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Consider the random Dirichlet partition of the intervalimt fragments with paramet@r> 0. We recall the unordered Ewens
sampling formulae from finite Dirichlet partitions. As thisa key variable for estimation purposes, focus is on thebram
of distinct visited species in the sampling process. Thesdlastrated in specific cases. We use these preliminatjsstal
results on frequencies distribution to address the follgnsampling problem: what is the estimated number of spedien
sampling is from Dirichlet populations? The obtained resate in accordance with the ones found in sampling theam fr
random proportions with Poisson-Dirichlet distributiofo conclude with, we apply the different estimators sugegk$d two
different sets of real data.

Keywords: random discrete distribution, Dirichlet partition, GEMwEns sampling formulae, estimated number of species
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1 Introduction

Dirichlet partition of an interval can be viewed as a gerieadion of some classical models in ecological statistics.
For example, on the one hand, whén= 1, the Dirichlet partition corresponds to the broken-stictidal (see
Feller (1966), pages 22-24), one of the most famous stdchastdel of relative species abundance studied by
McArthur (1957) (see also Tokeshi (1993) for an exhaustiveey on species abundance models). On the other
hand, whem goes to infinity, the Dirichlet partition is deterministioduniform and whef goes td), jointly with

the numbers of fragments going to infinity, the ordered wersif Dirichlet partition identifies with the Poisson-
Dirichlet (P D) partition and corresponds to the Fisher’s log-series mddese relationships between all models
cited above was already pointed out early by Simpson (138)tlie term "Dirichlet distribution” was coined by
Wilks (1962) many years later).

The organization of this manuscript is the following. In 8@t 2 we recall the Ewens sampling formulae when
sampling is from finite Dirichlet partitions. Consider trdom Dirichlet partition of the interval intofragments
with parameted > 0. Elementary properties of it®,,(0) distribution are first recalled in sectiénl. Section

2.2 describes some motivational sampling problems from Diieighroportions. Some generalities about sampling
from Dirichlet partition are first proved in subsecti®i3. Subsectior?.4 is devoted to the Ewens sampling formu-
lae when sampling is from Dirichlet partitiah,,(6). Here the order in which sequentially sampled species arise
is irrelevant. Similarly, the second Ewens sampling foranwhder the same hypothesis (as a problem of random
partitioning of the integers). As corollaries to these Hss@assuming: 1 oo, 6 | 0 while nf = v > 0, the usual
well-known sampling formulae will be deduced in each casemdampling is fromP D(~) distribution. These
general sampling formulae are also illustrated in detaivimparticular cases: the Bose-Einstein case (whenl)

and the Maxwell-Bolztmann case (whénends to infinity). As this is the key variable for estimatipurposes,
focus is also made on the number of distinct visited speni#isa sampling process, in each case.

Section3 concerns the statistical problem of estimating the numbelistinct species in a Dirichlet population.

A maximum-likelihood estimator is developed, which is gted from sampling formulae recalled in the previous
section. We recall also the minimum variance one suggestégkbneret al. (1987). For some particular classes
of Dirichlet partitions, we supply simpler expressionstfoese estimators. We study some related statistical ques-
tions like stopping rule in the sampling process and gocslog&ft. In the last subsection, we explore the difficult
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problem of estimating jointly, andé.

At least sectiorl is devoted to applications to real data. The first two dataa@tcern word usage by two authors
(Keeneret al, 1987) while the second two data sets deal with tropicallbgepecies (Janzen, 1973).

2 Sampling from Dirichlet proportions

First we recall basic properties about the symmetric Dieittiistributions. Second we give some motivation about
sampling with this distribution. Then we recall samplingnfulae that will be useful later.

2.1 Dirichlet partition of the interval

Consider the following random partition intofragments of the unit interval. Lét > 0 be some parameter and
assume that the random fragment si8gs= (S1,...,S,) (with > _, S,,, = 1) are exchangeable and distributed
according to the (symmetric) Dirichlé?,, (6) p.d.f. which is defined on the simplex, i.e.

_ I'(no) T oo
Tt (8150003 80) = ngl S (S sm1) ¢ @
Alternatively the distribution 08,, = (S1,...,S,) can also be characterized by its joint moment function
" I'(nf) - T(0+ gm)
Y(qi,...,qn) €ER", E S| = n '
(q1,---+4qn) 0 771_:[1 ] INCVES ) ,El ')

We shall putS,, 4 D, (0) if S,, is Dirichlet distributed with parametét. In such cases,, 4 Sy, for any

m € {1,...,n}, independently ofn and the individual fragment sizes are all identically distted. Their
common p.d.f. on the interval, 1) is the beta distribution with paramet@, (n — 1)0). As a result, parameter

0 interprets as a "precision” parameter indicating how cotreged the distribution 08,, is around its mean
(%, cee %): the largerd is, the more the distribution &,, is concentrated around its mean. Indeed as one can
check that, for anyn € {1,...,n}, E(S,,) = = and vatS,,) = #911)

In the random division of the interval as in equation (1)haitgh all fragments are identically distributed with
expected sizes of ordt—j;f, the smallest fragment size grows like (?+1)/¢ while the size of the largest is of order
% log(n log?~! n). Consistently, the smallet is, the larger (resp. the smaller) the largest (resp. thdlsstia
fragment size is: hence, the smalteis, the more the values of the,, are disparate with high probability. Let
Sty = (S41), -+, Sm)) be the ordered version &, with Sy > --- > S(,). The smaller the parameteis, the
more the size of the largest fragmef)t) tends to dominate the other ones. On the contrary, for laaiees of

0, the fragment sizes look more homogeneous and distribetioation (1) concentrates on its cer{ti}le. e %).

For larged, the diversity of the partition is small.

When# = 1, the partition corresponds to the standard uniform randartitipn model of the interval. When
6 1 oo, S,, approaches the deterministic partition of the intervad imtequal parts with sizes/n. AlthoughS,,
has a degenerate weak limit, when] oo, 8 | 0 while nf = ~v > 0, this situation is worth being considered.
Indeed, many interesting statistical features emerge tranfact that in such asymptotic regirsg,) converges
to S(..) having the Poisson-Dirichlet distributioRD(~) with parametery (see Kingman, 1975). These three
situations will be referred later respectively by Bosediain, Maxwell-Boltzmann and Kingman cases.

