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(b) Centre de Mathématiques et de Leurs Applications, CNRS URA 1611 et
ENS de Cachan, 61 av. du Président Wilson, 94235 Cachan cedex, France
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Abstract

We investigate a nonlinear set of coupled-wave equations describing
the inertial regime of the strong Langmuir turbulence, namely

1

ω2

∂2E

∂t2
− 2i

∂E

∂t
−∆E = −nE,

1

c2

∂2n

∂t2
−∆n = ∆|E|2,

which differs from the usual Zakharov equations by the inclusion in the
first equation for E of a second time-derivative, multiplied by the param-
eter 1/ω2 that vanishes under the so-called time-envelope approximation
ω2 → +∞. From these perturbed Zakharov equations, it is shown that
the latter limit is not compatible with a strongly dominant ion inertia
corresponding to the formal case c2 → 0. In the opposite case, i.e. as
c2 remains of order unity, the local-in-time Cauchy problem attached
to the above equations is solved and the limit ω2 → +∞ is detailed for
a fixed value of c2. Under some specific initial data, the solution E is
proved to blow up at least in an infinite time provided that ω lies below
a threshold value. When this condition is not fulfilled, the global exis-
tence of the solution set (E,n) is finally restored in a one-dimensional
space.
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1 Introduction.

1.1 The physical problem.

For two decades, the strong Langmuir turbulence (SLT) has often been em-
phasized as being a natural way for saturating the sudden growth of electron
plasma waves interacting with ion density fluctuations [1] : the typical sce-
nario for damping ”energetic” plasma waves (also called Langmuir waves) is
that these high-frequency (HF) waves, carried by electron oscillations, couple
with low-frequency (LF) ion fluctuations giving rise in the medium to localized
cavities inside which Langmuir wave energy is trapped. Remaining coupled to
the ions by the so-called ponderomotive force that locally expells the elec-
trons out of the plasma regions where strong electron oscillations develop, the
HF Langmuir waves self-contract in the so-called inertial regime of the SLT
where no dissipation takes place, and generate intense and spiky electric fields
in the medium. When their typical size becomes of order of a few Debye
lengths λD, i.e. as the typical wavenumber k of the Langmuir waves increases
such as kλD → 0.3 for a Maxwellian electron distribution function, Landau
damping becomes efficient and burns out the Langmuir field (the Debye ra-
dius classically corresponds to the elementary radius of the screening cloud
formed by electrons surrounding an isolated ion). The key-mechanism of this
physical phenomenon is governed by the well-known Zakharov equations [2]
that describe the slowly-varying motions of the complex-valued envelope of
the Langmuir electric field which nonlinearly interacts with large-scale den-
sity fluctuations through the ponderomotive force. Their standard derivation
follows from combining the Maxwell equations describing the longitudinal com-
ponent of the Langmuir electrostatic field with the fluid equations related to
the dynamical motions of the electron/ion densities hereafter denoted by Ne

and Ni. By doing so, and when assuming a globally neutral charged medium
with Ne = ZNi for a plasma of charge number Z, the dynamical equation
governing the scalar potential φ of the longitudinal field (E = −~∇φ) is found
to read as

∆(
∂2

∂t2
+ ω2

pe − 3v2
th∆)φ = −ω2

pediv
∂

∂t
(
δn

N0

∫ t

0

~∇φ(u)du). (1.1)

Here, ωpe[N0] =
√
q2
eN0/ε0me is the electron plasma frequency where qe, me, ε0

and N0 respectively denote the electric charge and mass, the vacuum dielectric

constant and the background electron density ; vth = λDωpe '
√
Te/me is

the electron thermal velocity, and δn represents a small fluctuation of the
non uniform density Ne = N0(1 + δn/N0) satisfying δn/N0 << 1. We can
now recall that taking the Fourier transform of (1.1) allows us to recover the
characteristic dispersion relation of Langmuir waves with frequency ω̃, namely

ω̃2 = ω2
pe[N0 + δn](1 + 3k2λ2

D) (1.2)

2



where the wavenumber k usually obeys the condition k2λ2
D << 1 when regard-

ing large-scale fluctuations on which the Landau damping remains unefficient.
In (1.2), the perturbation δn contains in principle a low-frequency contribution
δnLF and a high-frequency one δnHF carried by the electron oscillations, such
that it simply consists in the amount of both components : δn = δnLF +δnHF .
The latter component of the perturbation is directly integrated from the Pois-
son equation ∆φ = −qeδnHF/ε0, and it only contributes in the right-hand side
of (1.1) to a non-resonant term which does not beat at the plasma electron
frequency ωpe when one introduces into this equation of motion the envelope
substitution

φ(x, t) =
1

2
(ψ(x, t) exp(−iωpet) + c.c.). (1.3)

When retaining only the terms of (1.1) beating at ωpe (more precisely, when
averaging (1.1) over a period 2π/ωpe), the potential contribution induced by
δnHF can therefore be cancelled, so that only the low-frequency part of the
perturbation δnLF plays an effective role. Thus, equation (1.1) reduces to the
simplified equation

∆(
∂2

∂t2
− 2iωpe

∂

∂t
− 3v2

th∆)ψ = −ω2
pediv(

δnLF
N0

~∇ψ) (1.4)

where the second time-derivative is assumed to be small [this follows from the
average assumption ∂tψ << ωpeψ], but consists in a resonant contribution
which can be formally kept. Furthermore, as the short-scale HF fluctuations
have been neglected, the perturbation δn ≈ δnLF corresponds to either large-
scale electron or ion motions by virtue of the quasi-neutrality assumption.
Those motions are described by a sound-wave equation including the pondero-

motive force Fpm = −me

2
~∇ < v2

HF >, which expresses as

(
∂2

∂t2
− c2

s∆)
δn

N0

=
Zme

2mi

∆ < v2
HF > . (1.5)

Here, vHF denotes the high-frequency electron velocity related to the electric
field by the dynamical equation ∂tvHF = (qeE/me) and the brackets < . >
represent a time-averaging over a 2πω−1

pe period. Using the previous assump-
tions together with the envelope substitution (1.3), < v2

HF > can easily be

checked to reduce at the main order to < v2
HF >∼= (q2

e/2ω
2
pem

2
e)|~∇ψ|2 : by

”main order”, it must be understood that the previous estimate is true up to
some small corrections in o((ω̃−ωpe)/ωpe) which may be disregarded when con-
sidering the first-order contribution of δn/N0 as the Langmuir wave frequency
remains close to ωpe. For the sake of simplicity, we select the longitudinal

component of the Langmuir electric field and setting ∇ ≡ (~k/k) · ~∇, we intro-
duce Ẽ = −∇ψ as being the scalar envelope of this field, so that the vectorial
system (1.4)-(1.5) finally reduces to the following scalar model

∂2Ẽ

∂t2
− 2iωpe

∂Ẽ

∂t
− 3v2

th∆Ẽ = −ω2
pe

δn

N0

Ẽ (1.6)
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(
∂2

∂t2
− c2

s∆)
δn

N0

=
Zε0

4miN0

∆|Ẽ|2. (1.7)

Resulting from an integration of (1.4) over space, equations (1.6)-(1.7) are
defined up to a spatially-uniform integration constant that may represent an
external ”pump” driver which is here disregarded as we deal with a ”free”
plasma turbulence. In this case, the above system restores the well-known
Zakharov equations stated under the so-called time-envelope approximation
∂2
t Ẽ << 2iωpe∂tẼ, i.e. when the second time-derivative of Ẽ is ignored in (1.6).

This paper is devoted to the previous approximation. In order to investigate
this problem properly, we now need to transform (1.6)-(1.7) into a convenient
formulation exhibiting the perturbative nature of the second time-derivative
of Ẽ in (1.6).

