
HAL Id: hal-00319988
https://hal.science/hal-00319988v1

Submitted on 9 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Cauchy Problem for Schrödinger-Debye equations
Brigitte Bidégaray

To cite this version:
Brigitte Bidégaray. The Cauchy Problem for Schrödinger-Debye equations. Mathematical Models and
Methods in Applied Sciences, 2000, 10 (3), pp.307-315. �10.1142/S0218202500000185�. �hal-00319988�

https://hal.science/hal-00319988v1
https://hal.archives-ouvertes.fr


The Cauchy Problem for Schrödinger-Debye
equations

B. Bidégaray
Laboratoire MIP, Université Paul Sabatier

118 route de Narbonne, Toulouse Cedex 4, FRANCE

Abstract

In this article we study the local in time Cauchy problem for the Schrödinger-
Debye equations which describe the non resonant delayed interaction of an
electromagnetic wave with a media. We extend the study to non physical
cases such as the three-dimensional case or more general nonlinearities.

1 Introduction.

We consider Schrödinger-Debye equations
i
∂

∂t
A+

c

2kn0

∆A =
ω0

n0

νA,

τ
∂

∂t
ν + ν = n2|A|2.

(1.1)

In these equations A denotes the envelope of a light wave that goes through a media
which response is non resonant. However a change ν is induced in its refraction
index (initially n0 for an electromagnetic wave of frequency ω0) with a slight delay
τ . The magnitude (and the sign) of the nonlinear coupling of the matter with the
wave is described by the parameter n2. The light velocity in the vacuum is denoted
by c and k is the wave vector of the incident electromagnetic wave.
In order to simplify proofs we will use the following dimensionless equations keeping
however a parameter τ which for applications has to be thought as small although
this fact is of no consequence in the present paper, and replacing n2 by ε = ±1 to
model both focusing and defocusing situations. Results will be exactly the same for
the physical system. 

i
∂

∂t
A+ ∆A = νA,

τ
∂

∂t
ν + ν = ε|A|2.

(1.2)
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This problem has already been studied in [?, ?]. Here we will enlarge the results
obtained in these references. For sake of completeness let us first cite these results,
which are valid in the case of a two-dimensional space:

Theorem 1 i) For all (A0, ν0) belonging to Hs ×Hs with s > 1, equation (??) for
the initial data A(0) = A0, ν(0) = ν0, has a unique solution in X = L∞(0, T ;Hs)
for a small enough T and solutions depend continuously on the initial data.
ii) For all (A0, ν0) belonging to H1 × H1, equation (??) has a unique solution in
X ′ = L∞(0, T ;H1) for a small enough T .
iii) For all (A0, ν0) belonging to L2 × L2, equation (??) has a unique solution in
X” = L4(0, T ;L4) ∩ C([0, T ];L2) for a small enough T .

These results have been obtained thanks to a fixed point procedure applied on
a Duhamel formulation. To obtain this Duhamel formulation the system (??) has
first been written as one integro-differential equation using the fact that

ν(t) = e−t/τν0 +
ε

τ

∫ t

0
e−(t−s)/τ |A(s)|2ds. (1.3)

Hence (??) may read

i
∂

∂t
A+ ∆A =

(
e−t/τν0 +

ε

τ

∫ t

0
e−(t−s)/τ |A(s)|2ds

)
A (1.4)

and the fixed point procedure is performed on

A(t) = S(t)A0 − i
∫ t

0
S(t− s)

(
e−s/τν0 +

ε

τ

∫ s

0
e−(s−θ)/τ |A(θ)|2dθ

)
A(s)ds (1.5)

where S is the semi-group associated to the linear Schrödinger equation

i
∂

∂t
A+ ∆A = 0. (1.6)

The integro-differential formulation is optional in the case of smooth solutions. In
this case the fixed point procedure could as well have been performed on both A and
ν. This formulation becomes necessary as soon as weaker solutions are concerned.

Let us first give the equivalent of Theorem ?? in dimensions N = 1, 2, 3.