2.2 Sampling: motivations

We shall be interested in sampling problems from randomitjwartS,,, whereS,, 4 D,, (6). SinceS,, is random,
sampling occurs in a random environment. Dirichlet distiitns are ubiquitous in the natural sciences and this
is why we chose this model for the random probabilitgs We refer to Vladet al. (2001) where it is shown
that Dirichlet distributions may be seen as limit laws oftagr "dilution” processes, and also that they maximize
entropy under constraints, satisfy some scale-invaripnagerty, etc. Due to its specific statistical propertiea as
random partition, many combinatorial issues arising is #a@mpling context can receive a proper and exact ana-
lytical answer. We shall illustrate this point.

Sampling fromS,, consists in a recursivé throw of iid uniformly distributed random variables on the
interval. It is said that fragment numben is visited by some uniform throw if its hits the interval
[S1+4+ -+ Sm-1,51+ -+ S,] of lengthS,,,. Before giving some technical details of the sampling peobl
let us list some motivating concrete images of the samplioglpm fromsS,,:
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e S,, could be the random abundance of speciefrom a population withn "animals”. Some sampling
process starts when a biologist records each new speciest eeth of hig measurement campaigns.

e S, could be the random size of district numberof some city, withm € {1,...,n} (e.g. withn = 20 for
Paris). An unfriendly sampling process could be a scattsihetlbombing witht bombs.

e S,, could be the random popularity of boak in a library withn books. The sampling process is whien
consecutive readers borrow books from the library whil@eesing their popularities.

e S,, could be the random probability to be born on daywith n = 365. A classroom withk students is a
k—sample frons,,.

We now give a non-exhaustive list of statistical problemitdrest in this context:

e Abundance estimationgiven a sample sizg, estimate the number of species and/or the parameter
exploiting for example the information on the empirical raenp of distinct visited species or from the
knowledge of the empirical probability to visit twice thensa species.

e Match box problem:what is the state of fragment occupancies if sequential Bagprocess is stopped
when some fragment has receivedisits for the first time (ifn. = 2, this is the randomized Banach match
box problem). In particular what is the probability that sooell is empty at this stopping time?

e Birthday problem:what is the sample size until the first visit to two specieshefsame type?

e Coupon collector problemwhat is the sample size until all species have been visitéelaat once (or
times)?

e Law of successiorgiven the random number of occurrences of speriés the k—sample and the number
p of distinct visited species, what is the probability to diger a new species infa+ 1 sample? or what
is the probability that théx + 1)-th sample is one from the previously encountered specieady met a
certain amount of times.

We shall now be more precise and treat rigorously some ofdlsed problems, starting with the sampling
problem before focusing on the occupancy distributionghénnext section, using these results, we shall come to
the important problem of estimatingwhen it is unknown.

2.3 Sampling: preliminaries and generalities
Let (U, ..., Us) bekiid uniform throws orS,,. Let

Kn,k = (K:n,k (1) P Icn,k (n)) =20

be an integral-valued random vector which counts the nurobeisits to the different fragments in/asample.
Hence, ifM is the random fragment number (or label) in which thk trial falls, 1C,, . (m) = Zle I(M; =m),
m € {1,...,n}. Under our assumptions, for instance, we have P@fM; =m | S,) = S,, (the random
probability to visit species is equal to its abundance) but also that the conditionaladvidity to observe species
numberm in ak-sample is

T (Sm) =P (Kpp (m) >08,) =1—(1—5,,)". )
Let us now focus our attention on the distribution of the gamciesK,, .. With Zzzl k,, = k andk,, =
(k1,...,kn) = 0, K, i follows the conditional multinomial distribution:
p B B k! - Ko
0 (Knk =kn | Sy) = mnglsm :

Averaging ovelS,,, using Dirichlet integrals, one finds

Py (Kn,k = kn) = EPy (Kn,k =k, | Sn) = Wa
k
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where[0], = (0)r/k!'and(0), = 0(0+1)--- (0 +k — 1),foranyk > 1, with (6)o = 1. Applying Bayes formula,
the posterior distribution d§,, givenK,, ;, = k,, is determined by its p.d.f. at poisf,on the simplex as

I'(nd + k) -
n Kn c = kn = n (9+k )1 4] 18m—
fS'n. (S | Sk ) Hm:1 1—\(9 ¥ km) 7nl |1 m m—1)

This shows, as it is well-known, that

an asymmetric Dirichlet distribution with parametéis+ k,, = (6 + k1, ...,0 + k). Furthermore,

0+ km,

nd+k -’

This suggests a recursive approach to the sampling formiaiensuccessive sample are drawn from the corre-

sponding iterative posterior distributions. More speaifig let (M, ..., M) € {1,... ,n}k be the numbers of
the successive fragments thus drawn. Then,

Vme{l,...,n}, Eg(Sm|Kn7k:kn):

1
Py (M =m1) = E(Pg (M =m1) | Sp) = Eg (Sm,) = v = "

)

9+I(M1:m2)
nd +1

0+, (M = my)
nd+k—1 ’

P@ (MQ = mo | Ml) =
and
Py (M =my | My,...,My_1) =

Proceeding in this way, the joint distribution (Ml, ..., My) reads

PO+ (M) =) L (),
nf +1  (nO)k

9 _
P(Ml mi, ... Mk—mk :_HH

wherek,, = lel I (m; = m). This distribution being invariant under permutationsta# entries, the sequence
(M, ..., M})is exchangeable. Itis called a Polya urn sequence. We novepiine following convergence result:

Lemma 2.1 Almost surely and in distribution, the following convergeinolds:

Kn,k a.s.
— — 8, .
k k—oo

Proof Let us first prove the convergence in distribution. The joimtditional generating function &,, . reads

n n k
E0 (H Uﬁn’k(m) | Sn) - <Z UmSm> 5
m=1 m=1

which is homogeneous with degréeallowing to computeEy (Hm 1uﬁ" ’“(m)). Further, definingf(m =

X/ ", X,n, WhereX,, < gammay), for all m € {1,...,n}, using independence betweek, ..., X,)
and) " _, X,, and recalling tha(Xl, ..., X,) has the Dirichlet distributio®,, (¢), we get

.
e L (m I' (nd L
() - (G
k k
I (nd) = 1 &
#Soe T (nf+ k) (;X>< Emz:: Og“”)
cn(f)n (1)