1.2 A suitable rescaling of the perturbed Zakharov equa-
tions.

The aim of this subsection is to re-express the perturbed Zakharov equations
(1.6)-(1.7) in such a way that the second time-derivative in (1.6) plays the role
of a perturbative parameter tending to zero as the time-envelope approxima-
tion ∂2

t Ẽ << 2iωpe∂tẼ is imposed. Let us first recall that when the latter
limit is a priori applied, system (1.6)-(1.7) is classically rewritten in a reduced
system of units based upon some dimensionless space-time variables t→ ωpet
and x→ kDx with kD = 2π/λD [1]. Here, we need to normalize the variables
and fields such that all the terms occurring in (1.6)-(1.7) are of the same or-
der, except the one in ∂2

t Ẽ that is expected to vanish under the time-envelope
limit. To construct such a rescaling, we introduce the plasma wave envelope
frequency as defined by δω = ω̃−ωpe. In the inertial regime of the SLT, the lat-
ter quantity is assumed to remain very small since k and δn satisfy k2λ2

D << 1
and δn/N0 << 1 respectively, so that ω̃ remains close to ωpe. Under these
hypothesis, the dispersion relation (1.2) can be expanded to yield

δω =
3

2
ωpek

2λ2
D +

δn

2N0

ωpe (1.8)

that determines the orders of magnitude δω ≈ 3
2
ωpek

2λ2
D ≈ δn

2N0
ωpe which must

be satisfied by the initial data under investigation. Using these estimates,
one can thus line up the temporal variable t - not with the plasma electron
frequency ωpe - but with the envelope frequency (1.8) that we henceforth regard
as being a free parameter to be discussed later on. Accordingly with this
transform t→ δωt, we also line up the space variables with the characteristic
wavenumber of the Langmuir envelope, namely x→ kx. Together with these
new space-time variables

t→ t′ = δωt (∂2
t → δω2∂′2t ) (1.9)

x→ x’ = kx (∆→ k2∆′), (1.10)
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we self-consistently change the scalar densities δn and |Ẽ|2 by means of the
former estimates, namely

δn

N0

→ n′ =
ωpe
δω

δn

N0

= O(1) (1.11)

|Ẽ|2 → |E ′|2 =
ωpe
δω
|Ẽ|2 = O(1) (1.12)

where the notation O(1) refers to some quantities that remain independent of
the ratio ωpe/δω. We then emphasize that for a usual laser-created plasma in
controlled fusion experiments, one has Te >> Ti such as c2

s ' ZTe/mi, and
eventually normalize |Ẽ|2 in energy units (4N0Te/ε0) to obtain the following
rescaled set of perturbed equations

1

ω2

∂2E

∂t2
− 2i

∂E

∂t
− 2∆E = −nE, (1.13)

α2

ω2

∂2n

∂t2
−∆n = ∆|E|2, (1.14)

where - for the sake of clarity - the prime notation has been dropped out. In
equations (1.13)-(1.14), the quantity 1/ω2 denotes the small parameter

1

ω2
=
δω

ωpe
(1.15)

that reflects the deviation of the time-enveloped Zakharov equations from the
original HF wave equation (1.1). Imposing the time-envelope approximation
is then nothing else but taking the limit ω2 → +∞ in equation (1.13), which
thereby reduces to a singular perturbation problem. Moreover, the coefficient
(α2/ω2) in front of the time-derivatives of (1.14) also displays an explicit de-
pendence of the ion-sound wave frequency on the envelope frequency. By
definition, this coefficient reads as

α2

ω2
=
δω2

c2
sk

2
, (1.16)

and when one makes use of the estimate ω̃2 − ω2
pe ≈ 3v2

thk
2 leading to k2 '

(2δωωpe/3v
2
th), the constant α in (1.16) is simply related to the ratio of the

thermal electron velocity to the ion-acoustic speed as follows :

α =

√
3

2

vth
cs
∼=
√

3

2µ
(1.17)

with

µ =
Zme

mi

<< 1.
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1.3 The different regimes occurring in SLT.

A first consequence directly inferred from the rescaled equation (1.13) is that
the usual time-envelope approximation is recovered by passing to the formal
limit ω → +∞ : by ”formal” limit, it is simply meant that the ratio (δω/ωpe)
in (1.15) never strictly vanishes from a physical viewpoint, but is here viewed
as becoming rather negligible in front of the remaining contributions of order
unity in (1.13)-(1.14). In other words, the limit ω2 → ∞ signifies that the
envelope frequency δω becomes infinitely low as compared with the basic HF
electron frequency ωpe. Modelling the SLT even when keeping some ”resid-
ual” electron oscillations represented by the second time-derivative of (1.13)
permits to refind the main dynamical regimes of large-scale cavities n evolving
in a turbulent plasma, namely the subsonic and the supersonic regimes whose
properties are now reviewed in the following.

i) the subsonic regime usually applies to ion fluctuations whose temporal
dynamics is ignored, i.e. as δn/N0 satisfies

∂2
t δn/N0 << c2

s∆δn/N0

in (1.7). In this ion-static (so-called ”adiabatic”) limit, equation (1.14) sim-
plifies into n = −|E|2 and (1.13) reduces to a nonlinear Schrödinger equation,
the solutions of which have been recently examined in the time-envelope limit
by Bergé and Colin [3]. From a physical point of view, the applicability do-
main of the subsonic regime concerns Langmuir envelopes coupled with ion
cavities whose typical extensions in space and in time - denoted by L and T
respectively - satisfies the relation L/T < cs, as deduced from the sound-wave
equation (1.7) preserved in physical units. In addition to this latter estimate,
we can use equation (1.6) to establish that under the time-envelope approxi-
mation, the respective sizes L and T of the Langmuir envelope proceed from
the following ordering

2

ωpeT
∼ 3λ2

D

L2
∼ δn

N0

(1.18)

showing that in the subsonic regime L/T < cs, the cavities δn/N0 evolve with
a bounded amplitude ∣∣∣∣∣ δnN0

∣∣∣∣∣ << 4c2
s

3v2
th

≈ µ << 1.

We recall on this purpose that the former ordering (1.18) may be justified by
performing a linear stability analysis of the time-enveloped Zakharov equations
expressed in a one-dimensional (1-D) space. One can indeed search for the un-
stable modes that tend to break up a spatially uniform time-independent Lang-
muir envelope Ẽ0 by assuming Ẽ = Ẽ0 + Ẽ1 exp (γt) cos (kx) (Ẽ1 << Ẽ0) and
deduce that the latter modes are characterized by a maximum growth rate γ ≈
1/T reached for unstable mode wavenumbers k = 2π/L ≈ δn(Ẽ0)/N0. This
standard analysis reveals the modulational instability of a long-wavelength
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Langmuir wave induced by low-amplitude density fluctuations. Modulational
instability arises within the subsonic regime when the cavity fluctuations verify
|δn(Ẽ0)/N0| << µ, or equivalently when the density of Langmuir electrostatic
energy initially satisfies the inequality W ≡ (ε0|Ẽ0|2/4N0Te) << µ (see e.g.
[4]). Moreover, as inferred from the above estimates (1.18), the product kλD
characterizing unstable Langmuir waves of typical wavenumbers k ∼ 1/L be-
longs to the range kλD <

√
µ.

ii) the supersonic regime corresponds to cavity motions governed by the
opposite approximation

∂2
t δn/N0 >> c2

s∆δn/N0

and develops in a turbulent medium as soon as the ion dynamics grows up
dominantly as compared with the ion compression effects. By repeating the
above dimensionality arguments, it follows that the latter inequality applies to
space-time envelope scales L and T satisfying L/T > cs. Besides, using again
the estimate (1.18) yields an opposite inequality |δn/N0| >> µ which means
that the cavity fluctuations exhibiting a too large deepening destabilize the
amplitude of Langmuir waves in the supersonic stage of the modulational in-
stability. This stage essentially concerns some large-amplitude Langmuir fields
characterized by the inequality W >> µ, and its typical spectrum in k ranks
among the large wavenumbers kλD >

√
µ, as easily reported from the former

dimensionality analysis.

