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Multidimensional corrections to cell-centered
finite volume methods for Maxwell equations

B. Bidégaray1, J.-M. Ghidaglia2

Introduction

Most numerical computations of electromagnetic phenomena only involve
monochromatic solutions which are described by the Helmholtz equation.
This equation is a time-independent elliptic system and finite difference or
finite element methods are particularly appropriate in this context. New
applications for numerical simulations now necessitate the computation of
solutions to the full time-dependent Maxwell equations. This is the case in
the context of stealth for military aircrafts (more precisely the determination
of the Radar Cross Section of the airship) but also in plasma physics and
nonlinear electromagnetism in general.

Since Maxwell equations is a conservative system of hyperbolic equations,
the finite volume methods are (with conservative finite difference methods)
appropriate methods. Of course in the case of unstructured meshes, it ap-
pears that finite volume methods are more tractable. Again in the context
of stealth, the industry tries to use RAM (radar absorbent material) coat-
ing. Since we are dealing with thin layers on the aircraft, it is clear that one
must use a method that takes into account complex geometries like finite
volume methods do. Moreover meshes corresponding to these geometries are
obtained through a CAD software and they are also used to compute the
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equation of fluid mechanics (CFD), see e.g. Schnack et al. [22] and Shankar
et al. [23].

This gives at least two reasons for deriving finite volume method for the
time-dependent Maxwell equations: on the one hand the hyperbolic character
of the system is taken into consideration and on the other hand electromag-
netic codes may be implemented using data structures initially designed for
finite volume computational codes for the equations of fluid mechanics (Euler,
Navier-Stokes,. . . ). This approach also allows to consider a possible coupling.

Although the above-mentioned applications are quite complex, there are
still some very basic problems to solve for the simulation of the Maxwell
equations. This article is focused on one of them, namely the fact that fi-
nite volume solutions to Maxwell equations often show some mesh dependent
structures. This is due to the fact that solutions are piece-wise constant and
wave equations well propagate discontinuites. Besides finite volume methods
compute fluxes across edges in definite directions, increasing the directional
effects, whereas the propagation of the physical wave is isotropic. To avoid
this, some genuinely multidimensional approaches have been studied (see e.g.
Lukáčová-Medviďová, Morton and Warnecke [18, 19, 20]). Our goal is to
combine classical characteristic methods with multidimensional corrections.
These corrections are derived following a method suggested by one of the
author (JMG) and has led to [13, 14] and [5] in the context of gas dynamics
(later and independently Abgrall [1] has used the same type of ideas). It
consists in computing the exact solution to the wave equation associated to
piece-wise constant initial data on a given mesh.

The outline of this article is the following. In Section 1, we recall what
cell-centered finite volumes are and fix our notations. In Section 2, we give
the theory for the derivation of multidimensional corrections (the details of
the effective computations are given in [2]) for first order and higher order
methods. In Section 3, we describe the derivation of different boundary con-
ditions.

Some partial results, with numerical results on simple test cases, have
been announced in [3].
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1 Cell-centered finite volume methods for

Maxwell equations

The corrections we derive are specifically designed for cell-centered finite
volume schemes, for which all the variables are discretized at the same loca-
tion. It is necessary to introduce here the schemes we deal with, although
they are not new, especially to describe notations which are also used in the
expressions for the corrections.

1.1 Formulations for Maxwell equations

In their initial formulation Maxwell equations read

∂D

∂t
− curlH = −j,

∂B

∂t
+ curlE = 0,

div D = ρ,
div B = 0,

together with the constitutive laws

D = εE, B = µH.

We are interested in the special case of vanishing charge and current densities.
i.e. ρ = 0 and j = 0. To design the method we use Maxwell equations in
terms of variables D and B only, namely:

∂D

∂t
− curl(B/µ) = 0,

∂B

∂t
+ curl(D/ε) = 0.

Setting U = t(D,B) the conservative formulation for this system reads

∂U

∂t
+ div AU = 0 , (1.1)

where A is given in the next subsection. Physical boundary conditions will
however be given in Section 3 in terms of variables E and H.
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1.1.1 TE and TM modes

As we restrict the study to a two-dimensional space, we may decouple some
of the variables. For instance if the space variable z plays no role, the TEz

mode only deals with variables (Dx, Dy, Bz) and the TMz mode only with
variables (Dz, Bx, By). Since passing from one mode to another (in absence
of charge current) is straightforward we restrict the study to the TEz mode

and therefore we take U = t(Dx, Dy, Bz) and
∂U

∂t
+ div AU = 0 where

A = (Ax, Ay) and

Ax =

 0 0 0
0 0 1/µ
0 1/ε 0

 , Ay =

 0 0 −1/µ
0 0 0

−1/ε 0 0

 .