Eg

Thus,
Kn k a.s.
.k .S, .
k k—oo

By applying the strong law of large numbers (conditionallyeg S,,), the above convergence in distribution also
holds almost surely. This shows tHat, 1, /k can be used as an consistent estimatd,ofl]
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2.4 Ewens sampling formulae for Dirichlet partitions

Ewens Sampling Formula (ESF) gives the distribution ofleliédifferent types of genes) in a sample with size
from the Poisson-Dirichlet partitioning D (). Alternatively, it can be described in terms of sequentahgling

of animals from a countable collection of distinguishalgleces drawn fron® D (). It provides the probability of
the partition of a sample of, sa&y selectively equivalent genes into a number of alleles asiladion size becomes
indefinitely large. When the order of appearance of seqalinampled species does not matter, we are led to
the first ESF for unordered sequences. A second equivalgntorgescribe the sample is to record the number of
species in th&-sample with exactly representatives, far € {0,...,k}. When doing this while assuming the
species have random frequencies followin® () distribution, we are led to a second Ewens Sampling Formula.

We recall here the exact expressions of both first and secamh& sampling formulae, when sampling is first
from finite Dirichlet random partitions withx fragments. Here, the order in which the consecutive anias
being discovered in the sampling process is irrelevanthénsampling formulae, the joint event that there jare
distinct fragments visited will also be taken into accouritese sampling formulae give both ESF formulae from
PD(~) when passing to the Kingman limit.

LetS,, be the above Dirichlet random partition with paraméter 0. Letk > 1 and(U;, . .., Ux) bek iid uniform

random throws orf0, 1]. Let then(My, ..., M) be the (conditionally iid) corresponding animals specieith
common conditional and unconditional distributions:
Ym e {l,...,n}, Po(M=m]|S,)=5m,
and )
vm e {1,...,n}, Py(M=m)=E[Ps(M=m1|8S,)] =Eg(Sn) =

Recall,, i (m) = Zle I(M; = m) counts the random number of occurrences of speciés the k-sample
and letP, , = > _, I(K, (m) > 0) count the number of distinct species which have been visitehe k-
sampling process.

There are two occupancies variables of interest: the firstvati lead to the first Ewens sampling formula while

the second corresponds to the second Ewens sampling farmula

I. Foranyg € {1,...,p}, By x(q) > 0is the numbers of animals of specigsvhere theP, , = p species
observed were labelled in an arbitrary way (independeritth® sampling mechanism). This, ;, differs
from IC,, . in the sense that all the componentd3yf;, are positive.

II. Foranyi € {0,...,k}, A, x(7) is the number of species in tihesample with; representatives, i.e.
Ani(i) =#{m e {1,...,n} : Ky u( Z =1i).

Thean:O Ap i (i) = nis the (unknown) number of fragments aﬁ@le An i (i) = p is the number of

fragments visited by the-sample and4,, . (0) the number of unvisited ones. Note thaf_, iA,, 1. (i) = k
is the sample size. The random vectay, . (1),..., A, (k)) is called the fragment vector count or the
species vector count in biology, see Ewens (1990).

For each of the two sampling problems, we easily obtain therisgampling formulae from finite partitioSs
drawn from Dirichlet distribution. The following result mde found in Huillet (2005) (see also Ewens (1972) for
the PD case)

Theorem 2.1

I Forany(bi,...,by) suchthatg € {1,...,p}, by > land>_/_, b, = k, we have

p
H (3)

Py Bk (1) =br,..., Bui (p) =bp; Py =p) = <Z>

q:l
II Forany(as,...,ax) > 0such thath:1 ia; = k ande:1 a; = p, we have
| ! k
Py (Ank (1) = a1 A (k) = ag; Po e = p) = - - H i@
0 n, = gee ey n, — ) T, - -
(n 7p)' Hi‘c:l ( 'alaz k j=1
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From equation (3) or equivalently from equation (4), one @btain the marginal distribution d?, ;:

Theorem 2.2 For anyp > 1,
n! 1
Py(P,r,=p)=——————DB;, (0 5
9( k p) (n _p)! (ne)k k-,:D( ) ( )

where

B (9) - k! Z ﬁ (9)[)(1 o Z k! H(G)al
K, 0 - Tk a0 N i
" p' bq' a; 20 Hf:l(llaia’i!) =1
25:1 bq:k 25:1 a;=p

Z?:l ia;=k

We recall below a straightforward representation of théptlity Py (P, = p) under the form of an alternate
sum (see for example Keenefral,, pages 1471-1472).

Proposition 2.1 Foranym € {0,...,n — 1}, 1et(0),, .., = % The distribution of?, ; is given by
p n P
Po(Pas =)= 3 07 () (7) Oy ©)

q=1
Let us now focus on two problems related to sampling as exgtapreviously.

The law of succession We would like to briefly recall a related question raised imbDelly (1986) and Ewens
(1996), concerning the law of succession.

1. Let the "My is new” denote the event that/,, ; is none of the previously observed species. One can

prove that

(n—p)0
— 7
. (7)

which is independent of cell occupancigs. . . , b, but depends on the numbeof distinct species already
visited by thek-sample. Withk = p = 2, this is the probability that the first two random throws wilbit

any two distinct species. The complementary probabilit thdoes not is thus — % = fﬁl The

probability to visit any fragment twice varies betwekand X when# varies from0 (the largest fragment
dominates) to infinity (fragment sizes distribution apmﬂws%).

Pg(Mk+1iS neW| Bn,k(l) = bl, . ,Bn,k(p) = bp; Pn,k = p) =

2. Similarly, let the event}{;., is a species sedn times” denote the fact that tHé& + 1)-th sample is one
from the previously encountered fragment already visitetimes. We easily get

_ 0+0b,
T nl+k

Py (M4 is a species seéntimes| B,, (1) = b1,...,Buk(p) =bp; Pok = D) (8)

which is as previously independent cell occupancies botafithe numbep of distinct species.