Let us first note that the above characteristics of the inertial SLT are well-
restored by our model (1.13)-(1.14) : as previously stated, every term of (1.13)-
(1.14) remains of order unity, apart from those affected by some ω-dependent
coefficients that contain by themselves the nature of the turbulent regime.
We can then check from (1.16) that a simple expansion of α/ω < 1 leads to
k−1δω < cs which is nothing else but the subsonic approximation L/T < cs,
whereas α/ω > 1 yields the complementary limit L/T > cs. Furthermore,
keeping in mind the typical order of magnitude ω−2 = (δω/ωpe) ≈ (3

2
k2λ2

D),
one easily sees that a supersonic (subsonic) evolution of the cavities is priv-
iledged in the spectral domain kλD >

√
µ (resp. kλD <

√
µ), as soon as ω2 is

ensured to be smaller (resp. larger) than the quantity α2 = 3/(2µ), i.e. when
the frequency ratio α/ω satisfies α/ω > 1 (resp. α/ω < 1).

The previous analysis suggests that the parameter α2/ω2 in equation (1.14)
can be tuned as being more or less than the unity for recovering the main
properties of the SLT without dissipation. In addition to these reviews, a
salient result follows from (1.13)-(1.14) when bearing in mind that α2 is in fact
the single physical constant of our rescaled problem. Indeed, passing crudely
to the limit ω → +∞ should imply not only the second time-derivative of
the Langmuir envelope to vanish, but above all to force a subsonic evolution
for the fluctuating cavities n as α2/ω2 → 0. Inversely, the rescaled system
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(1.13)-(1.14) clearly displays that the development of a too strong supersonic
regime characterized by the inequality α >> ω is not compatible with the time-
envelope limit ω → +∞. As a consequence of this result, we can conclude
that the time-envelope approximation does not hold any longer as soon as the
temporal fluctuations of the ion cavities become drastically enhanced, i.e. as
the proper frequency Ω ∼ α/ω associated with the ion fluctuations exceeds too
much the unity [this amounts to dealing with extreme situations concerned by
the asymptotic regions of the supersonic regime (δω/ωpe) >> 2µ/3]. As a
matter of fact, such a situation may never occur in a real turbulent plasma,
because in the contrary case, it should concern the asymptotic part of the
k-spectrum lying in the range kλD >>

√
µ, and therefore reaching the dissi-

pative domain kλD → 0.3 for which the ”undamped” Zakharov equations - as
well as their rescaled version (1.13)-(1.14) - become quite invalid.

In summary, applying simultaneously the limit ω2 → ∞ in both of the
equations (1.13)-(1.14) forces not only the second time-derivative of E, but
also the one of n, to disappear. As a result of the latter effect, n simplifies to
just −|E|2. We are, however, not able to work out this full limit, for reasons
discussed in the Appendix.

Nevertheless, since 1/ω never truly vanishes for a turbulent plasma medium,
while the constant α2 is quite large (typically α2 > 103), the coefficient 1/ω2

may be very small and the coefficient α2/ω2 be much larger. It is therefore
worthwhile considering the limit for which the former tends to zero, whereas
the latter remains fixed. This assumption is fully justified when investigating
the inertial supersonic regime of the SLT characterized by the spectral domain
µ < kλD < 0.3. Fixing this range of k indeed amounts to regarding the limit
3
2
(αkλD)2 ≈ α2/ω2 of order unity with a large value α2 >> 1, while δω/ωpe

is viewed as a sufficiently small quantity for the formal limit ω2 → +∞ to
make sense. The main part of the forthcoming analysis will be devoted to this
regime.

Although of less physical relevance, it is besides possible to consider the
limits in which the coefficient ω/α tends to infinity, leaving a perturbed cubic
Schrödinger equation, and afterwards to pass to the limit ω →∞ in the latter,
reducing once again to the usual nonlinear Schrödinger equation. The former
limit will also be treated here, while the latter was recently justified by Bergé
and Colin [3].

1.4 Setting of the problem and statement of the results.

In the remaining of this paper, we will study the mathematical properties
corresponding to the above physical situations that can be modelled through
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the nonlinear equation set

1

ω2

∂2E

∂t2
− 2i

∂E

∂t
−∆E = −nE,

1

c2

∂2n

∂t2
−∆n = ∆|E|2

(1.19)

where the numerical factor 2 in front of the Laplacian of (1.13) has been
dropped for the sake of convenience: this can merely follows from a simple
rescaling of the space variables, so that c now represents the ratio (ω/2α). Let
us first recall what kind of results are nowadays known about this family of
systems :

i) The first case is ω = c = +∞ and leads to the cubic Schrödinger equation
which has been extensively studied in the past (see Ginibre and Velo [5] or Kato
[6]).

ii) The case ω = +∞ and c < +∞ corresponds to the Zakharov equations
whose well-posedness of the Cauchy problem has been addressed by Sulem
and Sulem [7] and Ozawa and Tsutsumi [8]. Furthermore, the limit c → ∞
has been treated by Schochet and Weinstein [9]. Some partial results on time
blow-up can also be found in Glangetas and Merle [11] and Merle [12].

iii) As recalled in section 1.3, the case ω < +∞ and c = +∞ has been
recently studied by Bergé and Colin in [3] where the asymptotics ω → +∞
has been accurately described.

In what follows, we fix c and we investigate the limit ω → +∞. The main
results relative to this problem can be summarized as follows (see Theorem 1,
Theorem 2 and Theorem 3) :

Let s > d
2

and E0 ∈ Hs+2(Rd), E1 ∈ Hs(Rd), n0 ∈ Hs+1(Rd), n1 ∈
Hs(Rd)and suppose that

|E1|Hs+1

ω
→ 0 as ω → +∞, then there exists T ω > 0

corresponding to a unique maximal solution to

1

ω2

∂2Eω

∂t2
− 2i

∂Eω

∂t
−∆Eω = −nωEω,

1

c2

∂2nω

∂t2
−∆nω = ∆|Eω|2,

Eω(0) = E0, E
ω
t (0) = E1, n

ω(0) = n0, n
ω
t (0) = n1,

satisfying
Eω ∈ C([0, T ω[;Hs+2) ∩ C1([0, T ω[;Hs),

nω ∈ C([0, T ω[;Hs+1) ∩ C1([0, T ω[;Hs).
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Let E be the solution to the Zakharov equations

−2i
∂E

∂t
−∆E = −nE,

1

c2

∂2n

∂t2
−∆n = ∆|E|2,

E(0) = E0, n(0) = n0, nt(0) = n1,

and T∞ be its existence time. Then, we have

lim inf
ω→∞

T ω ≥ T∞,

together with the following limits valid as ω2 →∞ for all T 1 < T∞ :

Eω → E in L∞(0, T1;Hs+2),

Eω
t − Et − e2iω2tw(x, t)→ 0 in L∞(0, T1;Hs),

nω → n in L∞(0, T1;Hs+1),

nωt → n in L∞(0, T1;Hs),

where w is defined by
2i
∂w

∂t
−∆w = −nw,

w(x, 0) = i
2
∆E0 + E1 − i

2
n0E0.