1.1.2 Finite volume formulation

Given a space decomposition T that consists in polygonal cells Ci, we inte-
grate equation (1.1) over one of these cells. We compute the evolution of Ui

which is an approximate (mean) value of U on Ci. This reads

|Ci|
dUi

dt
= −

∑
j

∫
Cij

AU · n dσ = −
∑

j

Φij, (1.2)

where the summation involves indices j relative to the cells Cj that have a
common interface (edge) Cij with Ci, and where |Ci| denotes the area of Ci

and n is the outgoing unit normal vector to Ci pointing into Cj.

We notice that Φij = |Cij|ÂU · nij, where nij denotes the outgoing unit

normal vector to Ci across Cij, |Cij| is the length of the edge Cij and ÂU is
the mean value of AU on the interface. We set A(U,n) = n · ∇UAU that
does not depend on U when dealing with linear Maxwell equations. There-
fore we will write A(n) = A(U,n) in the sequel and Φij = |Cij|A(nij)U.

The definition of the finite volume method is only determined by the

approximation that is chosen for Φij, i.e. the approximation ̂A(nij)U of
A(nij)U on the interface.
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1.2 Cell-centered methods

1.2.1 Steger-Warming decomposition

The Steger-Warming decomposition [24] consists in splitting the wave accord-
ing to the different characteristics. The eigenvalues of matrix A(n) are ±c,
where c = (εµ)−1/2, and 0. We rewrite matrix A(n) as A(n) = PΛ(n)P−1

where Λ(n) is a diagonal matrix the elements of which are the eigenvalues
of A(n). Then the splitting reads A(n) = A+(n) + A−(n) with A±(n) =
PΛ±(n)P−1 and Λ+(n) (resp. Λ−(n)) only contains the eigenvalue c (resp.
−c). To reduce notations we set Z =

√
µ/ε and Y = Z−1 =

√
ε/µ. Once

the calculations are made, one finds that

A±(n) =
1

2
(A(n)± |A|(n)) . (1.3)

Let us set n = (nx, ny) then

A(n) = c

 0 0 −nyY
0 0 nxY

−nyZ nxZ 0

 and Λ(n) =

 −c 0 0
0 0 0
0 0 c

 .

The change of basis is given by

P =

 nyY nx −nyY
−nxY ny nxY

1 0 1

 , P−1 =
1

2

 nyZ −nxZ 1
2nx 2ny 0
−nyZ nxZ 1

 ,

and therefore the “directional” matrices read

A±(n) =
c

2

 ±n2
y ∓nxny −nyY

∓nxny ±n2
x nxY

−nyZ nxZ ±1

 ,

and

|A|(n) = c

 n2
y −nxny 0

−nxny n2
x 0

0 0 1

 .

Hence the Steger-Warning flux ΦSW
ij consists in choosing

A(n)U = A+(n)Ũi + A−(n)Ũj. (1.4)
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In this expression Ũi and Ũj are approximate values for Ui and Uj which
will be chosen below to ensure a certain order to the numerical method.
Expression (1.4) means that everything that goes out of the cell may only
depend on the value inside the cell and what enters the cell across a given
edge only depends on the value in the neighboring cell. The corresponding
Steger-Warming flux reads

ΦSW
ij (Ũi, Ũj) = |Cij|

(
A+(n)Ũi + A−(n)Ũj

)
(1.5)

and

|Ci|
dUi

dt
= −

∑
j

ΦSW
ij (Ũi, Ũj).

1.2.2 First order method

The simplest choice is to take Ũi = Ui, i.e. the value that is taken into
account is the one at the “center” of the cell. This leads to a first order
approximation and is the classical upwind flux, which is a generalization of
the one-dimensional flux of Lax, Harten and van Leer [16].

1.2.3 Gradient reconstruction

In order to design higher order methods (next paragraph), we once more use
a Steger-Warming flux but it is not applied to the constant values in the cells
anymore, but to evaluations of the value on each side of the interface, Uij

and Uji. This evaluation requires to construct a value for the gradient in
each cell Ci and we denote it by ∇Ui.

Given constant values in each cell, different reconstructions for the gradi-
ent may be thought of. We describe here a method that is based on a Green
formula and therefore close to flux calculations in finite volume schemes. It
has the advantage of simplicity and applies to any type of mesh. Other recon-
structions may be found in the literature. They have been developed in the
context of computational fluid dynamics and only apply to triangles in order
to define Galerkin basis functions. They are either based on a reconstruction
of the gradient at the nodes [9] or in the elements [11]. Their application
to Maxwell equations is discussed in [6, 7, 8, 15]. In [21] it is shown that
the finite volume gradient formulation gives as good results as these more
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complicated formulations. The Green formula

∫
Ci

∇U dx =

∫
∂Ci

U · n dσ

leads to the approximation

∇Ui =
1

|Ci|
∑

j

Ui + Uj

2
|Cij|nij,

where the sum involves neighboring cells to Ci.