Thenumber of distinct observations From equations (7) and (8), we also have the transition fitites

(n—p)o

PO(Pn,k+1 :p+1 | Pn,k:p): o+ k

and

PO0+0b,) ph+k
nd + k T nl+k

It follows that we have the following recursion for the distrtion of P,, ;:

Po(Prjy1 =p| Pk =p) =

(n—p+1)0
nd + k

0+ k
b P(Pn,k:p)'

Po(Ppx+1 =p) = py A

Py(Por=p—1)+
Using equation (5), we obtain the following triangular reemce for the quantitieB, ,(0)

B/H-L;D (9) = HBk,p_l (9) + (p9 + k) Bk7p (9) .
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These should be considered with boundary conditions
Byo (0) = Bop (0) =0,
except forBy o(6) = 1. Under this form,By ,,(8) turns out to be the Bell polynomial in the variables =
(0)1,22 = (0)2,...,2, = (0). This leads in particular td, 1 (¢) = (0)x, k > 1 and to
n(6)
Special cases Let us now study the three special cases mentioned in thadinttion of this section.

Po(Prr=1)=

1. Bose-Einstein case. When# = 1, equation (3) simplifies to
()
n+k—1\ ’
")
which is independent of the cell occupanciés, ..., b,) (i.e. the probability is uniform). As there are
(*~1) sequenceb, > 1forallq € {1,...,p}, satisfyingd b, = k, we getBy, ,(1) = & (’;j) (called Lah

nﬁ?ﬁbers) and o
n\ (k—
() G=1)
Granl

Pl(Bn,k(l) =by,... aBn,k(p) = bp;Pn,k :p) =

Vpe{l,...,nAk}, Pi(Por=p)=

Equation (4) reduces to

p(y) 1
(R et

2. Maxwell-Boltzmann case. As § T oo, the probability displayed in equation (3) converges to

n k! 1
Poo Bn, 1 :b7"'7Bn, :b,Pn7 = = _
(Bnk(1) = b1 k(p) = bp; Pk, = p) (p) T biinF

Pi(An k(1) =a1,....,Ap (k) = ar; Pop = p) =

With Sy, the second kind Stirling numbers, we get

n!Sk,p

1,...,k Po(Pop=p) =—>—. 9
va{ ) ) }a ( k p) (nfp)'nk ( )
This result is ancient and well-known (see Johnson and K&&9). Equation (4) convergences to
nlkln=F

Poo(-An,k(l):ala---aAn,k(k):ak;Pn,k:p): K .
(n—p) Ty (%5 ait)
3. Kingman case. Consider the situation where? oo, 6 | 0 while nf = v > 0. In such case, the probability
displayed in equation (3) converges to
P* (By(1) = by, B(p) = by Py = p) = o
= PR p)= Tk =P)= 37N 170 1
T ! g mok P (VK H§:1 bq

With sy, , the absolute value of the first kind Stirling numbers, we get

Wpe L.k}, PP =p) = Lok (10)
N 5 e
It follows that the probabilities displayed in examplesdiyl (8) converge respectively to
v br

——— an . 11
v+ k v+ k (11)

We note also that the distribution &%, in this case is in the class of exponential families. We tdabal
important result of Korwar and Hollander (1973):

Pk a.s.
—_
logk k—oo
At least, in the Kingman limit, the probability displayed(#) converges to
kl~P
(COIS § L CETH)

Pi;(.Ak(l) =a,...,Ax(k) = ap; P, = p) =
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3 Estimation of the number of species

In this section we now investigate several statistical etspgealing with the estimation of the number of species.
We shall start with considering the problem of estimatirgnibhmber of species, assuming fitso be known. The
proposed procedure to estimdten) is explained after. Then we consider two stopping rulesHergampling
process and a goodness-of-fit procedure. To conclude, meahgimulations were carried out.

3.1 Estimation of n when @ is known

Using theorems 2.1 and 2.2, one can easily derive the conditdistributions of B, x(1),. .., B, x(p)) and of
(A (1),..., A, (k) which are respectively:

p
Po(Bpnk(1) =b1,...,Bnk(p) =bp | Pok =p) 'B H (12)
p k,p q:1
and:
K7 0
Po(An k(1) =ai,...,Ap (k) =ar | Pk =p) = Brp(0) H o] (13)
P =1

These conditional probabilities being independentpft follows that the random variabl®, ; is a sufficient
statistic.

Assume now that > p. Using log-concavity im of Py (P, r = p), the maximum likelihood estimataris given

implicitly by: Po(P P)
o nk =

Py(Pr—1k = P)
From equation (5), identifying with the largest integer short of the solution, the estimateve suggest is the

fixed point of:
PN (GRS

=1.

n= =
(ne)k
This estimator is biased from above. The estimatof Keeneret al. (1986) is given by:
- By,p-1(0)
n=°P+—"—-—- 14
Ber(0) (14)

If k& > n, itis unbiased attaining the minimum variance bound (UM\BY in this case we have:

Bip—1(0)\  (n—1)0)
E0< Bk,P(H) ) =" (n@)k - n<9>n,k;1 :

In practice, it is interesting to plot the observed numbespdciesP against sample size. If n < oo, P should
stabilize to an asymptote. If this is not the caBeshould drift atoo with k. For example, consider the following
situation whereP/k — p € (0,1) whenk — oo andP — oo. Using an asymptotic representation8yf ,,(¢) in
this limit, one gets tha% — p. Wherep, > 0 is defined implicitly (see Keenet al. 1986) by:

6
PP*(l( 9/7* > ) .

Asymptotic normality of — kp..) /v/k could be proved ak — oc.

Special cases
1. Bose-Einstein case (9 = 1). We find explicitly:

. P(k-1) and 7 Pk

- "TkoPr1
The maximal value whicli can take is obtained # — P = 1; in this casei = P2. Its minimal value is
1if P = 1forall k. Note that in the Bose-Einstein modgl, = p/(1 — p) and bothn/k andn/k would
converge tg. assuming the asymptotic reginiyk — p.
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2. Maxwell-Boltzmann case (¢ — o). The maximum likelihood: solves:

rf-2))

and, withSy, ,, the second kind Stirling numbers, the UMVB estimaidn (14) becomes:

- Sk,p—1
n=~P+—F——,
Sk, p

recalling By, ,(0) ~ 0%S, , ask — oo.