Theorem 2 i) For all (A0, ν0) belonging to Hs×Hs with s > N/2, equation (??) for
the initial data A(0) = A0, ν(0) = ν0, has a unique solution in X = L∞(0, T ;Hs)
for a small enough T and solutions depend continuously on the initial data.
ii) For all (A0, ν0) belonging to H1 × H1, equation (??) has a unique solution in
X ′ = L∞(0, T ;H1) for a small enough T .
iii) For all (A0, ν0) belonging to L2 × L2, equation (??) has a unique solution in
X” = L8/N(0, T ;L4) ∩ C([0, T ];L2) for a small enough T .
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Proofs are so similar to the two-dimensional case that we do not give them here
but refer to [?].

Although the fixed point procedure is performed on variable A only, equation
(??) leads to ν(T ) ∈ H1 in case ii) and ν(T ) ∈ L2 in case iii). Nevertheless, unlike
the cubic nonlinear Schrödinger equation, there is no conservation law (other than
the L2 norm of A) which enables us to transform these local in time results into
global ones in the one-dimensional case, for example. Numerical experiments are
in progress to give us an idea of how the long-time behavior may look like. These
experiments are of course non performed on the integro-differential form but on the
coupled equations.

2 An other integral formulation.

We use here a trick already applied to the full nonlinear wave equation or the

Zakharov equations (see [?, ?]). It consists in setting F =
∂A

∂t
and in writing the

equation on F through a formal differentiation of the equation for A. We therefore
obtain

i
∂

∂t
F + ∆F =

∂

∂t
νA+ νF. (2.1)

In equation (??) we will replace
∂ν

∂t
by −ν

τ
+
ε|A|2

τ
and then replace A by A0 +∫ t

0
F (s)ds. Thus we obtain the Duhamel formulation

F (t) = N1[F, ν] ≡ S(t)F0 − i
∫ t

0
S(t− s)

{(
−ν
τ

+
ε|A(s)|2

τ

)

×
(
A0 +

∫ s

0
F (θ)dθ

)
+ νF

}
ds, (2.2)

ν(t) = N2[F, ν] ≡ e−t/τν0 +
ε

τ

∫ t

0
e−(t−s)/τ |A(s)|2ds, (2.3)

A(t) = (−∆ + 1)−1
{
iF − ν

(
A0 +

∫ t

0
F (s)ds

)
+
(
A0 +

∫ t

0
F (s)ds

)}
. (2.4)

Since we formally have iF + ∆A = νA, we set at time t = 0, iF0 = ν0A0 −∆A0.
This formulation is only derived formally, we will a posteriori prove that solutions
to this system yield solutions to (??).
We shall perform a fixed point procedure for N = (N1, N2) on the following func-
tional space:

X = [L∞(I;L2) ∩ L8/N(I;L4)]⊕ [L∞(I;L4)]

Using the same sort of estimates as in [?], we obtain:

‖A‖L∞(I;H2) ≤ C‖F‖L∞(I;L2) + C‖ν‖L∞(I;L4)‖A0‖L4
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+ CT 1−N/8‖ν‖L∞(I;L4)‖F‖L8/N (I;L4) + ‖A0‖L2 + T‖F‖L∞(I;L2),

‖N1(t)‖L4 ≤ ‖S(t)F0‖L4 +
∫ t

0
C|t− s|−N/4

{
1

τ
‖ν‖L4

(
‖A0‖L2 +

∫ s

0
‖F (θ)‖L2dθ

)

+
1

τ
‖ |A(s)|2‖L2

(
‖A0‖L4 +

∫ s

0
‖F (θ)‖L4dθ

)
+ ‖ν‖L4‖F‖L2

}
ds,

‖N1‖L8/N (I;L4) ≤ δ‖F0‖L2 + C
T 1−N/8

τ
‖ν‖L∞(I;L4)‖A0‖L2

+ C
T 2−N/8

τ
‖ν‖L∞(I;L4)‖F‖L∞(I;L2)

