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Equations aux dérivées partielles/Partial Differential Equations (Analyse mathématique/Mathematical Analysis) Etude d'équations intervenant en optique non linéaire

On étudie le problème de Cauchy associé à deux systèmes d'équations (Maxwell-Debye et Maxwell-Bloch) décrivant des phénomènes d'interaction laser-matière. On montre que ces problèmes sont bien posés localement en temps pour des données initiales appartenant à différents espaces de Sobolev. Dans le cas du système de Maxwell-Debye, qui comporte un terme de retard, on étudie la limite des solutions quand ce retard tend vers 0. On considère également une approximation adiabatique du système de Maxwell-Bloch.

Study of some equations occuring in nonlinear optics.

Abstract -We study the Cauchy problem for two systems of equations (Maxwell-Debye and Maxwell-Bloch) describing laser-matter interaction phenomena. We show that these problems are locally in time well-posed for initial data in different Sobolev spaces. In the case of Maxwell-Debye system, which contains some delay term, we study the limit of the solutions when this delay tends to 0. We also consider an adiabatic approximation of Maxwell-Bloch system.

I. Introduction. -Nous nous intéressons à deux équations qui ont une structure mathématique semblable. Il s'agit d'une équation de Schrödinger, où le Laplacien ∇ 2 1 ne porte que sur deux des trois variables d'espace, x et y, couplée avec une ou deux équations non linéaires de transport le long de la variable z (que nous appelleront simplement équations de transport dans la suite). Les équations que nous étudions ici sont sous la forme donnée par Newell et Moloney [START_REF] Newell | Nonlinear Optics[END_REF]. Les méthodes utilisées pour l'étude du problème de Cauchy sont dans chaque cas des méthodes de point fixe que l'on mêne à bien en utilisant des estimations sur l'opérateur libre de Schrödinger. Celle-ci sont en particulier dues à Ginibre et Velo [START_REF] Ginibre | On a class of nonlinear Schrödinger equations I: the Cauchy problem[END_REF] où à Strichartz [START_REF]Strichartz Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations[END_REF].

II. L'équation de Maxwell-Debye. -La première de ces équations est le système de Maxwell-Debye

             ∂ ∂z + n 0 c ∂ ∂t A - i 2k ∇ 2 1 A + i ω 0 c δnA = 0, τ ∂δn ∂t + δn = n 2 |A| 2 , (1) 
qui décrit l'interaction d'une onde électromagnétique (d'enveloppe A) avec un milieu résonnant (d'indice n 0 + δn) qui admet un temps de réponse négligeable τ . 

Ã(0) = ϕ, δñ(0) = ν,
admet une unique solution dans X = L ∞ (0, T ; H s ) pour un T suffisamment petit.

ii) Les solutions dépendent continuement des données initiales, à savoir : si à ∈ L ∞ (0, T ; H s ) est solution de l'équation de Maxwell-Debye pour les données initiales (ϕ, ν), ϕ p et ν p tendent respectivement vers ϕ et ν dans H s alors pour un p suffisamment grand la solution Ãp de l'équation de Maxwell-Debye associée aux données initiales ϕ p et ν p tend vers à dans L ∞ (0, T ; H s ).

puis pour des données plus faibles

Théorème 2 i) Pour tout (ϕ, ν) appartenant à H 1 × H 1 , l'équation (2) ad- met une unique solution dans X = L ∞ (0, T ; H 1 ) pour un T suffisamment petit. ii) Pour tout (ϕ, ν) appartenant à L 2 × L ∞ , l'équation (2) admet une unique solution appartenant à X " = L 4 (0, T ; L 4 ) ∩ C([0, T ]; L 2
) pour un T suffisamment petit. De plus à appartient à L q (0, T ; L r ) pour toute paire admissible (q, r).

iii) Les solutions dépendent continuement des données initiales dans un sens analogue à celui donné dans le théorème 1 

A
                         ∂A ∂z + 1 c ∂A ∂t -i c 2ω ∇ 2 1 A + κ c A = iω 2ε 0 c L, ∂L ∂t + (γ 12 + i(ω 12 -ω))L = ip 2 h AN, ∂N ∂t + γ 11 (N -N 0 ) = 2i h (A * L -AL * ), (4) 
qui décrit l'interaction d'une onde électromagnétique d'enveloppe A avec un milieu résonnant constitué de gaz à deux niveaux d'énergie. L représente l'enveloppe de la polarisation et N est le nombre d'inversion qui décrit le passage d'un niveau d'énergie à l'autre. La constante N 0 est due à un apport d'énergie au milieu. Cette fois-ci, on ne peut pas se ramener à une unique équation comme dans le cas précédent. Ce système a déjà été étudié en négligeant la dépendance en les variables x et y et en considérant des données périodiques aux bords en z. Constantin, Foias et Gibbon [START_REF] Constantin | Gibbon Finite-dimensional attractor for the laser equations[END_REF] ont alors montré l'existence globale de solutions dans L 2 et construit un attracteur de dimension finie. Ikeda, Otsuka et Matsumoto [6] ont étudié plus particulièrement les états turbulents. En éliminant cette foisci la dépendance en z, Feng, Moloney et Newell [START_REF] Feng | Amplitude Instabilities of Transverse Travelling Waves in Lasers[END_REF] ont effectué une analyse de stabilité linéaire.