3. Kingman case. Indeed there is no estimation efproblem (because = o), rather the problem is to
estimatey > 0 which is the unique remaining parameter. A situation in Wwhhee Kingman model fits best
to data is a situation for which one should conclude- . Recalling equation (10), the MLE of v is
characterized by, log P2 (P, = P)(7) = 0, hence implicitly by:

k

§(V) =

l

1

Il
=]

It is biased and involves the problem of inverting the geliezd harmonic sequengg. The properties of
this estimator are well studied (see Carlton (1999) for &exe) In particular,

~ Pr
—
k—o0

In sharp contrast with the finite case, there is no UMVB estimatgrof -y itself (nor of any polynomials in
~), because iff = ¢(P) existed and were unbiased, functiomvould satisfy:

k
> APskpd() = YNk
p=1

which is impossible because the left-hand-side is a polyabof degree at most in v whereas the right-
hand-side is a polynomial of degréet 1. So, if the problem is to estimatg 7 turns out to be the more
satisfactory estimate in this case, despite its biasedsptppgHowever there are UMVB estimators of rational
functions ofy of the form:

Vie{l,... .k}, ()= Ykt

They are given by:

. Sk_l.P—
. k—1,P—1 ' (16)
Sk,P

For instance, from equation (10), recalligg, = 0 if p > k:

k-1
« [ Sk—=1,P—1 Y

Sk,P Yk =

In particular, wheri = 1, 7 = =21 is an UMVB estimator of; (y) = (k-1 which, from

— 0l
Sk, P (Mr  — ytk—1
equation (11), is the probability to observe a new specias fr-th trial (see Ewens, 1996).

3.2 Joint estimations of 8 and n

In some applicationd] is also unknown and the question of its simultaneous estmatises. AsP, ; is not a
sufficient statistic fop (from equation (12), for example), we turn to a differentrpaif view. We briefly recall the
idea of an estimator studied in Huillet and Paroissin (20@8)h (Uy, . . ., Uy) thek iid uniform random sample on
[0,1], let(M;, ..., My) be the corresponding fragments numbers hit (or animalsepedVithl, l; € {1,...,k},
let:

n

511712 = Z I(Mll = m;Mlz = m) )

m=1
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denote the event thadt/;, = M,, for some fragment ii$,,. Introduce the pair-matching statistic:

Dy = Z 011,15 -

117&12 1

It is the empirical probability that two randomly chosemite of thek-sample are identical. In a genetic context,
D,, 1, is called the homozygosity of the sample (Tavaré, 2004)eNuat:

1 P,k k Py, k Bn 2 1
Duk = 30T q; Bui(@) Bus(@) ~ 1) = == [ X2 ( ,Z(Q)) =

q=1
Indeed for each visited specigswe need to count the numbg, . (¢q) — 1 of returns tog, together with its
multiplicity, with > " Fn, + By.x(q) = k. Note thatD,, 1 is a function ofP,, , and ofB,, x(¢),q € {1,..., P i}

The expectation 0&5;1,12 is the probability that two fragments chosen at random agesétme. From equation (4)
withk =2andp =1,a; =0, as = 1, we get:

1+6
14+n6°

Assume the observations afg , = P andB,, x(q) = B, for ¢ € {1,..., P}. Then the observed valu@ of

D, 1 is:
P 2
k B 1
D= — =) .

q=

Eo¢(Dn,x) = Eo(d1,,1,) = (17)

Applying the method of moment$, can be estimated byl — D)/(nD — 1) which is a consistent estimator.
Therefore, we propose the following estimators of the (in):

-~ 1-D n1 — 1)6;
6, = ——— and ﬁ1:P+ﬁ1M, (18)
7’L1D71 (7’L191 &
or: ~
~  1-D Bi.p—
0= ——— and ﬁ1:P+k’P71(fl). (19)
nlDfl Bk,P(Gl)

These estimators are based on the couple of observdtio$) and depend on which estimator ofitself was
chosen. The numerical strategy is to get an implicit equdtio 72, (or 72;) by substituting the expression of
(or 671) as a function ofi; (or n1) in the second equation, solve itin (or n;) as a fixed point problem and then
deduce the corresponding estimatesfoNote that the functions involved in this fixed point problare rational.

An alternative estimation procedure which uses the obb&\vA and cell occupancieB,, (¢) = By, ¢ €
{1,..., P} is as follows. Consider the Renyi entropy of ordel 1 (Piélou, 1975) defined as follows:

1 .
- log mzzl S -
Whena = 2, ¢,, = —log(>_ _, S2,) is the Simpson index of biodiversity (Simpson, 1949) up ®ltdgarithmic

transformation. Asy tends t01 ¢, tends to— Y _ log S,,, the Shannon entropy, which is also an index of
biodiversity (Piélou, 1975). Consequently we will ratleensider random additive functional 8f;:

(bn:

b= h(Sm) .
m=1
Hence withh(s) = s2, it is exactly the Simpson index and witl{s) = —slog s, it is the Shannon index. Below

we will only consider the former case. The Simpson index ofibiersity can also be viewed as the size of a
size-biased sample fragment fr@yp for which:

2 1+6
<ZS )nEgSl) o
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We obtain the same expected value as in equation (17): it ineesdy noticed by Simpson (1949). For a review of
various measures of species diversity, see Hubalek (2@a@)prding to lemma 1C,, x(m)/k is an estimator of

Sm, implying that the quantity:
> ~ (Knx(m)
oo 2o (5]

could be used as an estimatorggy. Clearlyggn_,,c #—» ¢, and in particular:
c— 0O

Eq (¢7nk) — Eq(én) -

To be effective this supposesto be known, which could be not true.-fis unknown, enhancing fragments with
small probability to occur, we shall rather consider a giabiised on the sample coveragethe proportion of
seen species infasample):

Pk
C=>5,.
q=1

Indeed following Chao and Shen (2003), we can consider:

n ' Pokop(s
Gk = Zl %wcm (m) > 0) = 2 Wq((;l;))

wheres; = % forallg € {1,..., P, 1} (in order to haver;;’l’“ S; = 1) and wherer,(S;) =1 — (1 - S})*is
the probability to observe fragmegpamong theP,, ,, which were effectively observed (see equation (2)). Clearl
we have:

d
wn,k — ¢n .

k—o0
But,, i, involves unknown quantities. Hence A, ;. fragments are observed, an estimatofpt= S, /C'is:
S?l _ Bn,k(q)
q k :

It follows that a possible estimator @f, j is:

ren(2)