1.2.4 Higher order methods

For accuracy and stability reasons, a β-scheme is used, which is given for
β ∈]0, 1[ by Φij = ΦSW

ij (Uij,Uji) and

Uij = Ui +
1

2
{(1− 2β)(Ui −Uj) + 2β∇Ui ·GiGj},

Uji = Uj −
1

2
{(1− 2β)(Ui −Uj) + 2β∇Uj ·GiGj},

where Gi is the barycenter of the cell Ci. This is an interpolation between
two ways to compute Uij: the mean value Uij = Uji = (Ui + Uj)/2, and
the half-upwind gradient calculation

Uij = Ui +
1

2
∇Ui ·GiGj,

Uji = Uj −
1

2
∇Uj ·GiGj.

The β-scheme is proved to be a third order scheme for the specific choice
β = 1

3
in the case of node Galerkin gradient reconstructions (see [10]).

We may of course think of other schemes, for example in [4] is introduced
a β-γ-scheme that consists in coupling the β-scheme with a relaxation of the
definition for A± given by equation (1.3)

A±(n) =
1

2

(
A(n)± γ|A|(n)

)
,

where γ ∈ [0, 1], in order to control numerical diffusion. Since we add correc-
tions, we do not consider such schemes that follow an other philosophy for
correcting computed solutions.
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1.3 Time discretization

In practice the finite volume formulation (1.2) is solved in time using an
explicit scheme that has the same order than the space method. This is
based on the following approximation

d

dt

∫
Ci

U dx ' d

dt

∫
Ci

U dx

∣∣∣∣
t=0

≡ −Ψi(U), (1.6)

where the notation Ψi(U) is only introduced to make simpler the description
of the numerical schemes below.

For the first order approximation, there is no need to use something more
elaborate than the simplest first order explicit scheme

Un+1
i = Un

i −
∆t

|Ci|
Ψi(U

n).

For the higher order approximation a third order Runge-Kutta method is
typically implemented

U
(0)
i = Un

i ,

U
(l)
i = U

(0)
i − ∆t

(4− l)|Ci|
Ψi(U

(l−1)), l = 1, 2, 3,

Un+1
i = U

(3)
i .

2 Multidimensional corrections

The corrections we introduce in this paper consist in giving an exact value
for the time derivative instead of the approximation (1.6). This exact value
is easier to derive from the wave equation. Indeed, in the case when there
is no charge and charge current, each component of U is solution to a wave
equation. Integrating this equation over a cell Ci and the time interval [0, t],
we obtain

d

dt

∫
Ci

U dx =
d

dt

∫
Ci

U dx

∣∣∣∣
t=0

+ c2

∫
∂Ci

∂

∂n

(∫ t

0

U(σ, s) ds

)
dσ. (2.1)

The evaluation of the first term in the right hand-side will be done using
one of the classical methods described in Section 1.2. To evaluate the second
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term, that we denote by Ki, we use the fact that we know an exact solution
to the wave equation, that is given by Kirchoff formulae. This explicit expres-
sion has already been used in scientific computation. We may cite articles by
Gilquin et al. [13, 14] and the PhD thesis of S. Chäıra [5] in which an exact
Riemann problem is solved using the above equations after having linearized
the equations of gas dynamics to obtain a wave equation. The calculations
have however to be reproduced for Maxwell equations since the solutions are
not self-similar, a property extensively used in the gas dynamics context.

2.1 Kirchoff formulae

Let u : R2 × R+ → R be solution to the wave equation
∂2

∂t2
u(x, t)− c2∆u(x, t) = f(x, t), x ∈ R2, t > 0,

u(x, 0) = u0(x), x ∈ R2,
ut(x, 0) = u1(x), x ∈ R2.

(2.2)

The exact solution to the Cauchy problem (2.2) is given by Kirchoff formulae:

u(·; t) =
∂

∂t
F (·; t) ? u0 + F (·; t) ? u1 +

∫ t

0

ds F (·; s) ? f(·, s). (2.3)

In equation (2.3) the convolution is performed with respect to the space
variable x and

F (x; t) =
1

2πc

H(c2t2 − |x|2)√
c2t2 − |x|2

is the fundamental solution to the wave equation, where H is the Heaviside
function. Equation (2.3) holds in the sense of distributions.

2.2 Calculation of the correction

Proposition 1
(i) For the first order model, let us define the set of neighboring edges to one
specific edge ∂Ck

i of cell Ci: Nk
i = {(j, l) / j 6= i, ∂C l

j ∩ ∂Ck
i 6= ∅}, then Ki
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reads

Ki = − c

2π

∑
k

∑
(j,l)∈Nk

i

((U0)j − (U0)i)(nj · ni)I0(∂Ck
i , ∂C l

j)

− ct

2π

∑
k

∑
(j,l)∈Nk

i

A(nj)((U0)j − (U0)i)I1(∂Ck
i , ∂C l

j).