Suppose moreover that n1 ∈ Ḣ−1(Rd), and introduce the quantity I(t) =
1
2

∫
Rd |Eω|2 together with the function ψω obeying the continuity relation

c2∆ψω = nωt . If Eω and nω exist for all times and if both of the invariant
integrals

Qω ≡
∫
Rd |Eω|2 − 1

ω2
Im

∫
Rd

∂Eω

∂t
Ēω,

Eω ≡
∫
Rd

 1

ω2

∣∣∣∣∣∂Eω

∂t

∣∣∣∣∣
2

+ |∇Eω|2 + nω|Eω|2 +
c2

2
(∇ψω)2 +

1

2
(nω)2


satisfy one of the two conditions

(C1) Eω + 2ω2Qω < 0

(C2) Eω + 2ω2Qω = 0, İ(0) > 0,

then,
lim
t→∞
|Eω|L2 = +∞.
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To solve the above-summarized Cauchy problem, the appropriate method
is to prove the existence of a fixed-point of an equation obtained after some
suitable transformations of the initial system. The outline of the article is the
following.

In section 2, we establish a well-posedness result for the system (1.19) whose
solution is found to be bounded independently of ω and characterized by an
existence time uniform with respect to ω.

In section 3, we perform the limit process ω →∞.
In section 4, we prove that a peculiar class of solutions to (1.19) blow up

at least at an infinite time when ω lies below a critical value. In the contrary
case, i.e. if ω is large enough, we show that for fixed initial data in space
dimension 1, the solutions are global in time.

We finally devote an appendix in order to explain why we do not know
how to conclude in the case when simultaneously both the limits ω →∞ and
c→∞ are taken. We state a result when ω is fixed and c→∞ and we give a
brief sketch of proof, showing that the transformations introduced in section
2 apply in this simpler case.

Note that up to a non-local operator of the form [grad(∆−1)div] applied to
the coupling term −nE, all the results of the present paper can be extended
to the vectorial version of (1.19) which has been studied for ω = +∞ by
Bidégaray [13].

Acknowledgements: We wish to thank J.M. Ghidaglia for having suggested
us to use a transformation like (2.6). Besides, one of the authors (LB) has
been supported by the DGA/DRET under grant N0 94-1124.
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2 Local in time Cauchy Problem.

The aim of this section is to show that the nonlinear system

1

ω2

∂2E

∂t2
− 2i

∂E

∂t
−∆E = −nE, (2.1)

1

c2

∂2n

∂t2
−∆n = ∆|E|2, (2.2)

with the following initial data

E(0) = E0,
∂E

∂t
(0) = E1,

n(0) = n0,
∂n

∂t
(0) = n1,

is well-posed on a time interval [0, T ] where T is independent of ω (for the sake
of clarity, we here recall that by ”independent of ω”, we mean quantities whose
associated bound can always be bounded in turn by an ω-independent constant
in the limit of large ω >> 1). For this purpose, we state an appropriate
mathematical setting of system (2.1)-(2.2).

2.1 Mathematical setting of the perturbed Zakharov
equations.

For technical convenience, we first make a change of variable on n in order to
deal only with the first derivatives of E in the right-hand side of the resulting
equation. In this aim, we introduce a parameter θ and compute the relation
(Re((2.1)× Ē) + θ × (2.2)), which expands as

∂2

∂t2

[
1

2ω2
|E|2 +

θ

c2
n

]
− ∆

[(
1

2
+ θ

)
|E|2 + θn

]
=

1

ω2

∣∣∣∣∣∂E∂t
∣∣∣∣∣
2

− 2Im

(
∂E

∂t
Ē

)
− |∇E|2 − n|E|2.

(2.3)
We then choose θ as fixed by

θ =
c2 − ω2

2ω2
, (2.4)

so that when defining P =
c2 − ω2

2ω2
n+

c2

2ω2
|E|2 and using (2.4), equation (2.3)

becomes

1

c2

∂2

∂t2
P −∆P =

1

ω2

∣∣∣∣∣∂E∂t
∣∣∣∣∣
2

− 2Im

(
∂E

∂t
Ē

)
− |∇E|2 − n|E|2. (2.5)
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Now n is expressed in turn in terms of P and |E|2 as follows

n =
2ω2

c2 − ω2
P − c2

c2 − ω2
|E|2 (2.6)

and substituted into equations (2.1) and (2.5) which self-consistently transform
into

1

ω2

∂2E

∂t2
− 2i

∂E

∂t
−∆E = − 2ω2

c2 − ω2
PE +

c2

c2 − ω2
|E|2E, (2.7)

1

c2

∂2P

∂t2
−∆P =

1

ω2

∣∣∣∣∣∂E∂t
∣∣∣∣∣
2

− 2Im

(
∂E

∂t
Ē

)
− |∇E|2

− 2ω2

c2 − ω2
P |E|2 +

c2

c2 − ω2
|E|4. (2.8)

The next step is to split (2.7) into the two natural ”directions of propagation”
attached to this wave equation. Indeed, equation (2.7) yields the following
integral equation :

E = Sω0 (t)E0+Sω1 (t)E1+ω2
∫ t

0
Sω1 (t−s)

(
− 2ω2

c2 − ω2
PE +

c2

c2 − ω2
|E|2E

)
(s)ds,

(2.9)
where Sω0 (t) and Sω1 (t) are the semi-groups associated with the wave equation
(2.7), i.e. X = Sω0 (t)E0 satisfies

1

ω2

∂2X

∂t2
− 2i

∂X

∂t
−∆X = 0,

X(0) = E0,
∂X

∂t
(0) = 0,

and Y = Sω1 (t)E1 satisfies

1

ω2

∂2Y

∂t2
− 2i

∂Y

∂t
−∆Y = 0,

Y (0) = 0,
∂Y

∂t
(0) = E1.

Here, Sω0 (t) and Sω1 (t) are the Fourier multipliers given by

F(Sω0 (t))(ξ) =
1 +

√
1 + ξ2/ω2

2
√

1 + ξ2/ω2
eiω

2(1−
√

1+ξ2/ω2)t

−
1−

√
1 + ξ2/ω2

2
√

1 + ξ2/ω2
eiω

2(1+
√

1+ξ2/ω2)t, (2.10)

F(Sω1 (t))(ξ) =
eiω

2(1+
√

1+ξ2/ω2)t − eiω2(1−
√

1+ξ2/ω2)t

2iω2
√

1 + ξ2/ω2
, (2.11)
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where F denotes the Fourier transform with respect to the space variables.
In view of (2.9), (2.10) and (2.11), we therefore divide E into two compo-

nents F and G having the modes of propagation exp(iω2t(1 ±
√

1 + ξ2/ω2)),
respectively, and taking place in the previously-defined semi-groups, namely

F(F (t))(ξ) =
1 +

√
1 + ξ2/ω2

2
√

1 + ξ2/ω2
eiω

2(1−
√

1+ξ2/ω2)tF(E0)(ξ)

− 1

2iω2
√

1 + ξ2/ω2
eiω

2(1−
√

1+ξ2/ω2)tF(E1)(ξ)

+
1

2i

∫ t

0

eiω
2(1−
√

1+ξ2/ω2)(t−s)√
1 + ξ2/ω2

F
(
− 2ω2

c2 − ω2
PE +

c2

c2 − ω2
|E|2E

)
(s)ds,

(2.12)
and

F(G(t))(ξ) = −
1−

√
1 + ξ2/ω2

2
√

1 + ξ2/ω2
eiω

2(1+
√

1+ξ2/ω2)tF(E0)(ξ)

+
1

2iω2
√

1 + ξ2/ω2
eiω

2(1+
√

1+ξ2/ω2)tF(E1)(ξ)

− 1

2i

∫ t

0

eiω
2(1+
√

1+ξ2/ω2)(t−s)√
1 + ξ2/ω2

F
(
− 2ω2

c2 − ω2
PE +

c2

c2 − ω2
|E|2E

)
(s)ds,

(2.13)
so that solution E simply reads as the amount E = F +G.
A straightforward calculation then shows that after taking the inverse Fourier
transforms of (2.12) and (2.13), F and G respectively satisfy

∂F

∂t
= iω2(1−

√
1−∆/ω2)F+

1

2i
(
√

1−∆/ω2)−1

[
− 2ω2

c2 − ω2
PE +

c2

c2 − ω2
|E|2E

]
,

(2.14)
and

∂G

∂t
= iω2(1+

√
1−∆/ω2)G− 1

2i
(
√

1−∆/ω2)−1

[
− 2ω2

c2 − ω2
PE +

c2

c2 − ω2
|E|2E

]
,

(2.15)
with the initial data
F (0) = (1 +

√
1−∆/ω2)(2

√
1−∆/ω2)−1E0 −

1

2iω2
(
√

1−∆/ω2)−1E1,

G(0) = −(1−
√

1−∆/ω2)(2
√

1−∆/ω2)−1E0 +
1

2iω2
(
√

1−∆/ω2)−1E1.