{p\n,k = Z

-
¢=11-— (1 — —B"’]’z@)
Particularizing toh(s) = s? (Simpson index of diversity),

Pk (Bn,k(Q))Q

"z)\n.,k = Z b

k
=11— (1 o Bn,;;(q))

is such that:
0+1

ng+1"

Assuming the observation iE,l,k =1, (1 —4¢)/(nyp — 1) is also a consistent estimatorby application of the
asymptotic method of moments. Note that:

Eg(tn) —— Eo(én) =

w=§:——g%l—f,

Iz
qzll—(l—%)

whereB, > 1is an observed realization &, (¢) for anyq € {1,..., P}. hence it involves the observations
P and B, with ¢ € {1,...,P}. Therefore an alternative closely related to the two previestimators (see
equations (18) and (19)) for the p&#, n) could be:

S 1-9 (2 — 1)fa)s

and ﬁQZP—I—ﬁQiA,

Oy = —
T ey —1 @
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or:
~ 1- B p_1(0
92:~ 1/} and ﬁQZP‘FM
ngy — 1 By, p(62)
These estimators are based on the set of observalarslB,, ¢ € {1,..., P} and depend on which estimator

of n itself was chosen.

3.3 Stopping rules

Here we now define three stopping rules for the sampling pockdeed there is no "objective” stopping rules.
Each of these stopping rules are based on some simple anekiirig questions that arise naturally in our context.
What is the sample size until the first visit to the smallesgfment? How long should one wait until all fragments
have been visited (the coupon collector problem)? When tbleability to discover a new species is smaller that
a given threshold? Clearly the two first questions concetp i situation withn < oo while the last could be
answered for any case.

1. LetS(,) be the smallest fragment amofig. Let K,,) be the sample size until the first visit §,,). Then

P (K > k[Sa) = (1-Sw)"

is the conditional waiting time until the first visit to thisagment. Averaging over the partitio®s,, we
obtain

Py (K(n) > k) = EyP (K(n) >k | Sn) =Ey {(1 — S(n))k}
1

1
= / Py [(1 — S)" > S} ds =1 —/ Py [S<n> > 1 —sﬂ ds.
0 0
To evaluate this probability, we thus need to compute thigidigion of S(,,,. We can prove

Py (S(n) > S) = %Z)i)¢n,9 (8)

whereg,, o(s) = hy'(t) |¢=1 is then-fold convolution oft — he s(t) = t=11(1 > t > s) evaluated at
t = 1. This distribution could be computed in closed form. In thesB-Einstein casé = 1), the expression
simplifies to

Pi(Sny >s)=(1- ns)f__l ,

wherez = x Vv 0 (see Huillet, 2003). As a result, with> 1,
1 Jk n—1
1-— 1—n(1-—st ds
[ (n (=)
1 n—1
17/ (1—n(1—sl/k)) ds
(1-%)"
L 1 k—1 .1 k—1
= 1—<1—) /x”1<1+ i > dx
n n 0 n—1

- 1_%(1‘%)k_1§(kj1) (n=1)7 (n+5)7".

J=0

P (Kn > k/’)

2. LetK," =inf{k > n; P, = n} be the first time that all species are observed in the samptb.A\& n,

we have
PB(K'I > k) = P@(Pn,k < n) =1- P@(Pn,k = n) .

Recalling equation (6), we obtain

PQ(I(;r > k) =
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Recalling equation (5), withk > n, this may also be written as follows:

PMB?‘<k>E§%;Bhnw)-

When# = 1 andf T oo, this formula further simplifies to give respectively thelldkaown results:

() G

SN G

P (K, <k)=

n

and:

3. Alast possible stopping rule for the sample is the follayvithe proceeding with sampling is useless if the
estimated probability to obtain a new specigqor 71) is less than some small valagsays = 0.01 for
instance). Hence we are interested in the two following darsiges:

K. = inf{k; r1 <e} and K. = inf{k; m <e},

using respectively: or nn for estimatingn. When P distinct species have been observed at étethe
probability to get a new species at thie+ 1)-th trial is

(n—P)o

= nd + k

Using estimators developed previously, we obtain the tlloviang estimates for:

. (@-P)

N
rHo=
YT R0tk

d 7=
and m = =k

(if 6 is also unknown, one could replace its estimates). Whea 1 (Bose-Einstein case), the explicit
expressions fofi and forn lead to:
. n—P PP-1)
1T = — =
"Rtk k2-P

i-P P(P-1)
Atk

and 7 =
TR k241

Obviouslyr; > 7. As a consequencef{8 > f(g. Th~us,f(5 is of order Pe—1/2 andf(8 is of order
(P(P —1))'/2¢71/2, Hence ifP is large enoughis. and K. are of the same order. In the case of Kingman
model, we have only an explicit expression forln such case, let us recall that:

~ Sk—1,P—1
r=——
Sk,P

which could be evaluated from inspection of a table of the Kirsd Stirling numbers.

3.4 Goodness of fit using the second Ewens sampling formula

Deciding which model fits the best to a concrete situationdballenging problem. This can first be appreciated
from the likelihood of the observations under the differertdels to be compared. We shall recall an additional
procedure followed by Keenet al. (1987) for the case < oco: First, a simple computation ef; = Eg(A,, 1 (7))

gives, using our notations
[k
o = m(z) <9>n,kﬂ';1 :

According to theorem 2.5 in Keenet al. (1987), a UMVB estimator ofy; is obtained under the form:

(0); Bi—ip—1(9)
(i—1)! Byp(9)

&i = EG(Ank(Z) | P) =

When6 = 1 (Bose-Einstein case), it becomes:

5 - pp—1) (k—i- Dk —p)!
T k—it+1 KE-DI
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recalling the expression @ p(1). Define next the MLEx; of «; to be:

k
a; = m< > O) i -
i ) O i

Based on the observations of A, 1 (i), the goodness of fit of the model can be measured by one of the tw

following statistics:
k

k
P = Z(Az — ai)z/ai or Z — Qi) /aZ .

=1
In the case of the Kingman model, one can check that:

k! 5

a; = EX (Ag(i) = i(k—di)ly+i—1

and the second statistic becomes: i
=D (A —@)?/as

wherea; = (k Z),m

and wherey is given by equation (15).

3.5 Numerical simulations

We now apply the estimators developed and discussed psdyion simulated data to observe the behavior of
their quality whem, 6 andk are varying.