This correction does not change the conservativeness of the finite volume
scheme.
(ii) For the second order model, let us define the set of neighboring cells to
one specific edge ∂Ck

i of cell Ci: Mk
i = {j / Cj ∩ ∂Ck

i 6= ∅}, then Ki reads

Ki = − c

2π

∑
k

∑
j∈Mk

i

(∇U0)j · niJ0(∂Ck
i , Cj)

+
ct

2π

∑
k

∑
j∈Mk

i

A(∇U0)jJ1(∂Ck
i , Cj).

Each component of the vector U is solution to a wave equation (2.2). If we

set Wi(x, t) =

∫ t

0

(U(x, s)−Ui(x, 0)) ds that is defined on the whole space,

Wi is also solution to a wave equation where Wi
0 = 0, Wi

1 = U0 − (U0)i

(where Ui(·, 0)) = (U0)i), f i = U1. The variable Wi is used instead of U
for computing the correction Ki. The time integration makes it more regular
and subtracting Ui consists in studying fluctuations of the variable and not
its value. The correction Ki now reads

Ki = c2

∫
∂Ci

∂

∂n

(∫ t

0

U(σ, s) ds

)
dσ = c2

∫
∂Ci

∂

∂n
Wi(σ, t) dσ.

Then calculations will differ according to the fact that we have recon-
structed a gradient (second or third order scheme) or not (first order scheme)
in the treatment of the first term in equation (2.1). In the first order case,
U1 is a Dirac function supported by the edges of the mesh. In the higher
order case, U1 has a reconstructed constant value on each cell.

In the sequel indices for normal vectors and integration variables specify
the triangulation element we refer to, which is crucial for determining signs.
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According to (1.1), U1 = − div A(U0−(U0)i) and we compute for each index
i the correction

Ki = c2

∫
∂Ci

∇
(

F (·; t) ? (U0 − (U0)i) +

∫ t

0

ds F (·; s) ? U1

)
(σi) · ni dσi

= c2

∫
∂Ci

(
F (·; t) ?∇(U0 − (U0)i) +∇

∫ t

0

ds F (·; s) ? U1

)
(σi) · ni dσi,

where we notice that ∇(U0 − (U0)i) and U1 have the same “regularity”.

In order to be able to write convolutions properly, we introduce the nota-

tion G(x; t) for the kernel ∇
∫ t

0

ds F (x; s). We compute this kernel in terms

of F (x; t). Let us set x = (x, y), r = |x|. For 0 < r ≤ ct

G(x; t) =

(
x/r
y/r

)
∂

∂r
g(r; t),

g(r; t) =
1

2πc

∫ t

r/c

1√
c2s2 − r2

ds =
1

2πc2
Argch

(
ct

r

)
,

∂

∂r
g(r; t) = − t

2πrc

1√
c2t2 − r2

= − t

r
F (x; t),

G(x; t) = − tx

|x|2
F (x; t).

This equality also holds true for |x| > ct. Thus

Ki = c2

∫
∂Ci

(F (·; t) ?∇(U0 − (U0)i) + G(·; t) ? U1) (σi) · ni dσi. (2.4)

2.2.1 First order case

Exact value for the correction. In this case we have to get rid of all
derivatives in front of U0 since they are not defined in a classical way. In the
first place we have
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(F (·; t) ?∇(U0 − (U0)i)) (σi) =

=
∑

j/Cj∈T

∫
Cj

F (σi − y; t)∇(U0(y)− (U0)i) dy

= −
∑

j/Cj∈T

((U0)j − (U0)i)

∫
∂Cj

F (σi − σj; t)nj dσj.

We notice that A(U0 − (U0)i) belongs to R2 and use in what follows the
fact that for two vectors, α and β, which take their values in R2, the following

relation holds:

∫
α(∇ · β) = −

∫
(∇⊗ α)β. Therefore

(G(·; t) ? U1) (σi) = −t

∫
y∈R2

σi − y

|σi − y|2
F (σi − y; t)U1(y) dy

= t

∫
y∈R2

σi − y

|σi − y|2
F (σi − y; t) divy(A(U0(y)− (U0)i)) dy

= −t
∑

j/Cj∈T

∫
Cj

divy⊗
(

σi − y

|σi − y|2
F (σi − y; t)

)
A(U0(y)− (U0)i) dy

= −t
∑

j/Cj∈T

(∫
∂Cj

nj ⊗
σi − σj

|σi − σj|2
F (σi − σj; t) dσj

)
A((U0)j − (U0)i).