(2.16)
At this step, the problem occurring now is that the original system (2.1)-(2.2),
as well as its transformed version (2.7)-(2.8), prevents treating their solutions
as belonging to the same space : if, e.g., E and n were a priori supposed to
belong to Hs, it could be seen that the nonlinear contribution of the integral
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equation for n forces the latter solution to belong only to Hs−1. Because of this,
the system formed by the equations (2.14)-(2.15)-(2.8) exhibits some derivative
contributions inconvenient to bound, in such a way that the standard fixed-
point procedure applied to these equations cannot yield the well-posedness
of the local Cauchy problem. In order to avoid this ”loss of derivatives”, we
therefore use the Ozawa-Tsutsumi’s technique expounded in [8], which consists
in making some estimates working with the time-derivative of E, instead of
E itself, to properly balance the space derivatives of the wave equation. To
do this, we introduce the new unknown functions defined by K ≡ ∂F/∂t and
L ≡ ∂G/∂t, K and L being respectively solutions to

∂K

∂t
= iω2(1−

√
1−∆/ω2)K

+
1

2i
(
√

1−∆/ω2)−1

[
− 2ω2

c2 − ω2
(Pt(F +G) + P (K + L))

+
c2

c2 − ω2

(
2|F +G|2(K + L) + (F +G)2(K̄ + L̄)

) ]
, (2.17)

∂L

∂t
= iω2(1 +

√
1−∆/ω2)L

− 1

2i
(
√

1−∆/ω2)−1

[
− 2ω2

c2 − ω2
(Pt(F +G) + P (K + L))

+
c2

c2 − ω2

(
2|F +G|2(K + L) + (F +G)2(K̄ + L̄)

) ]
. (2.18)

Using (2.14) and (2.15) we compute the initial data on K and L :

K(0) = i∆(2
√

1−∆/ω2)−1E0 −
1

2
(1−

√
1−∆/ω2)(

√
1−∆/ω2)−1E1

+
1

2i
(
√

1−∆/ω2)−1

[
− 2ω2

c2 − ω2
P0E0 +

c2

c2 − ω2
|E0|2E0

]
,

(2.19)
and

L(0) = i∆(2
√

1−∆/ω2)−1E0 +
1

2
(1 +

√
1−∆/ω2)(

√
1−∆/ω2)−1E1

− 1

2i
(
√

1−∆/ω2)−1

[
− 2ω2

c2 − ω2
P0E0 +

c2

c2 − ω2
|E0|2E0

]
,

(2.20)
where P0 denotes the initial datum of P , i.e.

P0 =
c2 − ω2

2ω2
n0 +

c2

2ω2
|E0|2, (2.21)

and where

P1 =
c2 − ω2

2ω2
n1 +

c2

ω2
Re(Ē0E1) (2.22)
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denotes the initial datum of ∂P/∂t. We also substitute E by (F + G) and
∂E/∂t by (K + L) into equation (2.8), which gives, keeping the term −|∇E|2
untouched

1

c2

∂2P

∂t2
−∆P =

1

ω2
|K + L|2 − 2Im

(
(K + L)(F̄ + Ḡ)

)
− |∇E|2

− 2ω2

c2 − ω2
P |F +G|2 +

c2

c2 − ω2
|F +G|4.

(2.23)

In equations (2.17),(2.18) and (2.23), we then replace F and G by F = F (0) +∫ t

0
K(s)ds and G = G(0) +

∫ t

0
L(s)ds respectively, while −|∇E|2 in (2.23) is

expanded writing ∇E = ∇F + ∇G. Analogously to reference [8], we finally
add −iF to both sides of (2.14) in order to avoid the low-frequency divergence

of the operator (1−
√

1−∆/ω2)−1, and after solving for F , we obtain

F = (iω2(1−
√

1−∆/ω2)− i)−1

{
K − i(F (0) +

∫ t

0
K(s)ds)

− 1

2i
(
√

1−∆/ω2)−1

[
−2ω2

c2 − ω2
P
(
F (0) +G(0) +

∫ t

0
(K(s) + L(s))ds

)
+

c2

c2 − ω2

∣∣∣∣F (0) +G(0) +
∫ t

0
(K(s) + L(s))ds

∣∣∣∣2
×
(
F (0) +G(0) +

∫ t

0
(K(s) + L(s))ds

) ]}
≡ T ω1 (K,L, P ).

(2.24)
Similarly, using equation (2.15), one gets

G = (iω2(1 +
√

1−∆/ω2))−1{
L+

1

2i
(
√

1−∆/ω2)−1

[
−2ω2

c2 − ω2
P
(
F (0) +G(0) +

∫ t

0
(K(s) + L(s))ds

)
+

c2

c2 − ω2

∣∣∣∣F (0) +G(0) +
∫ t

0
(K(s) + L(s))ds

∣∣∣∣2
×
(
F (0) +G(0) +

∫ t

0
(K(s) + L(s))ds

) ]}
≡ T ω2 (K,L, P ).

(2.25)
The appropriate system, on which the forthcoming fixed-point method will be
applied, therefore reads

∂K

∂t
= iω2(1−

√
1−∆/ω2)K +M1(K,L, P, Pt), (2.26)

∂L

∂t
= iω2(1 +

√
1−∆/ω2)L−M1(K,L, P, Pt), (2.27)

1

c2

∂2P

∂t2
−∆P = M2(K,L, P ), (2.28)
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where

M1(K,L, P, Pt) =
1

2i
(
√

1−∆/ω2)−1
[ −2ω2

c2 − ω2

(
Pt

(
F (0) +G(0) +

∫ t

0
(K(s) + L(s))ds

)
+P (K + L)

)
+

c2

c2 − ω2

(
2|F (0) +G(0) +

∫ t

0
(K(s) + L(s))ds|2(K + L)

+(F (0) +G(0) +
∫ t

0
(K(s) + L(s))ds)2(K̄ + L̄)

)]
(2.29)

and

M2(K,L, P ) =
1

ω2
|L+K|2 − 2Im

(
(L+K)(F̄ (0) + Ḡ(0) +

∫ t

0
(K̄(s) + L̄(s))ds)

)
− |∇T ω1 (K,L, P ) +∇T ω2 (K,L, P )|2

− 2ω2

c2 − ω2
P

∣∣∣∣F (0) +G(0) +
∫ t

0
(K(s) + L(s))ds

∣∣∣∣2
+

c2

c2 − ω2

∣∣∣∣F (0) +G(0) +
∫ t

0
(K(s) + L(s))ds

∣∣∣∣4 .
(2.30)

Following the procedure developed in Ozawa-Tsutsumi [8], it can finally be
shown that as soon as all the terms in (2.29)-(2.30) make sense, equations
(2.26) to (2.28) are equivalent to (2.1)-(2.2).

2.2 Existence and uniqueness.

In what follows, X denotes the product space X = Hs×Hs×Hs+1×Hs with
s > d/2 and U is a generic element of X such as U = (K,L, P, Pt). The norm
in X is henceforth defined by

|U |X = |K|Hs + |L|Hs + |P |Hs+1 + |Pt|Hs ,

and the forthcoming quantity C will refer to a positive constant which can
change from one line to another one in the remaining part of the analysis.
The aim of this section is to prove the following results.