We consider empirical distribution df-samples for a given Dirichlet partition (however one cordther pre-
fer to consider empirical distribution of Dirichlet pantihs and onek-sample). Forn € {100;200;500}

and @ e {2, ; 2} we simulated a Dirichlet partition. Over this partitionewimulated 500:-samples with
ke } Note that we managed to use the same uniform random vas;ainjehatP 3n corresponds to

the same observatlons than the first oneB,pf, and so on. We considered the two dlfferent ca@eknown andd
unknown. In some cases, we did not use the estimators basedinoe computations were too heavy.

Tables 1 to 3 contain the estimations (first wifeis known and then whefis unknown) respectively fat = 1,

0= % andf = % The numbers that appear in the cells are the empirical gesraf the estimations afor 6, and

the number in brackets within the cells the empirical statid&viations (over 100-samples as described above).
Note that comparing standard deviations for the estimatidn andf does not make sense (one should rather use
for instance the coefficient of variation which is dimensless).

Forf =1 (table 1), the results are very good, even whénunknown (but except for the estimationivith the
statisticl,, ;). Forf = % andfd = % we did not run the estimators basedrofor the reason given above. Results
are quite good whefiis known, but not so good whehis unknown.

[Tab. 1 about here.]
[Tab. 2 about here.]
[Tab. 3 about here.]

4 Applications to real data

We applied our estimators to fourteen different sets of dash. These data are of various nature as we will see
later. However we will only consider here two kind of realalaets. The first one was studied by Keeeter

al. (1987) and deals with word usage by two different author® interest of this first data set is that we indeed
known the numben to be estimated. The second one was extracted from obsersatiade by Janzen (1973):
these data correspond to beetles species observed eitireg the day or during the night and at different season.

4.1 Federalist papers data

These data were considered by Mosteller and Wallace (198#ancern word usage by James Madison and
Alexander HamiltonThe Federalispapers were written between 1787 and 1788 to promote the oestiflition

of the State of New-York. Published in various newspapésse papers was signed under a pseudonym (as for
instancePubliug. Each paper was written by one of the three following pessalames Madison, Alexander
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Hamilton and John Jay. The author of most of the seventyrspagers is clearly identified but Madison and
Hamilton disputed the authorship of twelve of them. Hencerer to determine the author of these disputed
papers, many researchers studied papers written surelydalysbh and Hamilton. In particular some of them
focused on the occurrences of function words as defined byJiher-Newman-Friedman list. Mosteller and
Wallace (1984) developed a Bayesian approach to solve thiggm. In order to do so, they divided a set of well
identified texts (either by Madison or by Hamilton) of equeddth. It corresponds to the data presented below.

Forq € {0,...,6}, the two tables below gives the numhé(q) of manuscripts (of the same type as those
published inThe Federaliseand with comparable length) in which a specific word ('may’ kbadison and 'can’
for Hamilton) occurs exactly times (these two words were the one selected by Keetradr (1987), but Mosteller
and Wallace (1984) studied more words). In this case, thetexanbers of manuscripts are known (respectively
n = 262 andn = 247) and so we will be able to compare it with our estimation. Sime have this additional
information, tables 4 and 5 contain the columndot 0, which is not available in real applied context.

For these two data sets, Keemtral. (1987) computed the estimation offor the three special cases considered
here (i.e. for the Bose-Einstein, Maxwell-Boltzmann angl tingman models) and also for the case where both
n and@d are unknown. Results are compared throughout the logHibetl. Indeed, in their paper, there is no
theoretical development whenandé are unknown.

e Madison data:the sample size i5 = 172 and the number of distinct kinds of manuscriptgis= 106.
When using the statisti®,, ;,, we obtainn; = 274.6 and§1 = 1.09. When using the statisti@mk, we
obtainfi, = 274.6 andd, = 0.32. When assuming that bothandé are unknown, Keenest al. (1987)
obtained respectively 217 and 1.998 as estimated valuésvatue forn is far from its correct value.

[Tab. 4 about here.]

e Hamilton data:the sample size i = 139 and the number of distinct kinds of manuscrlptﬁ is 90. When
using the statlst|ch &, We obtainn; = 253.5 and91 = 0.85. When using the statlst|¢n &, We obtain
o = 4526.3 and92 = 0.01. The second value is unsatisfactory. However when assuthaidpothn andd
are unknown, Keeneat al. (1987) obtained respectively 10,000,001 drh4 x 10~° as estimated values!
This value forn is strongly far from its correct value.

[Tab. 5 about here.]

4.2 Tropical insect data

Janzen (1973) observed tropical insects in twenty-fiveiffit sites in Costa Rica and the Caribbean Islands. This
paper contains a remarkable collection of data. From it,xmaeted three series corresponding to beetles collected
either in day-time or in night-time, all during a dry seas@hese data were collected at the same site referred as
"Osa secondary” in Janzen (1973). Observations of the grgt¢swere collected during the dry season of the year
1967 in day-time while the ones of the second series wereaell at the same period in night-time. At least
observations of the last series were collected during theelson of the year 1968 in day-time.

e Osa secondary/day/dry/1967:it was observed: = 996 beetles angp = 140 distinct spemes When
using the statlstchn &, We obtainn; = 162.7 and91 = 0.219. When using the statlstnbn &, We obtain
no = 162.7 and92 = 0.211.

[Tab. 6 about here.]

e Osa secondary/night/dry/1967:it was observed = 835 beetles angp = 151 distinct spemes When
using the stat|st|d)n &, we obtainn; = 184.1 and91 = 0.268. When using the statlstnzbn &, We obtain
7y = 184.1 andfs = 0.252.

[Tab. 7 about here.]

e Osa secondary/day/dry/1968:it was observed: = 807 beetles angh = 143 distinct species. When
using the statistid,, ,, we obtainn; = 173.6 andf; = 0.111. When using the statisti¢,, 5, we obtain
no = 173.6 andfy = 0.108.
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[Tab. 8 about here.]

For all the three data sets, the two value& @fre identical. Moreover the two valuesfare close, which is not
always the case. It may be due to the fact that many speciedbanelant.

