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Multi-level Maxwell-Bloch simulations.

B. Bidégaray™ A. Bourgeade' D. Reignier*f R. W. Ziolkowski*

Abstract

We present the Maxwell-Bloch equations that are a model for the semi-classical
description of laser-matter interactions. After having discussed both models and their
numerical coupling in a general context regarding relaxation terms and the number of
energy levels, we give examples of simulations that show the capacities of our approach.

1 Introduction

High intensity or short pulse lasers induce some strong non linear effects in matter where
transient effects are important. Here a semi-classical model is used to describe laser-
matter interaction. Such a model consists in a classical description for the electromagnetic
wave (Maxwell equations) and a quantum description of matter leading to optical Bloch
equations. The variables that describe matter are therefore the probability of electrons to
be in certain quantum states and the coherence between these states.

The model we describe is not new in itself but we enable to choose more general
coefficients in the equations. Besides the number of energy levels to describe matter may
be any integer, but of course 2, 3 or 4 for practical applications.

Previous work on the subject include a 1D and 2D code by R. Ziolkowski et al. [7, 8, 9]
that use a finite difference Yee scheme for Maxwell equations and two-level atoms. We
may also cite a work by Martin et al. [3, 4] where the paraxial approximation is applied to
Maxwell equations (and therefore the laser pulses may not be very short). Finally Nagra
and York [5] couple Maxwell equations with rate equations involving up to four levels but
not taking into account coherences and as we will see below very rapid transient phenomena
are not modeled.

We design the numerical scheme in order to be able to model any number of levels
and general relaxation terms. This induces extra problems in the time discretization of
equations that are treated in [1] for Bloch equations with a forced electromagnetic field.

In section 2 we recall the Maxwell-Bloch model as well as the hypothesis which have
to be imposed on the relaxation operator. In section 3 we describe the main features of
the numerical model and finally section 4 is devoted to simulations that point out the
advantages of being able to keep coherences and handling more than two level atoms.
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2 Maxwell-Bloch equations
The classical description for the propagation involve Maxwell equations:

a B=0,
oD =V x H, D =0.

OB=-VxE, V-
\Y

Magnetlc effects play no role in the applications we are interested in and we therefore take
B = ugH Our attention is focused on the other constitutive law: the displacement vector
is defined by D= 60E + P where P is the polarization due to the presence of a medium.
In a classical description this polarization would be expressed in terms of E, here we use a
quantum mechanical model for the matter that is described by state vectors |}, the time
evolution of which are given by the Schrodinger equation

ihdy|p) = H|ip).

The Hamiltonian H is the sum of the unperturbed Hamiltonian Hy and the perturbation
V induced by the electromagnetic field. The state vector |¢) is decomposed on a basis of
eigenstates |j) of the unperturbed Hamiltonian Hy: |¢) = " a;]j). The quantum states |5)
is associated to the eigenvalue &; = hw;. The observable variable we study is the density
matrix which is defined by pj; = a;a} up to some statistical averaging. It is solution to the
Bloch equation

(2) ihdwp = [H, pl,

where [-,] denotes the commutator of two operators. Keeping only N relevant levels, p
is a N x N hermitian non negative matrix. Its diagonal elements p;; represent the popu-
lation of levels |j) and its off-diagonal elements p;j, the coherences between levels |j) and |k).

To express the perturbation V', we restrict ourselves to dipole moments because they
induce the larger order in the perturbation series. Perturbation V reads V = —eFE - R
having taken into account the fact that E does not significantly vary over atomic distances.
The dipole moment matrix is defined by its elements p);, = (k|eR|j). With these notations
equation (2) reads

A

where wj, = w; —wy, is the frequency associated to the transition from level |k) to level |j).

(3) Orpjk = —WWjkPjk —

To take into account the lack of information about the statistical averaging and of some
phenomena that are not included in the present model as spontaneous emission of light,
but also collisions, vibrations in crystal lattices or thermal perturbations in fluids, we add
phenomenological relaxation terms to equation (3) that becomes

. )
(4) Oipjk = —iWjkpPjk — ﬁ[V, plik + Q(P) jik-

The off-diagonal relaxation term reads Q(p)» = —7v;rp;r and diagonal terms follow “Pauli’s
master equation”

(5) Q)i = Wipn— > Wijpij =Y Wjipu —Tjpjj.
1 1# 1#
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The relaxation to equilibrium states is obtained by imposing
(6) Wi = VVlje’B(gj_gl)

(see e.g. Bloembergen [2]). Here 8 = 1/xT, where & is Boltzmann’s constant and 7' is the
temperature. Extra conditions have to be imposed on relaxation rates to conserve some of
the main properties of the density matrix, mainly positiveness properties (see [1]). Thus
we will suppose in the sequel that W has non negative coefficients and that

1
(7) Yik = 5 (05 + Te) + 7™ + ™ = A - Ay

where 'y;?"” €R, A; € RN and 'y;?"” > 1||A;j||? for all j. This last condition implies in
particular that -y, = ;.

The system is closed by computing the polarization as P = N,Tr(pp) where N, is the
density of atoms.

3 Numerical issues

Our aim was not to find out a brand new method only designed for this model but to use
well known methods for Maxwell equations and couple them with Bloch equations. Bloch
equations only involve time derivatives and are therefore local in space. A discussion about
their discretization may be found in [1] comparing the most commonly used Crank-Nicolson
scheme and a method that conserve positiveness properties. Both a one-dimensional code
and a two dimensional code have been written. The one dimensional code uses Yee’s scheme
to discretize Maxwell equations following [9]. To allow more complex geometries than in
[7] (who uses a FDTD approach) our two-dimensional code is based on a finite volume
approach using Delaunay-Voronoi meshes.

4 Simulations

In [9] we may find numerical simulation dealing with self-induced transparency where the
number of transitions is monitored by the intensity of the incident field and ultra fast single-
cycle pump pulses to invert populations. Here we choose some tests that take advantage
of 3-level atoms and different relaxation times. We also show simulation that could not
be obtained without the modeling of coherence as the transfer of coherence. Only 1D
simulations are presented here.

4.1 Second harmonic generation

This test shows the advantage of taking into account more than two levels. We use here
a three-level atom with equally spaced energy level and pump with the exact transition
energy between two neighboring levels. Inversion of population may be observed as well
as transient coherence evolution. Besides harmonics — and mainly the second one — of the
incident frequency may be observed after a certain distance through matter. This is due to
the fact that the wave interacts directly with the three possible transitions.
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Fic. 1. Second harmonic generation: Populations and Fourier Transform of E.

4.2 Transfer of coherence

This test is inspired by an example by Suter [6]. At the initial time levels one and two are
occupied and only coherence between level one and two is non zero. The dipole moment
matrix is taken such that pis = 0 and P13 = 10ps3. This leads after a certain time to the
transfer of coherence between level one and three. Such a test need of course a precise
modeling of coherences and is impossible with a rate equations model.
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Fia. 2. Transfer of coherence: Populations and Coherences.

4.3 Different relaxation rates

The test we present here shows that we may take into account different relaxations rates.
However we took here relatively close values and no collisions in order to see everything on
the same figure. We may notice that relaxation induces some coherence between energy

levels. Th shape of the envelope of coherences is directly connected to their relaxation
rates.
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FiG. 3. Different relaxation rates: Populations and Coherences.

5 Conclusion

The above example show that we are able to model various physical phenomena. Other
tests have been performed as 1D laser cavities and 2D results are in study too. The effort
to model Bloch equations correctly may be used to couple with any existing Maxwell code
in any dimension since the evolution of the density matrix is local in space.
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