+ C
T 1−N/8

τ
‖ |A|2‖L∞(I;L2)‖A0‖L4

+ C
T 2−N/4

τ
‖ |A|2‖L∞(I;L2)‖F‖L8/N (I;L4)

+ CT 1−N/8‖ν‖L∞(I;L4)‖F‖L∞(I;L2),

‖N1‖L∞(I;L2) ≤ ‖F0‖L2 + C

∥∥∥∥∥1

τ
‖ν‖L4

(
‖A0‖L2 +

∫ s

0
‖F (θ)‖L2dθ

)
+

1

τ
‖ |A(s)|2‖L2

(
‖A0‖L4 +

∫ s

0
‖F (θ)‖L4dθ

)
+‖ν‖L4‖F‖L2

∥∥∥∥∥
L8/(8−N)(I)

≤ ‖F0‖L2 + C
T 1−N/8

τ
‖ν‖L∞(I;L4)‖A0‖L2

+ C
T 2−N/8

τ
‖ν‖L∞(I;L4)‖F‖L∞(I;L2)

+ C
T 1−N/8

τ
‖ |A|2‖L∞(I;L2)‖A0‖L4

+ C
T 2−N/8

τ
‖ |A|2‖L∞(I;L2)‖F‖L8/N (I;L4)

+ CT 1−N/8‖ν‖L∞(I;L4)‖F‖L∞(I;L2),

‖N2‖L∞(I;L4) ≤ ‖ν0‖L4 +
T

τ
‖ |A|2‖L∞(I;L4).

Unlike estimates obtained in [?], these estimates are not uniform with respect
to τ , but this is not our goal here. To obtain a uniform estimate with respect to τ
for ‖N2‖L∞(I;L4) would prevent us to get a T in the estimate and to finish the proof,
which ends as follows:
Let us suppose that (A0, ν0) ∈ H2 × L4, and let us set

a = max {‖A0‖L2 , ‖A0‖L4 , ‖ν0‖L4 , ‖ν0A0 −∆A0‖L2} ,
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which is finite. Let Y be the subset of X defined by

Y = {(F, ν) ∈ X/‖F‖L∞(I;L2) ≤ 2a, ‖F‖L8/N (I;L4) ≤ 2δa, ‖ν‖L∞(I;L4) ≤ 2a}.

The above estimates show that N maps Y into Y . Indeed,

‖A‖L∞(I;H2) ≤ 2C(a+ a2) + 4CT 1−N/8δa2 + a+ 2Ta,

‖N1‖L8/N (I;L4) ≤ δa+ 2C
T 1−N/8

τ
a2 + 4C

T 2−N/8

τ
a2 + C

T 1−N/8

τ
‖A‖2L∞(I;H2)a

+2C
T 2−N/4

τ
‖A‖2L∞(I;H2)δa+ 4CT 1−N/8a2,

‖N1‖L∞(I;L2) ≤ a+ 2C
T 1−N/8

τ
a2 + 4C

T 2−N/8

τ
a2 + C

T 1−N/8

τ
‖A‖2L∞(I;H2)a

+ 2C
T 2−N/8

τ
‖A‖2L∞(I;H2)δa+ 4CT 1−N/8a2,

‖N2‖L∞(I;L4) ≤ a+
T

τ
‖A‖2L∞(I;H2).

For some small enough T , N [F, ν] ∈ Y .
The same sort of estimates applied on N [F, ν]− [F, ν], where both (F, ν) and (F ′, ν ′)
are solution to (??)-(??)-(??) with the same initial data lead us to show that N is
a contraction from Y into Y . Hence N has a unique fixed point in Y , and

F (t) = S(t)F0 − i
∫ t

0
S(t− s)

{(
−ν
τ

+
ε|A(s)|2

τ

)(
A0 +

∫ s

0
F (θ)dθ

)
+ νF

}
ds,

ν(t) = e−t/τν0 +
ε

τ

∫ t

0
e−(t−s)/τ |A(s)|2ds,

A(t) = (−∆ + 1)−1
{
iF − ν

(
A0 +

∫ t

0
F (s)ds

)
+
(
A0 +

∫ t

0
F (s)ds

)}
.