Theorem 1 Let U0 ≡ (K0, L0, P0, P1) ∈ X, then there exists T > 0, depending
only on |U0|X , such that there exists a unique solution U = (K,L, P, Pt) to
(2.26)-(2.27)-(2.28) satisfying U ∈ C0([0, T ];X) and U(0) = U0. Moreover U
depends continuously on U0 and |U |L∞(0,T ;X) is bounded independently of ω.

Corollary 1 Let E0 ∈ Hs+2, E1 ∈ Hs, n0 ∈ Hs+1, n1 ∈ Hs and suppose

that
|E1|Hs+1

ω
is uniformly bounded, then there exists T > 0, depending only on

|E0|Hs+2 +|E1|Hs +
1

ω
|E1|Hs+1 +|n0|Hs+1 +|n1|Hs, such that there exists a unique

solution to (2.1)-(2.2) satisfying E ∈ C0([0, T ];Hs+2)
⋂ C1([0, T ];Hs) and n ∈

C0([0, T ];Hs+1)
⋂ C1([0, T ];Hs) with E(0) = E0, ∂E

∂t
(0) = E1, n(0) = n0 and

∂n
∂t

(0) = n1.
Moreover E and n are bounded in their respective spaces independently of ω.
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Proof of Theorem 1. Let us first introduce the following functionals

N1[K,L, P, Pt] ≡ eiω
2(1−
√

1−∆/ω2)tK0

+
∫ t

0
eiω

2(1−
√

1−∆/ω2)(t−s)M1(K,L, P, Pt)(s)ds, (2.31)

N2[K,L, P, Pt] ≡ eiω
2(1+
√

1−∆/ω2)tL0

−
∫ t

0
eiω

2(1+
√

1−∆/ω2)(t−s)M1(K,L, P, Pt)(s)ds, (2.32)

N3[K,L, P, Pt] ≡ cos(c(−∆)1/2t)P0 +
sin(c(−∆)1/2t)

c
(−∆)−1/2P1

+ c
∫ t

0
sin(c(−∆)1/2(t− s))(−∆)−1/2M2(K,L, P )(s)ds,

(2.33)

N4[K,L, P, Pt] ≡ −c(−∆)1/2 sin(c(−∆)1/2t)P0 + cos(c(−∆)1/2t)P1

+ c2
∫ t

0
cos(c(−∆)1/2(t− s))M2(K,L, P )(s)ds, (2.34)

so that system (2.26) to (2.28) remains equivalent toN [K,L, P, Pt] = (K,L, P, Pt)
with N = (N1, N2, N3, N4). Using the fact that M1 and M2 are continuous on
X, we can easily perform a standard fixed-point procedure as in [8], in or-
der to show that if T is small enough, equation N [K,L, P, Pt] = (K,L, P, Pt)
possesses a unique solution in L∞(0, T ;X), which is the result of theorem 1.

Proof of Corollary 1.
First we remark that if E0 ∈ Hs+2, E1 ∈ Hs, n0 ∈ Hs+1 and n1 ∈ Hs, then
(2.19), (2.20), (2.21) and (2.22) imply that (K(0), L(0), P0, P1) ∈ X. Hence,
the result of Theorem 1 applies.
Afterwards, it turns out from equations (2.24)-(2.25) that F andG ∈ L∞(0, T ;Hs+1).
Moreover, since P ∈ L∞(0, T ;Hs+1), it can be seen from the expression (2.6)
that n belongs in turn to L∞(0, T ;Hs+1) whereas ∂P/∂t ∈ L∞(0, T ;Hs).

On the other hand, we notice that by (2.29),
1

ω
M1(K,L, P, Pt) lies in L∞(0, T ;Hs+1)

since the operator
1

ω
(
√

1−∆/ω2)−1 is a smoothing operator of order 1 (inde-

pendent of ω). In addition, since
|E1|Hs+1

ω
is bounded, we deduce from (2.19)

and (2.20), that 1
ω
K and 1

ω
L are bounded in turn in L∞(0, T ;Hs+1). In view

of (2.24) and (2.25), we finally introduce

F̃ = (iω2(1−
√

1−∆/ω2)− i)F,

and
G̃ = (iω2(1 +

√
1−∆/ω2))G,

so that F̃ and G̃ are bounded in L∞(0, T ;Hs), and therefore,
F̃

ω
together with

G̃

ω
are bounded in L∞(0, T ;Hs+1) independently of ω.
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Lemma 1 F and G are bounded in L∞(0, T ;Hs+2) independently of ω.

Proof of Lemma 1.

Since the function
|ξ|

iω(1 +
√

1 + ξ2/ω2)
is bounded independently of ω, it is

clear that the previous estimate
∣∣∣G̃/ω∣∣∣

L∞(0,T ;Hs+1)
≤ C immediately leads to the

result for G. This property, however, does not apply to F , since the function

|ξ|ω/(ω2(1−
√

1 + ξ2/ω2)−1) is not bounded independently of ω. To find an ac-

curate bound for F , we have to estimate the integral
∫
ξ∈Rd |ξ|2s+4|F(F )|2(ξ)dξ

by dividing the whole range of integration into the two domains {|ξ| < ω} and
{|ξ| > ω} and set

I1 =
∫
|ξ|<ω
|ξ|2s+4

∣∣∣∣∣∣ 1

iω2(1−
√

1 + ξ2/ω2)− i

∣∣∣∣∣∣
2

|F(F̃ )|2dξ,

and

I2 =
∫
|ξ|>ω
|ξ|2s+4

∣∣∣∣∣∣ 1

iω2(1−
√

1 + ξ2/ω2)− i

∣∣∣∣∣∣
2

|F(F̃ )|2dξ.

In the range {|ξ| < ω}, we observe that the function |ξ| 7→ ξ2

|iω2(1−
√

1 + ξ2/ω2)− i|
is increasing, so that one has

I1 ≤ C
∫
|ξ|<ω
|ξ|2s|F(F̃ )|2dξ ≤ C|F̃ |L∞(0,T ;Hs), (2.35)

while in the complementary range {|ξ| > ω}, the function

|ξ| 7→ |ξ|
|iω2(1−

√
1 + ξ2/ω2)− i|

is decreasing, from which the estimate

I2 ≤ C
∫
|ξ|>ω
|ξ|2s+2

∣∣∣∣∣F
(
F̃

ω

)∣∣∣∣∣
2

dξ ≤ C

∣∣∣∣∣ F̃ω
∣∣∣∣∣
L∞(0,T ;Hs+1)

(2.36)

follows. Inequalities (2.35) and (2.36) finally achieve the proof of Lemma 1.

¿From the above results, one thus concludes that E remains bounded indepen-
dently of ω. Let us finally remark that the same property applies to n, as P
and Pt both satisfy the same criterium of boundedness and since n expresses
in terms of E and P through the relation (2.6), which achieves the proof of
Corollary 1.

Remark 1 The maximal existence time of the solution T ωs seems to depend
on the regularity of the initial data. In fact, if U0 ∈ Xs ∩ Xs′ (with obvious
notations), it can be checked that T ωs = T ωs′ , as is usually the case when the
solution is issued from a fixed-point method.
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Remark 2 For the well-posedness of the Cauchy problem, it was not strictly
speaking necessary to split E into F and G. However, it was worth introduc-
ing such a splitting because as it will be seen in the next section, the latter
decomposition will be of utmost important technical interest when detailing
the converging and the oscillatory parts of ∂E/∂t in the limit process ω2 →∞.
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3 The route towards the time envelope ap-

proximation.