Hence collecting the two terms in (2.4)

Ki = −c2
∑

j/Cj∈T

∫
∂Ci×∂Cj

dσj dσi

[
((U0)j − (U0)i)F (σi − σj; t)nj

+t

(
nj ⊗

σi − σj

|σi − σj|2
F (σi − σj; t)

)
A((U0)j − (U0)i)

]
· ni

= −c2
∑

j/Cj∈T

∫
∂Ci×∂Cj

dσj dσi

[
((U0)j − (U0)i)F (σi − σj; t)nj · ni

+tnj · A((U0)j − (U0)i)

(
σi − σj

|σi − σj|2
F (σi − σj; t) · ni

)]
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Figure 1: Influence over a time t

= −c2
∑

j/Cj∈T

∫
∂Ci×∂Cj

dσj dσi

[
((U0)j − (U0)i)F (σi − σj; t)nj · ni

+tA(nj)((U0)j − (U0)i)

(
σi − σj

|σi − σj|2
F (σi − σj; t) · ni

)]
. (2.5)

Reduction. We first notice that if j = i then the factor ((U0)j − (U0)i)
is zero. Besides, we split the integral in the expression of Ki over Cartesian
products of segments, and if we denote by ∂Ck

i one specific edge of Ci, then
the quantity F (σi − σj; t) will be zero for all the edges ∂C l

j that have no
intersection with ∂Ck

i (see Figure 1), under a reasonable CFL condition.
Moreover we may add one computational restriction, which leads to easier
implementations.

Hypothesis 1 We only consider edges of cells Cj that are neighboring Ci.

This hypothesis leads to take into account the same neighbors as for the finite
volume method and to easier implementations.

Elementary contributions. Considering Hypothesis 1 or not we have

supp(δ∂Cj
) ⊂ supp(δE) ∪ supp(δE′) ∪ supp(δE′′)

where E is the edge through which we compute the flux. Both other edges,
E ′ and E ′′, have a point intersection with E. As we split the integral in the
expression of Ki over Cartesian products of such segments, we notice that
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quantities ((U0)j − (U0)i)nj · ni and A(nj)((U0)j − (U0)i) are constant and
we only have to compute two types of elementary contributions

I0 =

∫
E×E′

H(c2t2 − |σ − σ′|2)√
c2t2 − |σ − σ′|2

dσ dσ′,

I1 =

∫
E×E′

H(c2t2 − |σ − σ′|2)(σ − σ′) · nE

|σ − σ′|2
√

c2t2 − |σ − σ′|2
dσ dσ′.

We may notice easily that these integrals are invariant under rotations
and translations in R2, indeed they only involve Euclidean distances. There-
fore the computation of the two above integrals only depend on the length
of the edges E and E ′ and of the angle α between them. Besides the CFL
condition will imply that only I0 in the case when E = E ′ will depend on
the length of E denoted by `.

The computations are very tedious and details may be found in [2]. The
results are however rather simple, namely:

α 0 (E = E ′) general case flat

I0 `π − 2ct ct
π − |α|
| sin α|

ct

I1 0
π

2

1 + cos α

| sin α|
0

where the flat angle case is the limit α → π of the general case. These results
are valid under the CFL-like condition

ct ≤ min
α
| sin α| min

` adjacent to α
`.

Approximate values for the correction. We define three sets of indices
for neighboring edges (which are represented on Figure 2), namely

Nk
i = {(j, l) / j 6= i, ∂C l

j ∩ ∂Ck
i 6= ∅},

N̄k
i = {(j, l) ∈ Nk

i / dim(Cj ∩ Ci) = 1},
Ñk

i = {(j, l) ∈ Nk
i / Cj ∩ Ci = ∂Ck

i }.

The definition of N̄k
i and Ñk

i are two different ways to take into account
Hypothesis 1 whereas choosing Nk

i does not lead to any approximation, ac-
cording to Figure 1. Of course the relation Nk

i ⊃ N̄k
i ⊃ Ñk

i holds true.
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Figure 2: Neighbor sets: Ñk
i , N̄k

i and Nk
i . The reference edge ∂Ck

i is repre-
sented with a bold line, edges belonging to the different sets are represented
by dotted lines.

Besides ]N̄k
i = 7 and ]Ñk

i = 1. Coming back to equation (2.5) we obtain

Ki = −c2
∑

k

∑
(j,l)∈Nk

i

∫
∂Ck

i ×∂Cl
j

[
((U0)j − (U0)i)F (σi − σj; t)(nj · ni)

+tA(nj)((U0)j − (U0)i)

(
σi − σj

|σi − σj|2
F (σi − σj; t) · ni

)]
dσj dσi

= − c

2π

∑
k

∑
(j,l)∈Nk

i

((U0)j − (U0)i)(nj · ni)I0(∂Ck
i , ∂C l

j)

− ct

2π

∑
k

∑
(j,l)∈Nk

i

A(nj)((U0)j − (U0)i)I1(∂Ck
i , ∂C l

j). (2.6)

If Hypothesis 1 holds true, Nk
i has simply to be replaced by N̄k

i or Ñk
i in

all the above expressions. In the special case of boundary elements, we
perform exactly the same reconstruction for Ki having previously determined
an ”external data” which is the subject of Section 3.