4.3 Conclusion

These two families of data sets give some illustration ofrdseilts obtained when applying the estimators devel-
oped in this paper . In fact it also shows the computationat bf them. In particular one can observe that values
of the two estimators; andn, of n (respectively based ab,, ;, andzZn,k) may differ. This should arise especially
when most of species are rare and when there were only fewdahtispecies. However, over the fourteen sets of
real data we used, this situation occurs four times. Estimator the three data about tropical beetles seem to be
exceptionally satisfactory. It may be due to the presenceasfy abundant species.
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6 known # unknown
n 7 (fi1,6,) based oD,  (y, 65) based onp, 4
n=100 k=066 | 9296 90.98 | 1.2E+09 0.21 9.8E+08 2.7E-08
(16.51) (15.80)| (1.3E+09) (3.5E+08) (0.32) (1.1E-08
k=100 | 93.69 92.81 2821.86 0.21 3322.34 0.01
(13.29) (13.05)| (1884.31) (12632.13) (0.33) (0.01)
k=150 | 91.83 91.46 91.83 1.13 130.06 0.61
(9.62) (9.55) (9.63) (268.89) (0.23) (0.12)
n =200 k=133 | 206.76 204.33 223.08 1.09 4731.03 0.01
(31.23) (30.46)| (153.28) (0.23) (767.15) (0.001)
k=200 | 201.22 200.21 201.22 111 201.22 0.46
(18.07) (17.89)] (18.07) (0.18) (18.07) (0.04)
k=300 | 200.30 199.85 200.30 1.09 200.30 0.58
(13.28) (13.22)] (13.28) (0.15) (13.28) (0.05)
n=>500 k=333 | 513.34 510.96 513.34 0.99 513.34 0.32
(41.89) (41.49)] (41.89) (0.13) (41.89) (0.02)
k=250 | 515.20 514.14 515.20 0.99 515.20 0.43
(27.79) (27.68)] (27.79) (0.13) (27.79) (0.03)
k=750 | 515.15 514.68 515.15 0.98 515.15 0.54
(21.61) (21.57)] (21.61) (0.10) (21.61) (0.03)

Tab. 1: Estimation over simulated data with= 1
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6 known 6 unknown
n (f1,0:) based oD, ;. (7, f) based onp,, .
n=100 k=066 108.21 8.2E+08 0.16 7.5E+08 3.2E-0¢4
(19.39) | (8.5E+08) (0.30) (2.7E+08) (1.3E-04
k=100 | 110.36 1418.81 0.29 1708.36 0.02
(13.93) | (1547.26) (0.32) (968.16) (0.02)
k=150 | 162.34 156.51 0.91 2462.54 0.38
(15.58) | (614.64) (0.23) (16084.16) (0.29)
n=200 k=133 | 136.75 | 4.2E+08 0.33 5.9E+08 0.002
(84.83) | (6.9E+08) (0.41) (3.8E+08) (0.005
k=200 | 141.06 836.19 0.42 1222.67 0.11
(87.25) | (1328.58) (0.38) (1371.98) (0.19)
k=300 | 183.38 473.93 0.69 2828.47 0.19
(69.20) | (3672.28) (0.310) (30533.87) (0.26)
n=>500 k=2333| 232.11 | 4.2E+08 0.35 5.9E+08 0.07
(270.59)| (6.9E+08) (0.39) (3.8E+08) (0.15)
k=250 | 234.31 882.81 0.41 1269.30 0.11
(272.37)| (1308.03) (0.37) (1338.81) (0.18)
k=750 | 277.95 521.22 0.68 2875.75 0.19
(256.56) | (3669.47) (0.30) (30529.92) (0.25)

Tab. 2: Estimation over simulated data with= 1

~
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# known # unknown
n (f1,6,) based omD,, (72, 6>) based ony,, &
n=100 k=66 | 99.39 | 7.801E+08 0.18 8.299E+08  0.0001
(19.49) | (1.167E+09) (0.28) (3.365E+08) (0.00B)
k=100 | 99.37 1740.15 0.26 1674.75 0.01
(13.48) | (2273.91) (0.30)  (1331.18) (0.01
k=150 | 155.01 465.64 0.74 2820.17 0.0001]
(18.25) | (3673.02)  (0.37) (30534.60) (0.25)
n=200 k=133 151.57 | 4.195E+08 0.40 5.922E+08  0.00R
(110.93) | (6.926E+08) (0.47) (3.830E+08) (0.00b)
k=200 | 151.08 853.30 0.47 1239.78 0.09
(107.15)| (1320.33)  (0.45)  (1359.18)  (0.15
k=300 | 189.47 488.62 0.75 2843.15 0.19
(81.03) | (3671.15)  (0.38)  (30532.61) (0.25)
n=>500 k=2333] 254.38 | 4.2E+08 0.37 5.9E+08 0.05
(314.97)| (6.9E+08)  (0.41) (3.8E+08) (0.11
k=250 | 253.11 921.32 0.44 1307.81 0.09
(309.82)| (1295.86)  (0.40)  (1315.75)  (0.15
k=750 | 29179 556.83 0.71 2911.36 0.18
(284.10)| (3668.96)  (0.33)  (30527.13) (0.24)

Tab. 3: Estimation over simulated data with= %



Estimating the number of species

0 [1|2|3|4
156 | 63| 29| 8|4

Tab. 4: Madison data
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0 112]3
1571 60| 20| 5

N B

N Ol

Tab. 5: Hamilton data



Estimating the number of species

¢q [ 1]2[3]4][5]6]7][8]9]10][11]12]14
Al ||70]17| 4|5 |5 |55 |3 |1]|2|3]|2]2
q |[17]29]20] 21| 24]26[40[57]60|64] 71| 77
Al 123111121 |1]1]|1

Tab. 6: Osa secondary/day/dry/1967 data
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qg | 1]2[3]4][5]7]8]9]10]11]12
Alg) | 61| 24|13|12| 5|6 |5 | 2| 4|23
q |[13]15[17]18[19] 26|30 33 40 44 | 62
A | 111221111 ]|1]2

Tab. 7: Osa secondary/night/dry/1967 data




Estimating the number of species

¢ 1][2[3]4[5[6]7]910] 11 12|13
Alg) || 85| 12|10| 4|6 |3 |5 |1 |2 1] 1|1
q |[15[18[ 20| 2425|2829 30] 79 106 | 112
A |22 12|22 ]2]|21|1]1

Tab. 8: Osa secondary/day/dry/1968
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