our NoC in order to optimize the dataflow traffic and the
plug of IPs. We have also standardized the interfaces of the
NoC. A subset of OCP interface standard has been selected
and implemented.

We have implemented the previous application on a six-
node NoC (Figure 14) integrated in the same FPGA, with
one reconfigurable area per NoC routing node, and one node
dedicated to a bridge to the external C6701 DSP. Each of
the five remaining nodes can be the target of any applica-
tion task. Several tasks can be grouped on the same node ei-
ther to be dynamically reconfigured, parameterized or fixed
and simply scheduled in time. We have evaluated latency and



16 EURASIP Journal on Embedded Systems

CP0 (CP)

SDB1 (SDB)

DSP C67 (dsp)
cp0
cp1
sdb0
sdb1

Bridge1 (bridge)
sdb0
cp0
p0
p1

R0 (router)

R1 (router)

R0 3 (router)R0 2 (router)

R0 8 (router)

R0 6 (router)

R0 7 (router) R0 4 (router)

R0 5 (router)

N1 (node)
p0
p1
p2
p3

N6 (node)
p0
p1
p2
p3

N2 (node)
p0
p1
p2
p3

N5 (node)
p0
p1
p2
p3

N3 (node)
p0
p1
p2
p3

N4 (node)
p0
p1
p2
p3

FPGA: NoC nodes

Figure 14: Architecture graph of the NoC nodes and the DSP.

Table 4: Static-dynamic implementation comparison of chip mapping.

Chip mapping
functionalities
coding and
implementation

Designer (hand made) Designed and generated automatically with SynDEx

implementation: all static implementation: run-time reconfiguration

Controls IPs (Interleaving+FH) Controls IPs

Protocol Builder
Overall dynamic part
controls

Reconfigurable area
capacity (used)

Slices: 200 186 + 246 = 432 107 550 1300 (246)

Block
RAM(18 Kbits):

2 — — 2 14 (2)

FPGA area: 1.8% 4% 1% 5.1% 12% (2.5%)

Switching latency: — — — — 2 ms

External memory: 832 KB (Full bitstream) 832 KB (Full bitstream) + 2∗69 KB (Partial bitstreams)

Table 5: (1): Static operator, (2): parameterizable operator, (3): dynamic operator application function mapping on the NoC.

N1 N2 N3 N4 N5 N6

Turbo
encoder (1)

Reed Solomon
encoder(3) Modulation(2) Spreading(1)

Chip
mapping
(3)

IFFT (2)

Convolutional
encoder(3)

throughput of unloaded NoC links. These figures are intro-
duced in SynDEx heuristic. Table 5 shows the functions map-
ping on this NoC As SynDEx schedules transfers in time, we
use virtual channels in order to guarantee priority of first
scheduled transfers. Thus the latency is deterministic and ac-
curate. The M4 code generated by our methodology provides
all the scheduling of treatments and communications as well
as the source and target of each communication. These in-
formations are extracted and translated to a C code [36] for
a Xilinx Picoblaze micro-controller in charge of the dynamic
operators and parameterizable operators.

Figure 15 details a NoC node structure. There is one Pi-
coblaze for each NoC interface linked to dynamically recon-
figurable operators. The Picoblaze controls the scheduling of
operators, the size, the target and the starting of data trans-
fers from the running operator. A NoC IP is the grouping of
the operators, the picoblaze processor and the control oper-
ators and OCP adaptation logic. The scheduling of commu-

Table 6: Noc node resources usage.

IP Nb Slices Freq (MHz) Nb BRAM

PicoBlaze 110 200 1

NoC Node 430 200 2

nications is managed with virtual channels in the NoC inter-
faces. They are configured by the Picoblaze. Implementation
results are presented in Table 6.

The NoC cost is similar to the point to point solution
with all the advantages of flexibility and scalability. With this
solution there is no need to design a dedicated architecture
graph for each new application. One general purpose 2D
mesh can be selected for the architecture graph. Also, the
coupling of an NoC with dynamically reconfigurable oper-
ators allow a new level of flexibility and optimization.



