
HAL Id: hal-00320018
https://hal.science/hal-00320018

Submitted on 10 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of Methods for Modeling Uncertainties in a
2D Hyperthermia Problem

Damien Voyer, François Musy, Laurent Nicolas, Ronan Perrussel

To cite this version:
Damien Voyer, François Musy, Laurent Nicolas, Ronan Perrussel. Comparison of Methods for Mod-
eling Uncertainties in a 2D Hyperthermia Problem. Progress In Electromagnetics Research, 2009, 11,
pp.189–204 (in PIERB). �10.2528/PIERB08112104�. �hal-00320018�

https://hal.science/hal-00320018
https://hal.archives-ouvertes.fr


PAPER PB4-2 2008-09-10 09:15 1

Impact of uncertainties in 2D hyperthermia using

stochastic spectral and collocation methods
Damien Voyer⋆, François Musy†, Laurent Nicolas⋆ and Ronan Perrussel⋆

⋆ Laboratoire Ampère (UMR CNRS 5005), Université de Lyon, École Centrale de Lyon, Écully, France
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Abstract—Uncertainties in biological tissue properties are weighed in the case of an hyperthermia calculation. Stochastic spectral
and collocation methods are applied to analyze the impact of these uncertainties on the distribution of the electromagnetic power
absorbed inside the body of a patient. They enable to realize sensitivity and uncertainty analyses more efficiently than when using
a two level experimental design or a kriging technique.

Index Terms—stochastic method, adaptive sparse grid, numerical dosimetry

I. INTRODUCTION

A
N IMPORTANT issue in hyperthermia and more gene-

rally in numerical dosimetry tackles the variability of the

biological tissue properties [1]. This variability can be modeled

by considering those properties as random variables with

probabilistic laws in agreement with the existing experimental

data. The problem consists then in evaluating how this alea

affects physical quantities such as the distribution of the

electromagnetic power absorbed inside the human body. In this

paper, some variability is introduced in the different tissues of

a 2D hyperthermia problem. In order to determine the most in-

fluential factors and quantify their effects, different approaches

are briefly presented and compared in terms of accuracy and

computational cost: a two level experimental design approach

[2], kriging approach [3] and finally, stochastic spectral [4]

and collocation [5] methods using adaptive sparse grid [6].

II. HYPERTHERMIA PROBLEM

It is considered the treatment of a tumor located inside the

liver of a patient. The 2D model has been obtained from a

computed tomography slice of the body.

In a first step, the electromagnetic properties – permittivity

ǫ and conductivity σ – of the different tissues are set to

the common values used in literature [7] (see Table I). The

amplitudes and the phases of four incident waves are adjusted

so that to maximize the power absorbed inside the liver and

minimize the power absorbed elsewhere in the body. More

precisely, the quantity we minimize is:

y =

∫
body 6= liver

σ (τ) |E (τ)|
2
dτ

∫
liver

σ (τ) |E (τ)|
2
dτ

(1)

where E is the amplitude of the electric field. Computations

are performed using the finite element library getfem++ [8].

In a second step, the properties of the different tissues are

supposed to be random variables with uniform probability laws

while the phases and amplitudes of the four incident waves

found are maintained at the values found at the first step. The

properties of the tissues vary in a range of ±25% around the

mean value except those of the tumor which vary in a range

of ±50%; this distinction is introduced because the properties

of tumors are usually less known than those of safe tissues.