The aim of this section is to investigate the limit ω2 →∞ in

1

ω2

∂2Eω

∂t2
− 2i

∂Eω

∂t
−∆Eω = −nωEω, (3.1)

1

c2

∂2nω

∂t2
−∆nω = ∆|Eω|2, (3.2)

or in the framework of the equivalent formulation

∂Kω

∂t
= iω2(1−

√
1−∆/ω2)Kω +M1(Kω, Lω, P ω, P ω

t ), (3.3)

∂Lω

∂t
= iω2(1 +

√
1−∆/ω2)Lω −M1(Kω, Lω, P ω, P ω

t ), (3.4)

1

c2

∂2P ω

∂t2
−∆P ω = M2(Kω, Lω, P ω). (3.5)

The main result can be expressed as the following where arrows henceforth refer
to the limit ω2 → ∞, and where, for the sake of convenience, the functions
K,P, Pt and E now denote their respective limit values.

Theorem 2 i) Let K0, L0, P1 ∈ Hs and P0 ∈ Hs+1 such that 1
ω
|E1|Hs+1 → 0

as ω →∞, then there exists T > 0 such that the following convergence results
hold in L∞(0, T ;Hs) :

Kω → K,

Lω − e2iω2tw(x, t)→ 0,

P ω
t → Pt,

and
P ω → P

in L∞(0, T ;Hs+1) with K =
∂E

∂t
, where E and P satisfy

−2i
∂E

∂t
−∆E = −2PE, (3.6)

1

c2

∂2P

∂t2
−∆P = −1

2
∆|E|2, (3.7)

and w is the solution to 
2i
∂w

∂t
−∆w = 2Pw,

w(x, 0) = L0.

(3.8)
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ii) Moreover, if T ω is the existence time associated to (3.1)-(3.2) and T∞

the existence time associated to (3.6)-(3.7) then

lim inf
ω→∞

T ω ≥ T∞,

and for all T1 < T∞ the above convergences hold on [0, T1].

iii) If lim inf
ω→∞

T ω > T∞, then

lim
ω→∞

(|Kω|Hs + |Lω|Hs + |P ω|Hs+1 + |P ω
t |Hs)(T∞) = +∞.

Sketch of Proof of Theorem 2.
Basically the proof follows the scheme developed in [3] and is based upon the
fixed-point equations introduced in section 2.2. We first prove a local version
of the convergence result i). Points ii) and iii) can be inferred from repeating
the same arguments as in [3] and using the fact that for ω large enough, Kω,
Lω, P ω and P ω

t are controlled by the solution of the limit system (3.6)-(3.7).
Results similar to ii) have been proved by P. Constantin [10] in the context of
the Euler and Navier-Stokes equations and adapted to the Zakharov equations
in [9]. Furthermore, the theorem remains valid if (K0, L0, P0, P1) depend on ω
and converge in Hs ×Hs ×Hs+1 ×Hs as ω tends to ∞.

Proof of i)
Let K and P be respectively solution to

K = e−
i
2

∆tK0 +
∫ t

0
e−

i
2

∆(t−s)
{

1

2i
(2PtE + 2PK)(s)

}
ds, (3.9)

and

P = cos(c(−∆)1/2t)P0 +
1

c
sin(c(−∆)1/2t)(−∆)−1/2P1

+c
∫ t

0
sin(c(−∆)1/2(t− s))(−∆)−1/2(−2Im(KĒ − |∇E|2 + 2PE)(s)ds,

(3.10)
with K = ∂E

∂t
. The system formed by equations (3.9) and (3.10) may be seen

to remain equivalent to the unperturbed Zakharov equations (3.6)-(3.7). For
what concerns the perturbed counterpart of the latter, we here recall that Kω,
Lω, P ω and P ω

t verify the following set of integral equations :

Kω = eiω
2(1−
√

1−∆/ω2)tK0 +
∫ t

0
eiω

2(1−
√

1−∆/ω2)(t−s)M1(Kω, Lω, P ω, P ω
t )(s)ds,

(3.11)

Lω = eiω
2(1+
√

1−∆/ω2)tL0 −
∫ t

0
eiω

2(1+
√

1−∆/ω2)(t−s)M1(Kω, Lω, P ω, P ω
t )(s)ds,

(3.12)
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P = cos(c(−∆)1/2t)P0 +
1

c
sin(c(−∆)1/2t)(−∆)−1/2P1

+c
∫ t

0
sin(c(−∆)1/2(t− s))(−∆)−1/2M2(Kω, Lω, P ω)(s)ds,

(3.13)

Pt = −c(−∆)1/2 sin(c(−∆)1/2t)P0 + cos(c(−∆)1/2t)P1

+c2
∫ t

0
cos(c(−∆)1/2(t− s))M2(Kω, Lω, P ω)(s)ds.

(3.14)

We moreover introduce the following set of unknowns :

Kω
1 = Kω −K,

Lω1 = Lω − e2iω2tw(x, t),

P ω
1 = P ω − P,

P ω
1t = P ω

t − Pt,
where g is defined by (3.8). Subtracting then (3.9) from (3.11), (3.10) from
(3.13), and ∂

∂t
(3.10) from (3.14) thus provides the integral equations for Kω

1 , P ω
1

and P ω
1t. Besides, subtracting e2iω2tw(x, t) from each side of (3.12), we obtain

an integral equation for Lω1 . With this set of equations, it is easy, although
technical, to show that if T is small enough, one finds

|Kω
1 |L∞(0,T ;Hs) + |Lω1 |L∞(0,T ;Hs) + |P ω

1 |L∞(0,T ;Hs+1) + |P ω
1t|L∞(0,T ;Hs) ≤ h(ω),

(3.15)
where h(ω) tends to zero as ω tends to +∞. One of the key methods used to
obtain (3.15) is as in [3] the convergence result∫ t

0
e2iω2σjω(x, σ)dσ → 0 in L∞(0, T ;Hs)

for any sequence jω → j in L∞(0, T ;Hs) as ω →∞,
(3.16)

which follows from a classical non-stationary phase lemma, and ends the sketch
of the proof of Theorem 2.

Let us now briefly explain how to find formally the corrector for Lω :

since the contribution (eiω
2(1+
√

1−∆/ω2)tL0 − e2iω2tS(−t)L0) tends to zero in
L∞(0, T ;Hs) as ω2 →∞, one easily deduces that Lω is an oscillatory function
which has therefore to be sought under the form given by Theorem 2. Now,
thanks to (3.12) and (2.29), w has to formally satisfy in the limit ω2 →∞

e2iω2tw ≈ e2iω2tS(−t)L0

−
∫ t

0
e2iω2(t−s)S(−t+ s)

2

i
Pe2iω2sw(x, s)ds

(3.17)
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where the property (3.16) has intensively been used and where S(t) is the
unitary group associated to −2i∂t −∆. This leads to

w(x, t) = S(−t)L0 −
∫ t

0
S(−t+ s)

2

i
Pw(x, s)ds, (3.18)

which is equivalent to (3.8).

Remark 3 Note that Lω tends to zero if and only if L0 → 0, i.e. as concluded
from (2.20), when the limit values of the initial data satisfy the compatibility
condition imposed by the unperturbed Zakharov equation (3.6)

−i∆E0 + 2E1 + 2iP0E0 = 0.

¿From this property, it can easily be guessed that as long as the compatibility
condition is not fulfilled, ∂Eω/∂t will not converge towards its time-enveloped
limit ∂E/∂t. To this point, we emphasize that an analogous property char-
acterizes the behavior of the perturbed solution to the nonlinear Schrödinger
equation corresponding to the formal limit c2 → +∞ in (2.2), as studied in
[3].