Florent Berthelot et al. 17

Picoblaze
Config Communication

Config OperationOp Select

Data Router

Protocol builder

O
C

P

Network
interface

NoC node

NoC IP
Control
operator

Op Dyn

Op Fix

Op Param

Ack

Config

p0

p1

p2

p3

Figure 15: NoC Node detailed view.

7. CONCLUSION

We have described a methodology flow to manage automat-
ically partially reconfigurable parts of an FPGA. It allows to
map applications over heterogeneous architectures and fully
exploit the advantages given by partially reconfigurable com-
ponents. This design flow has the main advantage to target
software components as well as hardware components to im-
plement complex applications from a high-level functional
description.

This methodology is independent of the final implemen-
tation of the run-time reconfiguration which is device de-
pendent and achieved with back-end tools. This modeling
can be applied on various components of different granu-
larities. The AAA methodology and associated tool SynDEx
have been used to perform the mapping and code generation
for fixed and dynamic parts of FPGA. However, SynDEx’s
heuristic needs additional developments to fully take into ac-
count the reconfiguration time during the graph matching
process.

That will allow the user to find a mapping and a schedul-
ing of the application in order to improve the reconfigura-
tion time or functional density of the resulting architecture.
This methodology can easily be used to introduce dynamic
reconfiguration on predeveloped fixed designs as well as for
fast IP block integration on fixed or reconfigurable architec-
tures. Thanks to the automatic code generation the develop-
ment cycle is alleviated and accelerated. This top-down de-
sign approach makes it possible to accurately evaluate system
implementation, according to functions complexity and ar-
chitecture properties. Besides, the benefits of this approach
fit into the SoftWare radio requirements for efficient de-
sign methods, and adds more flexibility and adaptation ca-
pacities through partial run-time reconfiguration on FPGA-
based systems.

REFERENCES

[1] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer,
W. Luk, and P. Y. K. Cheung, “Reconfigurable computing: ar-
chitectures and design methods,” IEE Proceedings: Computers
and Digital Techniques, vol. 152, no. 2, pp. 193–207, 2005.

[2] R. Hartenstein, “A decade of reconfigurable computing: a vi-
sionary retrospective,” in Proceedings of the Conference on De-
sign, Automation and Test in Europe (DATE ’01), pp. 642–649,
Munich, Germany, March 2001.

[3] R. David, D. Chillet, S. Pillement, and O. Sentieys, “Mapping
future generation mobile telecommunication applications on
a dynamically reconfigurable architecture,” in Proceedings of
IEEE International Conference on Acoustic, Speech, and Signal
Processing (ICASSP ’02), vol. 4, p. 4194, Orlando, Fla, USA,
May 2002.

[4] B. Salefski and L. Caglar, “Re-configurable computing in wire-
less,” in Proceedings of the 38th Design Automation Conference
(DAC ’01), pp. 178–183, Las Vegas, Nev, USA, June 2001.

[5] C. Ebeling, C. Fisher, G. Xing, M. Shen, and H. Liu, “Imple-
menting an OFDM receiver on the RaPiD reconfigurable ar-
chitecture,” IEEE Transactions on Computers, vol. 53, no. 11,
pp. 1436–1448, 2004.

[6] R. W. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger,
“Mapping applications onto reconfigurable kressarrays,” in
Proceeding of the 9th International Workshop on Field Pro-
grammable Logic and Applications (FPL ’99), pp. 385–390,
Glasgow, Scotland, August-September 1999.

[7] S. Erdogan, M. Eads, and T. Shaneyfelt, “Virtual hardware
management for high performance signal processing,” in Pro-
ceedings of the 3rd IASTED International Conference on Cir-
cuits, Signals, and Systems (CSS ’05), pp. 36–39, Marina del
Rey, Calif, USA, October 2005.

[8] P. Garcia, M. Schulte, K. Compton, E. Blem, and W. Fu,
“An overview of reconfigurable hardware in embedded sys-
tems,” EURASIP Journal of Embedded Systems, vol. 2006, Ar-
ticle ID 56320, 19 pages, 2006.

