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ABSTRACT When computing solutions to Mazwell equations with finite volumes me-
thods one often faces mesh dependent structures. We describe a way to add second
order corrections to the finite volume upwind scheme for the 2D Mazwell equations
that are designed to overcome this difficulty. This is done by using exact solutions to
the wave equation for each component of the electromagnetic field. We illustrate the
method with numerical results on simple test cases.
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1. Introduction

When computing solutions to Maxwell equations with finite volumes me-
thods one often faces mesh dependent structures. Indeed, fluxes are computed
across edges that may have privileged directions in some parts of the computa-
tional domain. Our goal is to write a modification of the classical upwind finite
volume method that handles this drawback.

Contribution to “Finite Volumes for Complex Applications IT — Problems and Perspectives,
Duisburg, Germany”, eds. R. Vilsmeier, F. Benkhaldoun, D. Hénel, pp. 483-490, Hermes,
1999.



Here we more precisely address the 2D Maxwell equations in the TE, po-
larization. Setting Q = (Q1,Q2, Q3) = (Eq, Ey, H,) they read

0 0
5%621 = 8_y;23’
5%Q2 = _%QB: , (1)
HEC% = _%QQ + a—yQL

In an homogeneous domain (i.e. € and p constant) each component of Q satisfies
the wave equation

%u —cfAu=0 (2)

where c?ep = 1. Both formulations are used to derive our scheme.

2. Leading order terms

The computational domain is decomposed into triangles. Integrating (2) on
one of them, K, and on the time interval [0, ], one gets

T ¢ /E,K 5% (/OtU(U, S)ds> do. (3)

d d
T Kudx- E/KUdX

d
The computation of I[x = T / udx‘ is performed through the usual up-
K —

t=
wind scheme (see e.g. [GHI 96]) for hyperbolic systems using formulation (1).

More precisely equation (1) is written as Q; + div(AQ) = 0 and Ik reads
Ix = — / A(n)Qdo where n is the external unit normal vector on the boun-

dary of tﬁg triangle K, OK. The eigenvalues of A(n) are 0 and %c. For the
computation of Ix this integral may be split in three contributions considering
separately each edge of K. Then we decompose A(n)Q over the eigenvector
basis of A(n) and associate Q = Q(K) = to eigenvalue ¢ and Q = Q(K) to
eigenvalue —c where K is K’s neighbor across the considered edge of K. This
is the usual upwind scheme. This is a particular case of our scheme and we will
use it to evaluate its performances.



3. Second order corrections

6 t
The second part, Ux = 2 / n (/ u(o, s)ds) do, which happens to be
oK 0

a second order correction, is computed using the exact solution of the wave
equation (2) with initial condition 1 on triangle K and 0 elsewhere. This ap-
proach has already been used by Abgrall [ABG 94], Gilquin et ol [GIL 91,
GIL 94] and Chaira [CHA 95] for solving the Riemann problem for gas dyna-
mics and writing Euler equations as a wave equation, but in our case we have

no conformal invariance. .

For the computation of Ux we set w(x,t) = / (u(x,t) — up(K))dr. The

insertion of ug which is formally bound to disappeag in the next differentiation
ensures that we preserve a constant solution over space (and time) if the initial
data is constant, which is the first step towards flux conservation. We notice
that this function w is solution to the wave equation

%w —PAw=f (4)
with initial data wo = 0, initial time derivative w; = uo—uo(K) and right hand
0
side f = u; = —div(A(uo—uo(K)). With this notation, Ux = ¢? a—:(a, t)do.
0K

An exact solution to this wave equation is given by Kirchoff formulae
o t
W yit) = 5 Glayit) s wo+ Glasyit) swy + [ dsGla,yis) « ]
0

1 H(ct? — 2% —y?)
21e /282 — 22 — y?
tion. Hence the computation of Ux leads to multiple integrals on the edges of
the triangles that read (C' and C' being equal or adjacent edges)

H(2E2 — o — 0|2
Wy = —/ £ (c lo — 7] )dada'
oxcr 2m \/t2 — o — o'|?

and H denotes the Heaviside func-

where G(x,y;t) =

and

ct Ht? —|lo —o'|*)(c —0') -n
oxC’ 27T |0‘—0”|2 C2t2—|0_gl|2
that may be expressed after tedious calculations by means of classical functions

of the variables (lengths and angles in the triangle). We make an approxima-
tion here by computing only integrals over edges of K or its neighbors but not



triangles that only have one vertex in common with K, otherwise the compu-
tation of Ux would be exact.