TABLE I
MEAN VALUES OF TISSUE PARAMETERS INVOLVED IN THE

HYPERTHERMIA PROBLEM AND RANGE OF VARIATION

Quantity Mean Variation

σ muscle 0.707 ±25%

ǫr muscle 65.972 ±25%

σ fluid body 1.504 ±25%

ǫr fluid body 69.085 ±25%

σ bone 0.064 ±25%

ǫr bone 15.283 ±25%

σ marrow 0.022 ±25%

ǫr marrow 6.488 ±25%

σ kidney 0.810 ±25%

ǫr kidney 98.094 ±25%

σ liver 0.487 ±25%

ǫr liver 69.022 ±25%

σ tumor 1.005 ±50%

ǫr tumor 84.342 ±50%

σ bowel 1.655 ±25%

ǫr bowel 96.549 ±25%

σ lung 0.558 ±25%

ǫr lung 67.108 ±25%

In the following, y defined in (1) is the observed quantity;

it is a random variable depending on the 18 random variables

corresponding to the tissue properties. For each of the strate-

gies mentioned in the Introduction, a specific model for y is

assumed and a specific numerical experimental design is built

in order to estimate the unknown parameters of the model.

Such a design consists in the choice of a set of realizations or

nodes for the random variables. Comparisons are proposed in

terms of sensitivity and uncertainty analyses.
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III. CLASSIC TWO LEVEL EXPERIMENTAL DESIGN

The random input variables are normalized between −1, the

low level, and +1, the high level. The model for y is:

y (x̃) = β0 +

18∑

i=1

βix̃i +

18∑

i=1

∑

j>i

βi,j x̃ix̃j + · · · + ǫ (x̃) (2)

where x̃ = {x̃i}i=1,...,18 ∈ [−1, 1]
18

denote the norma-

lized variables. The coefficients {βi}i=1,...,18 correspond to

the main components, {βi,j}i,j=1,...,18; j>i
correspond to the

interactions between two variables; higher order interactions

are also considered. The first part of the model is the regression

model and the remaining ǫ is the error. This error is supposed

to be a random process with a zero mean and where two

realizations are uncorrelated.

Once a numeric experimental design is built, the estimate β̂
of β is the ordinary least square solution based on the nodes

of the design. In statistics, it is also the best linear unbiased

predictor for β.

In a two level experimental design, the nodes are chosen

at the edges of the domain and thus each x̃i can take the

values −1 and +1. Consequently, the complete design will

involve 218 = 262, 144 nodes. When the numerical experi-

ments are expensive in computational resources, the complete

design cannot be realized. A solution is to consider fractional

experimental designs where some effects are confounded.

A fractional design is characterized by its resolution: in a

resolution III, main components can be confounded with

interactions of order 2; in a resolution IV, main components

cannot be confounded with interactions of order 2 but two

interactions of order 2 can be confounded.

TABLE II
RESULTS FOR THE FRACTIONAL EXPERIMENTAL DESIGN

Resolution III Resolution IV

Quantity Coefficient 218−13 218−12

32 nodes 64 nodes

β0 16.888 17.194

σ muscle β1 3.378 2.514

ǫr muscle β2 −1.222 −2.0237

σ fluid body β3 5.976 6.812

ǫr fluid body β4 −5.348 −5.485

σ bone β5 1.035 0.845

ǫr bone β6 −0.796 0.508

σ marrow β7 0.331 −0.538

ǫr marrow β8 −0.485 0.297

σ kidney β9 0.150 −0.309

ǫr kidney β10 0.124 0.231

σ liver β11 −5.421 −5.935

ǫr liver β12 4.679 4.930

σ tumor β13 −1.812 −1.689

ǫr tumor β14 −1.565 1.322

σ bowel β15 −0.408 −0.249

ǫr bowel β16 0.179 −0.409

σ lung β17 −0.215 −0.120

ǫr lung β18 0.530 0.119

Fractional designs of resolution III and IV have been applied

to the hyperthermia problem. The results are detailed in

Table II. Our attention is focused on the most influential

components even though an experimental design enables to

extract also information on the interactions between factors. As

the quality of the resolution increases, the cost also increases:

32 nodes for a resolution III and 64 nodes for a resolution IV.