[9] J. Mitola III, “Software radio architecture evolution: founda-
tions, technology tradeoffs, and architecture implications,” IE-
ICE Transactions on Communications, vol. E83-B, no. 6, pp.
1165–1173, 2000.

[10] “Joint tactical radio system website,” http://enterprise.spawar
.navy.mil.

[11] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Physically-aware
HW-SW partitioning for reconfigurable architectures with
partial dynamic reconfiguration,” in Proceedings of the 42nd
Design Automation Conference (DAC ’05), pp. 335–340, Ana-
heim, Calif, USA, June 2005.

[12] C. Sorel and Y. Lavarenne, “From algorithm and architecture
specifications to automatic generation of distributed real-time
executives: a seamless flow of graphs transformations,” in Pro-
ceedings of the 1st ACM & IEEE International Conference on
Formal Methods and Models for Co-Design (MEMOCODE ’03),
pp. 123–132, Mont Saint-Michel, France, June 2003.

[13] M. L. Silva and J. C. Ferreira, “Support for partial run-time
reconfiguration of platform FPGAs,” Journal of Systems Archi-
tecture, vol. 52, no. 12, pp. 709–726, 2006.

[14] E. Carvalho, N. Calazans, E. Brião, and F. Moraes, “PaDReH—
a framework for the design and implementation of dynam-
ically and partially reconfigurable systems,” in Proceedings of
the 17th Symposium on Integrated Circuits and Systems Design
(SBCCI ’04), pp. 10–15, Pernambuco, Brazil, September 2004.

http://enterprise.spawar.navy.mil
http://enterprise.spawar.navy.mil


18 EURASIP Journal on Embedded Systems

[15] “Xapp290: two flows for partial reconfiguration: Module
based or difference based,” http://direct.xilinx.com/bvdocs/
appnotes/xapp290.pdf.

[16] A. Brito, M. Kuhnle, M. Hubner, J. Becker, and E. Melcher,
“Modelling and simulation of dynamic and partially recon-
figurable systems using systemc,” in Proceedings of IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI ’07), pp. 35–
40, Porto Alegre, Brazil, March 2007.

[17] S. Craven and P. Athanas, “A high-level development frame-
work for run-time reconfigurable applications,” in Proceedings
of the 9th International Conference on Military and Aerospace
Programmable Logic Devices (MAPLD ’06), Washington, DC,
USA, September 2006.

[18] J. P. Diguet, G. Gogniat, J. L. Philippe, et al., “EPICURE: a par-
titioning and co-design framework for reconfigurable com-
puting,” Microprocessors and Microsystems, vol. 30, no. 6, pp.
367–387, 2006.

[19] F. Dittmann, F.-J. Rammig, M. Streubühr, C. Haubelt, A.
Schallenberg, and W. Nebel, “Exploration, partitioning and
simulation of reconfigurable systems,” Information Technol-
ogy, vol. 49, no. 3, p. 149, 2007.

[20] B. Steinbach, T. Beierlein, and D. Fröhlich, “Uml-based co-
design for run-time reconfigurable architectures,” in Lan-
guages for System Specification: Selected Contributions on UML,
SystemC, System Verilog, Mixed-Signal Systems, and Property
Specifications from FDL ’03, pp. 5–19, Norwell, Mass, USA,
2004.

[21] Y. Qu, J.-P. Soininen, and J. Nurmi, “Static scheduling tech-
niques for dependent tasks on dynamically reconfigurable de-
vices,” Journal of Systems Architecture, vol. 53, no. 11, pp. 861–
876, 2007.

[22] J.-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde,
and R. Lauwereins, “Infrastructure for design and manage-
ment of relocatable tasks in a heterogeneous reconfigurable
system-on-chip,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE ’03), pp. 986–991, Mu-
nich, Germany, March 2003.

[23] Z. Li and S. Hauck, “Configuration prefetching techniques for
partial reconfigurable coprocessor with relocation and defrag-
mentation,” in Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA ’02),
pp. 187–195, Monterey, Calif, USA, February 2002.