Conservation. The fact that Φij = −Φji is called the conservation prop-
erty for a finite volume scheme. This property holds for the first and higher
order schemes discussed in Section 1. We may ask whether this property
still holds if we use our corrections. The correction Ki may be written as

15



Ki = −
∑

j(Φ
0
ij + Φ1

ij) where

Φ0
ij =

c

2π

∑
k

∑
l/(j,l)∈Nk

i

((U0)j − (U0)i)(nj · ni)I0(∂Ck
i , ∂C l

j),

Φ1
ij =

ct

2π

∑
k

∑
l/(j,l)∈Nk

i

A(nj)((U0)j − (U0)i)I1(∂Ck
i , ∂C l

j).

We notice that we have the “symmetry” properties

(j, l) ∈ Nk
i ⇔ (i, k) ∈ N l

j,

(j, l) ∈ N̄k
i ⇔ (i, k) ∈ N̄ l

j,

(j, l) ∈ Ñk
i ⇔ (i, k) ∈ Ñ l

j.

Besides it is clear that I0(∂Ck
i , ∂C l

j) = I0(∂C l
j, ∂Ck

i ) and therefore Φ0
ij =

−Φ0
ji. If we choose neighbors in Ñk

i then the sum only involves one term and
A(nj) = −A(ni). Therefore Φ1

ij = −Φ1
ji. For the other choices the expres-

sions for I1(∂Ck
i , ∂C l

j) are quite involved and we do not expect to have the
conservation property. This may be one reason to choose the approximation
Ñk

i although it is approximate in contrast with Nk
i .

2.2.2 Higher order case

Exact value for the correction. Once more we first give an expression
for the two terms in equation (2.4). We may now use a value for U1 and the
first derivatives of U0 that is constant on each cell. The computations are
less tricky in this case:

(F (·; t) ?∇(U0 − (U0)i)) (σi) =
∑

j/Cj∈T

∫
Cj

F (σi − y; t)∇U0(y) dy

=
∑

j/Cj∈T

(∇U0)j

∫
Cj

F (σi − y; t) dy,

(G(x; t) ? U1) (σi) = −t
∑

j/Cj∈T

A(∇U0)j

∫
Cj

σi − y

|σi − y|2
F (σi − y; t) dy.
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Figure 3: Point-wise intersection case

Therefore

Ki = c2
∑

j/Cj∈T

∫
∂Ci×Cj

dy dσi

[
(∇U0)j · niF (σi − y; t)

−tA(∇U0)j
(σi − y) · ni

|σi − y|2
F (σi − y; t)

]
. (2.7)

Reduction. In this context j = i does not lead to zero contributions. Nev-
ertheless the quantity F (σi− y; t) will be zero for all the cells ∂C l

j that have
no intersection with ∂Ck

i (see Figure 1). Now a computational restriction
might be:

Hypothesis 2 We only treat cells Cj that are neighboring Ci, including Ci.

Under this condition, given an edge ∂Ck
i , only one cell is taken into account.

Elementary contributions. The first order case, considering or not Hy-
pothesis 1, leads to the computation of two types of contributions concerning
two edges. Considering Hypothesis 2 or not will lead to different calculations.

Indeed in the case Hypothesis 2 holds true, the edge ∂Ck
i always belongs

to the cell Cj whereas without this hypothesis, ∂Ck
i and Cj may only have

a point-wise intersection. This configuration is shown on Figure 3 and obvi-
ously

Jp = (J π
p − J α

p )− (J π
p − J β

p ) = J β
p − J α

p , p = 0, 1.
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In the case when β and/or α are greater than π, we replace J β
p (resp. J α

p )
by J π−β

p (resp. J π−α
p ) in the above expression. This may also easily be

generalized to the case when many cells insert between E and C.

As in the first order case, we only have to compute two types of elementary
contributions

J0 =

∫
E×C

H(c2t2 − |σ − y|2)√
c2t2 − |σ − y|2

dσ dy,

J1 =

∫
E×C

H(c2t2 − |σ − y|2)(σ − y) · nE

|σ − y|2
√

c2t2 − |σ − y|2
dσ dy.

The detail of the calculations may be once more found in [2], leading to the
following results

α general case flat

J0
π`ct

2
+

π

4
c2t2

(
(
π

2
− |α|)+ − cotan

|α|
2

)
π`ct

2
− π2

8
c2t2

J1 −π`

2
+

ct

2
+

ct

2
(π − |α|) cotan |α| −π`

2

where a+ = a if a ≥ 0 and a+ = 0 otherwise. To derive these results
we have to suppose in addition to condition (2.2.1) that ct ≤ 1

2
min l, which

is not a restriction if at least one of the angles in the mesh is smaller than 30◦.