On commence par étudier le comportement des solutions de l'approximation adiabatique, c'est-à-dire le cas où on néglige ∂L ∂t et ∂N ∂t . Le système de Maxwell-Bloch devient alors Pour le système complet, on étudie ensuite le problème de Cauchy pour des données régulières

∂A ∂z + 1 c ∂A ∂t -i c 2ω ∇ 2 1 A + κ c A = iω 2ε 0 c L (5) où L = ip 2 h (γ 12 -i(ω 12 -ω))N 0 A γ 2 12 + (ω 12 -ω) 2 + 4p 2 γ 12 h2 γ 11 |A| 2 , (6) 
Théorème 7 i) Pour tout (ϕ, λ, µ) ∈ L ∞ (ξ; H s ) × L ∞ (ξ; H s ) × L ∞ (ξ; H s ), où ξ = ct -z, l'équation (4) pour les données initiales A(0) = ϕ, L(0) = λ, N (0) 
= ν, admet une unique solution dans X 3 = (L ∞ (ξ, 0, T ; H s )) 3 pour un T suffisamment petit.

ii) Les solutions dépendent continuement des données initiales dans un sens analogue à celui donné dans le théorème 1

A nouveau le temps d'existence ne dépend pas de la régularité :

Théorème 8 Soit (ϕ, λ, µ) ∈ L ∞ (ξ; H 1+ε ) × L ∞ (ξ; H 1+ε ) × L ∞ (ξ; H 1+ε ), et ( 
Ā, L, M ) la solution maximale de l'équation de Maxwell-Bloch dans H 1+ε . Soit T 1+ε sont temps d'existence. Supposons de plus que (ϕ, λ, µ) ∈ L ∞ (ξ; H s )× L ∞ (ξ; H s )×L ∞ (ξ; H s ) avec s > 1 + ε, alors ( Ā, L, M ) est solution de l'équation de Maxwell-Bloch dans (L ∞ (0, T 1+ε ; H s )) 3 .

Les démonstrations détaillées des résultats ci-dessus se trouvent dans [START_REF] Bidégaray | Etude d'équations de l'optique non linéaire[END_REF]. Des résultats semblables peuvent être démontrés pour toute une classe de systèmes résultant de la modélisation de phénomènes analogues dans le cas, par exemple, où on considère plusieurs niveaux d'énergie pour les gaz. Les systèmes alors obtenus comportent un plus grand nombre d'équations mais celles-ci ont toujours la même structure et les mêmes méthodes que ci-dessus peuvent être utilisées pour leur étude.

  chaque fois, on trouve la solution comme point fixe d'une fonctionnelle issue d'une formulation intégrale du problème. Le temps d'existence des solutions ne dépend pas de la régularité : Théorème 3 Soit (ϕ, ν) ∈ H 1+ε × H 1+ε , et à la solution maximale de l'équation de Maxwell-Debye dans H 1+ε . Soit T 1+ε son temps d'existence. Supposons de plus que (ϕ, ν) ∈ H s × H s avec s > 1 + ε, alors à est solution de l'équation de Maxwell-Debye dans L ∞ (0, T 1+ε ; H s ).On étudie ensuite la limite des solutions quand le retard τ tend vers 0. La limite formelle est solution de l'équation de Schrödinger cubique On suppose que les données initiales (pour à et ñ) sont bornées uniformément dans X = L ∞ (0, T ; H s ), s > 3, et que quand τ tend vers 0, la donnée initiale ϕ tend fortement vers ψ dans H s . Soit A, la solution de l'équation de Schrödinger cubique associée à cette donnée ψ. Alors la suite des à quand τ tend vers 0 tend fortement vers A dans X.

	∂ ∂t Ã	(t; x, y) -	ic 2kn 0	∇ 2 1 Ã(t; x, y) + i	ω 0 n 2 n 0	| Ã(t; x, y)| 2 Ã(t; x, y) = 0. (3)
	On montre à la fois pour des données initiales régulières et faibles que cette
	limite est rigoureuse. Ainsi, on obtient les théorèmes
	Théorème 4				

Théorème 5 On suppose que les données initiales (pour à et ñ) sont bornées uniformément dans X = L ∞ (0, T ; H 1 ), et que quand τ tend vers 0, la donnée initiale ϕ tend fortement vers ψ dans H 1 . Soit A, la solution de l'équation de Schrödinger cubique associée à cette donnée ψ. Alors la suite des à quand τ tend vers 0 tend fortement vers A dans X.

III. L'équation de Maxwell-Bloch. -Le second exemple d'équation de ce type est le système de Maxwell-Bloch

  et on obtient alors le résultatThéorème 6 Le problème de Cauchy est globalement bien posé dans L 2 et dans H 1 pour l'approximation adiabatique de l'équation de Maxwell-Bloch. 12 -ω) 2 , les normes L 2 de A et de L tendent vers 0 quand t tend vers +∞.

	De plus pour certaines valeurs des paramètres κ >	ωp 2 2ε 0 h •	-γ 12 N 0 12 + (ω γ 2