It appears that the properties of the liver and the fluid body

have the greatest influence on the value of y; the properties

of the muscle have a lower impact. As shown in the next

sections, these results are in agreement with those obtained by

other methods. On the other hand, they give little importance

to the properties of the tumor and the bone, which is actually

unexpected. Moreover, there is a discrepancy in the estimation

of the coefficients β6 and β14 between resolution III and IV. In

order to refine the results, the resolution should be increased

but the numerical cost will also strongly increase: 512 nodes

is required for the resolution VI – resolution V does not exist

for this example –.

IV. KRIGING

In the kriging approach, the model of y is composed of a

regression model, as in classic experimental design, and of an

error whose properties are different from the error given in (2).

Indeed, the error is chosen to be a stationary gaussian process

with a zero mean but where two realizations are correlated.

From the numeric experimental design, the parameters of the

correlation function are estimated and it enables to correct

the systematic bias that appears between y and the regression

model at the nodes of the design.

The software GEM-SA [9] is used to test the kriging method.

To compute the model of y, it generates a Latin hypercube

design of the initial hypercube with 18 dimensions. For a user-

defined number of nodes, this Latin hypercube is the result of

an optimization process of the space-filling properties.

TABLE III
RESULTS FOR THE KRIGING APPROACH: PARTIAL VARIANCE (%) AND

TOTAL EFFECT (%) OF THE DIFFERENT PARAMETERS

Quantity
40 nodes 100 nodes

Variance Effect Variance Effect

σ muscle 2.40 2.79 2.14 2.35

ǫr muscle 2.82 3.59 1.25 1.51

σ fluid body 29.26 34.25 27.06 31.86

ǫr fluid body 17.56 21.72 19.90 24.74

σ bone 0.20 0.28 0.01 0.05

ǫr bone 0.14 0.14 0.02 0.05

σ marrow 0.44 0.51 0.04 0.04

ǫr marrow 0.05 0.25 0.03 0.07

σ kidney 0.24 0.24 0.01 0.01

ǫr kidney 0.14 0.25 0.03 0.04

σ liver 20.02 22.17 22.85 25.91

ǫr liver 18.00 19.15 17.77 19.87

σ tumor 0.59 0.75 0.16 0.41

ǫr tumor 0.29 0.29 0.25 0.87

σ bowel 0.49 0.62 0.04 0.49

ǫr bowel 0.13 0.13 0.03 0.24

σ lung 0.11 0.14 0.04 0.35

ǫr lung 0.09 0.09 0.04 0.17

Two simulations of the hyperthermia problem have been

carried out using 40 nodes and 100 nodes. The sensitivity ana-

lysis is given in Table III: for each input random variable xi,

the partial variance, which corresponds to Var[E[y|xi]]/ Var[y]
where E[·] denotes the expectancy, and the total effect, which

adds to the partial variance the contribution to the variance of

the higher order interactions involving xi [10], are computed.
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It appears that the properties of the fluid body and the liver are

the most influential parameters on y. The muscle also has an

effect but less important. The other variables do not have any

influence on y. In particular, the contribution of the tumor is

insignificant: this is due to the fact that the tumor is small and

consequently, its influence on the integral in (1) is negligible.

Moreover, it seems that there is low coupling between the

different variables since the partial variance is close to the

total effect. As for the mean and the variance, the results are

in accordance with those obtained in the next sections (see

Table IV).

TABLE IV
MEAN AND VARIANCE COMPUTED USING THE DIFFERENT APPROACHES

Method Kriging
Stochastic Stochastic

spectral method collocation method

Number
40 100 150 1 000 160 1 000

of nodes

Mean 14.082 14.218 14.138 14.131 14.131 14.135

Variance 41.558 42.518 40.140 40.341 39.786 40.846

V. STOCHASTIC SPECTRAL METHOD

The stochastic spectral method is based on the expansion

of the random variable y in a polynomial basis depending on

the input random variables. Since the input random variables

are characterized by uniform laws, it can be efficiently ex-

panded on the generalized polynomial chaos [11] based on

the Legendre polynomials:

y (ξ) =
∑

i∈N18

yiΨi (ξ) (3)

where Ψi (ξ) =
18∏

j=1

Lg ij
(ξj); Lg k are the Legendre poly-

nomials and ξ = {ξi}i=1,...,18 the normalized input random

variables with uniform laws defined on [−1, 1]. The total

degree of the polynomial is the sum of the indexes ij .