Setting t = 0 in the above equations leads immediately to F (0) = F0, ν(0) = ν0,
A(0) = A0.
For more convenience in the following computations we set

B(s) =

(
−ν
τ

+
ε|A(s)|2

τ

)(
A0 +

∫ s

0
F (θ)dθ

)
+ νF.

For the results used on the regularization property of operator S(t), the reader
may refer to [?]. Since F0 ∈ L2, S(t)F0 ∈ C(I;L2) ∩ C1(I;H−2) and ∂tS(t)F0 =
iS(t)∆F0 = i∆(S(t)F0). Moreover B ∈ L∞(I;L4/3) ↪→ L1(I;H−1) hence∫ t

0
U(t− s)B(s)ds ∈ C(I;H−1) ∩W 1,1(I;H−3).

Since

∂t

∫ t

0
U(t− s)B(s)ds = i∆

∫ t

0
U(t− s)B(s)ds+B(t),
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∂tF (t) = i∆
(
U(t)F0 +

∫ t

0
U(t− s)B(s)ds

)
+ iB(t)

= i∆F (t) + iB(t),

i.e. i∂tF (t) + ∆F (t) = −B(t) which is the differential form of (??) and is valid in
C(I;H−1).
Since ν0 ∈ L4 and |A|2 ∈ L∞(I;L4), ν ∈ C(I;L4) ∩W 1,∞(I;L4) and moreover

∂tν = −1

τ
e−t/τν0 +

ε

τ

∫ t

0
−1

τ
e−(t−s)/τ |A(s)|2ds+ ε|A(t)|2

= −ν
τ

+
ε

τ
|A|2.

This means that τ∂tν + ν = ε|A|2, which is the differential form of (??), is valid in
C(I;L4).
Moreover we know that B is indeed in L8/(8−N)(I;L4,3), which enables us to conclude

that
∫ t

0
S(t − s)B(s)ds ∈ C(I;L2) and therefore F (t) ∈ C(I;L2). All these results

lead to A ∈ C(0, T ;H2). Differentiating equation (??) with respect to time we
obtain:

(−∆ + 1)
∂A

∂t
=

{
i
∂F

∂t
− ∂ν

∂t

(
A0 +

∫ t

0
F (s)ds

)
+ νF + F

}
.

which is a priori valid in C(I;H−1). Together with the differential equation on F ,

this gives that
∂A

∂t
= F in C(I;H−2). Furthermore

∂A

∂t
= (−∆ + 1)−1

{
i
∂F

∂t
− ∂ν

∂t

(
A0 +

∫ t

0
F (s)ds

)
+ νF + F

}
.

and A ∈ C1(I;L2). Equation (??) together with the fact that
∫ t

0
F (s)ds = A(t)−A0,

give

i
∂

∂t
A+ ∆A = νA,

which is valid in C(I;L2).
Hence this formulation has enabled us to prove the following theorem:

Theorem 3 For all (A0, ν0) belonging to H2×L4, equation (??) for the initial data
A(0) = A0, ν(0) = ν0, has a unique solution in X = C(0, T ;H2) × C(0, T ;L4) for
a small enough T and solutions depend continuously on the initial data.

We may compare this result with the above results. Here we need some strong
regularity on A and week regularity on ν. This theorem may also be considered
as intermediate between the regular and the weak cases of Theorem ??. The L4

regularity for ν is however very different from the H1 or L2 regularities asked for
in Theorem ??, ii) and iii). The fact that we recover some continuity with respect

6



to time for ν will also be important in some applications (see [?]) as the proof of
convergence for numerical schemes.

In the case of the Zakharov system, this huge difference between the regularity
for both variables is needed. Here the H2-regularity for A is mostly needed because
H2 is an algebra for all dimensions. H1 in dimension 1 and Hs in dimension 2 and
3 with 2 ≥ s > N/2 would have been sufficient. It is however impossible to recover
more than a H2-regularity on A. We may think of higher regularities, using the
same approach as above and introducing the new variable G = ∂2tA.