We notice that in the point-wise intersection case, the contribution of

angle α′ cancels as well as terms
π`ct

2
and −π`

2
in J0 and J1 respectively.

Approximate values for the correction. We define new index sets that
determine which cells have to be taken into account once an edge ∂Ck

i is
fixed.

Mk
i = {j / Cj ∩ ∂Ck

i 6= ∅},
M̄k

i = {j ∈ Mk
i / dim(Cj ∩ Ci) ≥ 1},

M̃k
i = {j ∈ Mk

i / Cj ∩ Ci ⊃ ∂Ck
i }.

These sets also have symmetry properties, for example

∃ k / j ∈ Mk
i ⇐⇒ ∃ l/ j ∈ M l

j.
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We may now specify the nonzero contributions in the expression (2.7) for Ki.
First dropping Hypothesis 2

Ki = c2
∑

k

∑
j∈Mk

i

∫
∂Ck

i ×Cj

dy dσi

[
(∇U0)j · niF (σi − y; t)

−tA(∇U0)j
(σi − y) · ni

|σi − y|2
F (σi − y; t)

]
= − c

2π

∑
k

∑
j∈Mk

i

(∇U0)j · niJ0(∂Ck
i , Cj)

+
ct

2π

∑
k

∑
j∈Mk

i

A(∇U0)jJ1(∂Ck
i , Cj). (2.8)

As in the first order case, Hypothesis 2 consists in replacing Mk
i by M̄k

i or
M̃k

i in (2.8).

Conservation In this context, even in the simplest case (choice of M̃k
i for

neighboring cells), the computation of I0 takes into account much of the
geometry of the neighboring cells. For example I0(∂Ck

i , Cj) involves angles
α and α′ (see Figure 3) which belong to Cj. In the same way, I0(∂C l

j, Ci)
involves angles in Ci. Therefore no conservation is to be expected.

2.3 Time discretization

Taking into account the corrections, the semi-discretized finite volume scheme
reads

|Ci|
dUi

dt
= −ΨSW

i (Ũ)−Ψ0
i (U)(t)−Ψ1

i (U)(t),

where the relation with above used notations is ΨSW
i (Ũ) =

∑
j ΦSW

ij (Ũi, Ũj),

Ψ0
i (U)(t) = −

∑
j Φ0

ij and Ψ1
i (U)(t) = −

∑
j Φ1

ij, using similar notations as
in equation (1.6). In this expression Ui and Uj are initial values. In the first
order case, Ψ1

i (U)(t) is linear with respect to time t. On the contrary Ψ0
i

also contains a constant term for t > 0 and is zero for t = 0. It is therefore
discontinuous. A way to take this into account is to introduce a parameter
θ ∈ [0, 1] that weights the correction or at least its constant part. Separating
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now the constant and linear parts,

|Ci|
dUi

dt
= −ΨSW

i (U)−ΨC
i (U)− tΨL

i (U),

may be discretized as

Un+1
i = Un

i −
∆t

|Ci|
ΨSW

i (Un)− θ∆t

|Ci|
ΨC

i (Un)− ∆t2

2|Ci|
ΨL

i (Un).

Parameter θ has to be chosen relatively small in order to avoid extra dis-
sipation (see [3]). The higher order case may be treated in the same way
using a Runge-Kutta method. In this case there are no constant terms or
discontinuities to deal with.

3 Boundary conditions

All the above study has been performed taking into account no boundary.
Since the computational domain has to be bounded by physical or artifi-
cial boundaries we have to treat this case. The finite velocity of solutions
together with the CFL condition (2.2.1) tell us that we only have to treat
the case of boundary cells, the other cells behaving like cells in the whole
space. Moreover, we do want to treat the boundary cells as the inner cells
for implementation reasons. Therefore to treat different boundary conditions
properly, we denote by L the fictitious cell that is symmetric to the boundary
cell K with respect to the boundary, and want to define at each time step
a value UL on this fictitious cell in terms of UK . This is useful only in two
cases: the case of a reduced number of neighboring cells (Hypotheses 1 and
2) and if the mesh consists in quadrangles.

In this section results will be expressed in terms of the outgoing unit nor-
mal vector to the domain n = (nx, ny, 0) and the left eigenvectors (l−c, l0, lc)
(resp. the right eigenvectors (r−c, r0, rc)) which, up to some normalization,
are the lines of P−1 (resp. the columns of P ) (see Section 1.2.1).