The unknown coefficients yi in (3) can be computed using

the projection method:

yi =
E [yΨi]

E [Ψ2
i
]

=
1

18∏
j=1

ij !

∫

[−1, 1]18

y (ξ) Ψi (ξ)
1

218
dξ, (4)

To compute the integral in (4), quadrature rules are applied

and define the numerical experimental design. This scien-

tific computing approach is quite different from the statistic

approach using Latin hypercubes discussed in the previous

section. However, applying a tensor product design based

on one-dimensional Gaussian quadrature rules is most of

the time prohibitive since the number of quadrature nodes

increases exponentially with the number of dimensions. For

instance, an exact integration up to the order 7 requires

418 = 68, 719, 476, 736 simulations. This number can be

dramatically reduced using sparse grid: only 9, 841 have to

be computed when considering Smolyak’s algorithm with

Gauss Patterson nodes. Nonetheless, an adaptive sparse grid

algorithm is even more suited in order to explore only the most

influential factors. This technique is used with Gauss Patterson

nodes since their building relies on nested sequences of nodes

at the different levels of accuracy [6].

Our criterion for adaptivity in the hyperthermia problem is

based on the variance. From (3), the variance is given by:

σ2
y =

∑

i∈N18\(0,...,0)

y2
i
. (5)

In the adaptive version of Smolyak’s algorithm, a comparison

of the increment of variance brought by each direction pro-

vides the error indicator allowing to choose in which direction

the accuracy of the quadrature has to be increased. A direction

in the algorithm is described by the index i = [i1, . . . , i18]
where the component ij indicates a level of accuracy of the

quadrature rule following the j-th variable. In (5), the sum is

reduced to the indexes i for which the numerical integration

of E[Ψ2
i
] is exact. At the beginning of the algorithm, only one

point is computed and it corresponds to the index [0, . . . , 0].
At this stage, only the term y0 can be estimated and no term is

available to calculate the variance in (5). At the first iteration

of Smolyak’s algorithm, the level of accuracy is increased

successively for each variable i.e. from index [1, 0, 0, . . . , 0]
to [0, 0, . . . , 0, 1]. At this step, only the coefficients related to

the polynomials of total degree less or equal to 1 are calculated

from (4). Then, the variance in (5) is reduced to a sum of 18

terms. At the second iteration of Smolyak’s algorithm, the level

of accuracy is increased from the direction that has brought

the largest contribution to the variance. The new sequences

are used to refine the calculation of existing yi coefficients

but also to integrate new yi coefficients that can be computed

more precisely with the new nodes. This approach can be seen

as an adaptive building of the polynomial chaos.

Fig. 1 shows the convergence study of the stochastic spectral

method. Two criteria have been experimented in the adaptive

algorithm: first, only the contribution of an index to the

variance is considered; second, the contribution of an index

to the variance is balanced by the number of new nodes to

calculate, i.e. the computing time cost of the new nodes is

taken into account. It appears that the convergence is better

when using the balanced variance criterion: in this case, the

variance converges after about 150 nodes while it needs more

than 400 nodes in the case of the unbalanced criterion. The

variance converges to a value close to the result obtained with

the kriging technique (see Table IV). However, the stochastic

method gives a more accurate result with about one hundred

nodes than the kriging method.

The sensitivity analysis is reported in Table V: the data

are in agreement with those obtained by the kriging method.

Three tissues impact on the variability of y: the fluid body,

the liver and the muscle. The others are nearly negligible and

their influence is more residual than in the kriging prediction.