Here estimates are not uniform with respect to τ as we noticed formerly. One
drawback is the fact that we are not able to perform a limit as this parameter tends
to 0.

3 A more general case.

Going a little further from applications, we may think of studying the following
system 

i
∂

∂t
A+ ∆A = νA,

τ
∂

∂t
ν + ν = f(x, |A|2),

(3.1)

where |f(x, u)| ≤ C(1 + |u|σ) and σ > 0. This might not be so far from actual
models for optics since Kerr media are not the only ones to be studied. Nevertheless
we have never seen the model (??) in the literature. Of course it is inspired from
the general nonlinear Schrödinger equations and results are as well easy to find as
soon as we deal with algebras. Otherwise we have to consider the notion of critical
value for the nonlinearity. This is the maximal value of σ for which one may hope
to find local in time estimates. In H1 this value is σ = 2

N−2 , which is indeed the

critical value for which H1 ↪→ Lσ+2 (N > 3). In L2 the critical value is σ = 2
N−2 as

well.
Using the same methods than above or in [?], it is possible to prove :

Theorem 4 i) For all (A0, ν0) belonging to Hs ×Hs with s > N/2, equation (??)
for the initial data A(0) = A0, ν(0) = ν0, has a unique solution in L∞(0, T ;Hs)
for a small enough T and solutions depend continuously on the initial data.
ii) For all (A0, ν0) belonging to H1 ×H1 and σ < 2

N−2 , equation (??) has a unique
solution in L∞(0, T ;H1) for a small enough T .
iii) For all (A0, ν0) belonging to L2 × L2 and σ < 2

N−2 , equation (??) has a unique

solution in L8/N(0, T ;L2(1+σ)) ∩ C([0, T ];L2) for a small enough T .
iv) For all (A0, ν0) belonging to H2 × L4, equation (??) for the initial data A(0) =
A0, ν(0) = ν0, has a unique solution in C(0, T ;H2)×C(0, T ;L4) for a small enough
T and solutions depend continuously on the initial data.

We will not give any detailed proof of this result since, as we mentioned above,
the methods have already been used. The only difference is that estimates are a
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little more awkward.

4 Perspectives.

As stressed in the introduction, the main goals to find new results on the Cauchy
problem for Schrödinger-Debye equations were first to give a theoretical background
for a numerical approach and second to make a step towards the study of the long
time behavior of solutions to these equations. This second aim seems difficult to
achieve and numerics would be helpful to give us a first guess of what the result
may be.
In the context of Theorem ?? i) for example (see [?]), we already know that, as
τ tends to zero, solutions to (??) tend to the solutions to the cubic nonlinear
Schrödinger equation

i
∂

∂t
A+ ∆A = ε|A|2A. (4.1)

In the case when ε is positive solutions to (??) exists for all time, whereas in the case
when ε is negative (??) exhibits solutions that blow up in finite time. (Both signs
are physical depending on the type of medium we consider). We may expect to find
a similar behavior for the Schrödinger-Debye equations. There is no hope to find
different results for small τ and for greater ones since a rescaling of the equations
show that the behavior will be the same.
We might think of a Viriel-type identity to prove a finite-time blow-up result. Here
we do not dispose of a conservation law but only of a relation like

d

dt

1

2

∫
|∇A(t)|2dx+ ε

∫
|A(t)|4dx− τ 2

ε

∫ ∣∣∣∣∣∂ν∂t
∣∣∣∣∣
2

dx

 =
2τ

ε

∫ ∣∣∣∣∣∂ν∂t
∣∣∣∣∣
2

dx. (4.2)

Using this formulation we might think of obtaining a partial result like the one
obtained by Merle [?] for the Zakharov equation. All such attempts have been
unsuccessful until now.
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[2] B. Bidégaray On the Cauchy problem for systems occurring in nonlinear optics.
Adv. Diff. Equ., 3, 473-496 (1998)
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