[24] V. Fresse, O. Déforges, and J.-F. Nezan, “AVSynDEx: a rapid
prototyping process dedicated to the implementation of dig-
ital image processing applications on multi-DSP and FPGA
architectures,” EURASIP Journal on Applied Signal Processing,
vol. 2002, no. 9, pp. 990–1002, 2002.

[25] M. Raulet, F. Urban, J.-F. Nezan, C. Moy, O. Deforges, and Y.
Sorel, “Rapid prototyping for heterogeneous multicomponent
systems: an MPEG-4 stream over a UMTS communication
link,” EURASIP Journal on Applied Signal Processing, vol. 2006,
Article ID 64369, 13 pages, 2006.

[26] A. Al Ghouwayel, Y. Louët, and J. Palicot, “A reconfigurable
architecture for the FFT operator in a software radio context,”
in Proceedings of IEEE International Symposium on Circuits and
Systems (ISCAS ’06), pp. 181–184, Island of Kos, Greece, May
2006.

[27] J. Resano, D. Mozos, D. Verkest, S. Vernalde, and F. Catthoor,
“Run-time minimization of reconfiguration overhead in dy-
namically reconfigurable systems,” in Proceedings of the 13th
International Conference on Field-Programmable Logic and Ap-
plications (FPL ’03), vol. 2778 of Lecture Notes in Computer Sci-
ence, pp. 585–594, Lisbon, Portugal, September 2003.

[28] J. Harkin, T. McGinnity, and L. Maguire, “Modeling and opti-
mizing run-time reconfiguration using evolutionary compu-
tation,” ACM Transactions on Embedded Computing Systems,
vol. 3, no. 4, pp. 661–685, 2004.

[29] “Gnu m4—macro processor,” http://www.gnu.org/software/
m4/.

[30] S. Le Nours, F. Nouvel, and J.-F. Hélard, “Design and
implementation of MC-CDMA systems for future wireless
networks,” EURASIP Journal on Applied Signal Processing,
vol. 2004, no. 10, pp. 1604–1615, 2004.

[31] “Sundance multiprocessor technology ltd,” http://www
.sundance.com.

[32] “Xilinx intellectual property center,” http://www.xilinx.com/
ipcenter/.

[33] “Early access partial reconfiguration user guide, ug208 (v1.1),”
Xilinx Inc, Tech. Rep., March, 2006.

[34] “Planahead,” http://www.xilinx.com.
[35] S. Evain, J.-P. Diguet, and D. Houzet, “A generic CAD tool for

efficient NoC design,” in Proceedings of International Sympo-
sium on Intelligent Signal Processing and Communication Sys-
tems (ISPACS ’04), pp. 728–733, Seoul, Korea, November 2004.

[36] “Programming FPGA’s as MicroControllers: MicroFpga,”
http://www.microfpga.com/joomla.

http://direct.xilinx.com/bvdocs/appnotes/xapp290.pdf
http://direct.xilinx.com/bvdocs/appnotes/xapp290.pdf
http://www.gnu.org/software/m4/
http://www.gnu.org/software/m4/
http://www.sundance.com
http://www.sundance.com
http://www.xilinx.com/ipcenter/
http://www.xilinx.com/ipcenter/
http://www.xilinx.com
http://www.microfpga.com/joomla

	Introduction
	Related work
	General methodology framework
	AAA/SynDEx presentation
	Application algorithm graph
	Architecture graph
	AAA results


	Run-time reconfiguration considerations
	Architecture graph modeling of run-time reconfigurable components
	Operation selection criterions for a dynamic implementation
	Minimizing the reconfiguration cost

	Automatic design generation
	General FPGA synthesis scheme
	Macrocode preprocessing for memory minimization
	Generic computation structure
	Design generation for run-time reconfiguration management
	Reconfiguration control implementation cases

	Implementation example
	Implementation on a prototyping platform
	Functions mapping
	Resulting FPGA architecture
	Numerical results of implementation
	Implementation comparison of chip mapping

	Implementation based on a network on chip
	MicroSpider NoC presentation
	Network interfaces
	Implementation


	Conclusion
	REFERENCES
	1Call for Papers4pt
	Guest Editors