VI. STOCHASTIC COLLOCATION METHOD

Sparse grid with an adaptive algorithm can also be exploited

to interpolate y. In this case, the interpolation function is

obtained using multi-dimensional Lagrange’s polynomials. As
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Fig. 1. Convergence of the stochastic spectral and collocation methods using
an unbalanced criterion and a balanced one.

TABLE V
RESULTS FOR STOCHASTIC SPECTRAL METHOD: PARTIAL VARIANCE (%)

AND TOTAL EFFECT (%) OF THE DIFFERENT PARAMETERS

Quantity
150 nodes 1000 nodes

Variance Effect Variance Effect

σ muscle 2.80 3.20 2.79 3.29

ǫr muscle 1.82 2.16 1.80 2.16

σ fluid body 28.19 32.34 27.86 32.50

ǫr fluid body 19.88 23.50 19.58 23.54

σ bone 0.00 0.00 0.00 0.00

ǫr bone 0.00 0.00 0.00 0.00

σ marrow 0.00 0.00 0.00 0.00

ǫr marrow 0.00 0.00 0.00 0.00

σ kidney 0.00 0.00 0.00 0.00

ǫr kidney 0.00 0.00 0.00 0.00

σ liver 23.89 26.60 23.67 26.78

ǫr liver 16.12 17.91 15.89 18.00

σ tumor 0.10 0.10 0.28 0.50

ǫr tumor 0.52 0.67 0.50 0.89

σ bowel 0.02 0.02 0.03 0.03

ǫr bowel 0.03 0.03 0.04 0.04

σ lung 0.00 0.00 0.00 0.00

ǫr lung 0.00 0.00 0.00 0.00

the sequences of Gauss Patterson nodes are nested, when the

value of y is computed on new nodes, the error indicator is

given by the absolute difference with the values interpolated

using the older nodes.

In this section, we use the matlab sparse grid interpolation

toolbox [12]. As in the previous section, the adaptivity criterion

can or cannot be balanced by the numerical cost of a sequence.

Both situations have been carried out and the results are given

in Fig. 1. It appears that the results do not converge exactly

to the same value: with 1 000 nodes, σ2
y = 40.434 for the

unbalanced criterion whereas σ2
y = 40.846 for the balanced

one. The result with the unbalanced criterion is closer to the

result given by the stochastic spectral method. Moreover, it

seems that the convergence is achieved later compared to the

stochastic spectral method. This could be due to the fact that

the collocation method adaptivity is related to the quality of

the interpolation whereas the spectral method adaptivity is

directly linked to the variance. The effect of the different

strategies can also be viewed when one is interested in the

maximum polynomial order reached in the 18 variables. Fig. 2

shows this result after 1 000 nodes for the spectral method

and the collocation method. In both case, the most influential

variables – 1, 2, 3, 4, 11 and 12 – are largely explored.

The variables associated to the tumor properties – 13 and

14 – are also exploited because of their weaker but existing

influence. However, the collocation method goes further in the

exploration of the variable 16 that corresponds to the bowel

permittivity but this variable does not contribute to the variance

as shown in Tables III and V. Finally, the mean results are
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Fig. 2. Maximum order polynomial reached in each variable for the stochastic
spectral and collocation methods.

similar to the ones given by the spectral method (see Table IV).

VII. CONCLUSION

The presence of uncertainties in the tissue properties has

been analyzed in a 2D hyperthermia problem. Among the

18 uncertain properties, only those related to the tissues

located in the neighborhood of the tumor have an impact

on the repartition of absorbed power. The sensitivity analysis

made with fractional experimental design leads to erroneous

conclusions; the sensitivity and uncertainty analyses using

the kriging technique give more accurate results. However, it

appears that the spectral stochastic method using an adaptive

sparse grid algorithm is optimal in this problem: convergence

is reached with about one hundred nodes. Using an adaptive

sparse grid algorithm in a stochastic collocation method is less

efficient in this case.
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