3.1 Absorbing conditions

There are some perfectly absorbing boundary conditions but these condi-
tions are nonlocal and therefore difficult to implement exactly. We nonethe-
less know local conditions that approximate in a reasonable way these exact
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conditions for Maxwell equations (see [12]). Here we use the first order Silver-
Müller absorbing condition:

n ∧ Eb = −
√

µ

ε
n ∧ (n ∧Hb), (3.1)

where Eb and Hb are respectively the values of E and H on the boundary. In
order that interference reflections do not interact with the diffracting object,
it is sufficient to set the fictitious domain boundary at least two wavelengths
away from the object. This restriction is quite stringent for 3D simulations
but quite tractable in 2D.

In terms of the variable Ub, condition (3.1) reads l−c(n) · Ub = 0. For
the first order Steger-Warming decomposition, such a conclusion is sufficient
and the numerical flux across the boundary is simply taken as A(n)U =
lc(n) ·UKrc(n). For higher order methods and for our correction we need the
full value of UL and two more conditions are needed. They are numerical
conditions: the computation within the domain (in K) yields the two miss-
ing information. The characteristic boundary condition method consists in
taking these information along in-going (or possibly flat) characteristics.

l0(n) ·Ub = l0(n) ·UK ,

lc(n) · A(n)Ub = lc(n) · A(n)UK .

The first numerical condition is chosen in this way because the more natural
operator l0(n) ·A(n)U is identically zero. The three conditions give a unique
value for Ub:

U b
1 =

1

2

(
(1 + n2

x)U
K
1 + nxnyU

K
2 − nyY UK

3

)
,

U b
2 =

1

2

(
nxnyU

K
1 + (1 + n2

y)U
K
2 + nxY UK

3

)
,

U b
3 =

1

2

(
−nyZUK

1 + nxZUK
2 + UK

3

)
,

which may be summarized as

Ub = UK +
1

c
A−(n)UK .
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As we stressed above, we are interested in the value on the fictitious exterior
cell and not in the value on the boundary. The characteristics method implies
that we look for UL such that

l−c(n) · A(n)Ub = l−c(n) · A(n)UL,

l0(n) ·Ub = l0(n) ·UL,

lc(n) · A(n)Ub = lc(n) · A(n)UK .

The third equation does not involve UL, and this is expected since the char-
acteristics method does not use this component of UL. To close the system,
we choose lc(n) · A(n)Ub = lc(n) · A(n)UL. Thus we have

UL = l0(n) ·UKr0(n) + lc(n) ·UKrc(n) = Ub. (3.2)

3.2 Incident field condition

We want the incoming field to be the incident field Uinc on the boundary.
The natural condition is

l−c(n) ·Ub = l−c(n) ·Uinc. (3.3)

Besides we add the same two numerical conditions as for absorbing boundary
conditions and the relation UL = Ub always holds. Therefore

UL
1 = 1

2

(
(1 + n2

x)U
K
1 + n2

yU
inc
2 + nxny(U

K
2 − U inc

2 )− nyY (UK
3 − U inc

3 )
)
,

UL
2 = 1

2

(
nxny(U

K
1 − U inc

1 ) + (1 + n2
y)U

K
2 + n2

xU
inc
2 + nxY (UK

3 − U inc
3 )
)
,

UL
3 = 1

2

(
−nyZ(UK

1 − U inc
1 ) + nxZ(UK

2 − U inc
2 ) + (UK

3 + Uinc
3

)
.

(3.4)

3.3 Perfectly conducting surface

The perfectly conducting surface condition is:

n ∧ Eb = 0. (3.5)

We add the same two numerical conditions as for the previous conditions
as well as the relation UL = Ub. Therefore

UL
1 = n2

xU
K
1 + nxnyU

K
2 ,

UL
2 = nxnyU

K
1 + n2

yU
K
2 ,

UL
3 = −nyZUK

1 + nxZUK
2 + UK

3 .
(3.6)
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4 Conclusion

We have been able to develop multidimensional corrections to finite volume
schemes and to give their explicit value in terms of simple functions which
is of importance in view of the numerical implementation compared to the
double or triple integrals in their initial formulation. The multidimensional
approach takes into account the structure of the equations more than MUSCL
(van Leer [25]) approach does. We think that this will lead to more physical
solutions when real complex test cases will be run.

These results are of course a first step towards a study which would
include charge and current densities, and more complex media. Future de-
velopments for this study first include the generalization to heterogeneous
media in order to treat aircraft coatings for example. In this context each
component of the field is not a solution to a wave equation with uniform light
velocity, therefore an extension of our method has to be derived. A careful
study of which material constants ε and µ have to be considered has to be
performed as in the case of the finite volume schemes [21].

The generalization to three-dimensional Maxwell equations may also be
addressed but all computation for the corrections have to be reproduced since
the kernel F of the three-dimensional wave equation is different.
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Technical report MIP 01.13 (2001)
http://mip.ups-tlse.fr/publi/rapp01/01.13.html

23
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