This part of the derivation of our scheme is specific to the 2D case since the fun-
damental solution G to the wave equation has different expressions in different
dimensions. The 1D case is easy to compute but is of no interest since there is
no point in correcting direction dependent structures. After this modification
the scheme is no longer a finite volume scheme : there is no exact balance of
fluxes.

The formula for Ug shows some discontinuity at time ¢ = 0. For C' = C,

2¢%t — clr i
Wo = o and Wy = 0, and if we denote by « the angle between edges

T
C and C' when are distinct,

a acute a obtuse

ctmw— °t [ —
W, _ctm- || c |7r. al

27 |sinq] 27 |sinq]

t 2 1 t 1
Wi d ?;coscz—icoéa+ il |cosa| — ——
8 | sin o 8 | sin o

These formulae are continuous for a = 7 and are a puzzle for computer
algebra systems. To obtain explicit formulae and avoid numerical integration is
a major advantage for numerical computations. This computation is performed
with a condition on the size of triangles and the time step (that implies, in
particular that no length appears in the final result). More general conditions
may be taken into account but then the integration should be performed on
more triangle edges. To take account of the discontinuity at time ¢t = 0, we do
not use the full correction but only a fraction of it given by a factor 6 € [0, 1].
This means that we make a balance between time ¢ and time 0 where Ux = 0.
Since we deal with a second order correction this does not affect the consistence
of the scheme, whatever the choice of 8 is. The CFL ratio and this parameter 6
are the two parameters to tune in order to obtain a “good” scheme. They are
strongly linked in 1D but may be chosen independently in 2D. Numerical results
show that 6 = 0 is not the best choice with respect to norm conservations for
example. But the best # also depends on the mesh and is therefore difficult to
choose.




4. Numerical results

This work is still in progress and up to now only simple test cases have
been performed. Different boundary conditions have been implemented (fol-
lowing [ENG 77, ENG 79, JOL 89], namely absorbing boundary conditions,
perfect conducting surfaces and perfect reflecting boundaries. Different initial
conditions and incident fields have also been tested.

The main drawback of the second order correction is that it induces some
extra dissipation. This is very easy to see on a 1D equivalent of our correction.
This dissipation is larger for a large 6. This leads us to choose 6 € [0, .3]
for numerical simulations. The best conservation of norms is usually obtained
in this interval. The following figure shows that for a test where the L? and
L*° norm is supposed to be conserved, the choice the upwind scheme without
correction (# = 0) is not the better scheme for norm conservation.

On Fig. 1 only the L*° norm of F, is represented. The different curves cor-
respond to different meshes for the same test case. Curves are similar for other
components of the field or the L? norm. The fact that curves are decreasing
is not generic but specific to this field in the computed case. Our correction
seem to benefit finer meshes but criteria to adjust 6 to a particular mesh are
not obvious to find.

Since we only add a small perturbation to the original scheme we can not
expect any real improvement of its main defaults, like phase shift. The initial
purpose of the introduction of our Ux was the correction of mesh dependent
structures and we have tested the propagation of a wave front with different
angle of incidence. For small angles (otherwise our boundary conditions have
to be improved) we show a real improvement of the straightness of the front.
This shown on Fig. 2 and 3.

5. Perspectives

Perspectives of this work may be found in different directions. First we may
go towards more realistic test cases and try to model real physical structures.
A complete study of the case of an inhomogeneous media has to be performed.
This would also contribute to more physical test. The 3D case is also of interest
and formal calculations of the correction have to be derived in this context.
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Fi1Gc. 1: Norm conservation

The L™ norm is represented as a function of 0 and for different meshes, the
exact L? norm being the horizontal line. The ’cross’-curve correspond to the
finer irreqular mesh (others are “star’ and ’circle’-curves) and the ’diamond’-
curve is a reqular mesh that is finer than the ’square’-curve.
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Fic. 2: Front straightness : 8 =0
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Fia. 3: Front straightness : 6§ = 0.1