Concerning the original system (3.1)-(3.2) the same method as for Corollary
1 enables us to deduce from Theorem 2 the

Corollary 2 Let E0 ∈ Hs+2, E1 ∈ Hs, n0 ∈ Hs+1, n1 ∈ Hs and suppose

that
|E1|Hs+1

ω
→ 0 as ω → ∞, then there exists T > 0 such that the following

convergence results hold

Eω → E in L∞(0, T ;Hs+2),

Eω
t − Et − e2iω2tw(x, t)→ 0 in L∞(0, T ;Hs),

nω → n in L∞(0, T ;Hs+1),

nωt → nt in L∞(0, T ;Hs),

where E and n are solutions to

−2i
∂E

∂t
−∆E = −nE, (3.19)

1

c2

∂2n

∂t2
−∆n = ∆|E|2. (3.20)
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4 About blow-up and global existence.

It is well-known that in spite of several attempts at indicating the possible
development of a singularity, no definite conclusion on the existence of a finite
time blow-up for the unperturbed Zakharov equations (3.19)-(3.20) has been
sorted out so far. By means of a bifurcation method, Glangetas and Merle
[11] however proved in the two-dimensional case the existence of initial data
E0, n0, n1 such that the corresponding solution to (3.19)-(3.20) blows up in
a finite time with a self-similar shape. In addition, Merle [12] demonstrated
the occurrence of an infinite time blow up in the three-dimensional case, by
using an adapted Virial identity. Let us recall in this respect that, for every
space dimension number, |E|L2(t) is constant, and furthermore, in the one
dimensional case, the solution to (3.19)-(3.20) is global and uniformly bounded
in time [8]. Therefore, in contrast to the usual Zakharov equations, it is worth
mentioning that for what concerns the perturbed equation set (3.1)-(3.2), we
can really prove that for some initial data, the L2 norm of solution Eω blows
up at least in an infinite time, whatever the space dimension number may be.
To prove this result, we preliminarily emphasize that (3.1)-(3.2) consists in an
Hamiltonian system admitting the following two invariants, namely the charge

Qω ≡
∫
Rd |Eω|2 − 1

ω2
Im

∫
Rd

∂Eω

∂t
Ēω, (4.1)

and the energy (Hamiltonian) integral

Eω ≡
∫
Rd

 1

ω2

∣∣∣∣∣∂Eω

∂t

∣∣∣∣∣
2

+ |∇Eω|2 + nω|Eω|2 +
c2

2
(∇ψω)2 +

1

2
(nω)2

 . (4.2)

In (4.2), ψω denotes the real potential function associated with the ion-sound
flow and restitutes the second Zakharov equation by combining the continuity
equations

c2∆ψω = nωt

and
ψωt = nω + |Eω|2.

It can be noted that those relations simply follow from deriving the Hamilton-
Lagrange equation for nω supplemented by the continuity relation on ψω. The
blow-up result can then be stated as follows :

Theorem 3 Let us ensure that the solutions defined under the starting hypoth-
esis of Corollary 2 exist for every time. Suppose moreover that n1 ∈ Ḣ−1(Rd)
and introduce the quantity I(t) = 1

2

∫
Rd |Eω|2. If the conserved quantities

(4.1)-(4.2) satisfy one of the two following conditions :

(C1) Eω + 2ω2Qω < 0

(C2) Eω + 2ω2Qω = 0, İ(0) > 0,

then
lim
t→∞
|Eω|L2 = +∞.
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Proof of Theorem 3.
We start with the following transform

Eω = χω exp (iω2t) (4.3)

that we insert into equations (3.1)-(3.2) to obtain the new system

1

ω2

∂2χω

∂t2
+ ω2χω −∆χω = −nωχω, (4.4)

1

c2

∂2nω

∂t2
−∆nω = ∆|χω|2. (4.5)

These equations admit in turn the following energy integral

E ′ω ≡
∫
R

 1

ω2

∣∣∣∣∣∂χω∂t
∣∣∣∣∣
2

+ ω2|χω|2 + |∇χω|2 + nω|χω|2 +
c2

2
(∇ψω)2 +

1

2
(nω)2

 ,
(4.6)

where the function ψω expresses as before by simply replacing the densities
|Eω|2 → |χω|2. Following the concavity method introduced by Levine [14], we
now multiply (4.4) by χ̄ω and integrate in space the real part of the resulting
equation to get

1

2ω2

∂2

∂t2

∫
Rd |χω|2 =

2

ω2

∫
Rd

∣∣∣∣∣∂χω∂t
∣∣∣∣∣
2

−E ′ω +
1

2

∫
Rd(nω)2 +

c2

2

∫
Rd(∇ψω)2. (4.7)

Next, introducing the definition I(t) = 1
2

∫
Rd |Eω|2 = 1

2

∫
Rd |χω|2, equation

(4.7) is easily checked to reduce to

IÏ ≥ (İ)2 − ω2E ′ωI (4.8)

after using the Cauchy-Schwarz inequality
∫
Rd |χωt |2

∫
Rd |χω|2 ≥ (İ)2. Keeping

in mind that İ(t) =
∫
Rd Re(χ̄ωχωt ) =

∫
Rd Re(ĒωEω

t ), we now consider some

negative-energy states characterized by the inequality E ′ω ≤ 0 and investigate
the two following cases :

a) suppose İ(0) > 0 and E ′ω ≤ 0 : then estimate (4.8) leads to the result
since I(t) diverges faster than eCt (C > 0) with

I(t) ≥ I(0) exp

(
İ(0)

I(0)
t

)
. (4.9)

b) suppose İ(0) ≤ 0 and E ′ω < 0 : then we introduce the positive ansatz

H(t) ≡ I(t)− (E ′ωω2/2)(t+ τ)2

(τ to be discussed briefly on) to get the following inequality using (4.8)

HḦ − (Ḣ)2 ≥ −(ω2E ′ω/2I)[(t+ τ)İ − 2I]2 ≥ 0.
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Integrating the latter twice in time, we obtain

H(t) ≥ H(0) exp

(
Ḣ(0)

H(0)
t

)

that assures I(t) to diverge faster than eCt as t→ +∞ whenever the parameter
τ is chosen to ensure Ḣ(0) > 0, i.e. for τ > İ(0)/(ω2E ′ω). To achieve this proof,
we notice that the above steps a)-b) cover both situations (C1)-(C2) stated in
the theorem whose underlying hypothesis Eω + 2ω2Qω ≤ 0 clearly arises when
one explicitly expands the basic constraint E ′ω ≤ 0 in terms of the primary
solution Eω related to χω by (4.3).

Remark 4 This result applies for every space dimension and thus predicts
that solutions satisfying initially the assumptions (C1)−(C2) become singular
as t→ +∞. The blow-up described here does not certainly resembles the one
governed by the unperturbed Zakharov equations (3.19)-(3.20) which satisfy
|E|L2(t) = |E0|L2 , while in our case |Eω(t)|L2 → ∞ as t → ∞. Unlike the
finite-time blow-up revealed in [3], the blow-up time is here infinite, because,
by comparison with the former analysis, the bound from below found out
in the inequality (4.9) does not naturally diverge at a finite instant. Even
though Theorem 3 does not give an explicit finite time blow-up result, one
can nevertheless expect the explosion of the L2 norm of the solutions in a
way similar to the one discovered in [3] in the framework of the nonlinear
Schrödinger equation, i.e. with a time-increasing L2 norm. Furthermore, one
can refind another interesting property already mentioned in [3] : this concerns
the important feature according to which solutions to equations (3.1)-(3.2) may
blow up provided that ω2 should not be too large. In the opposite case, i.e. in
the limit ω2 → +∞, one easily sees that the amount Eω + 2ω2Qω should then
become close to 2ω2I(t), which would make the assumptions (C1)-(C2) quite
invalid. Reversely, from the latter hypothesis, the previous theorem can be
concluded to only apply to some values of ω lying in the range

ω ≤
√
−Eω
2Qω

.

In connection with this result, we restore the global existence of smooth
solutions to the usual Zakharov equations expressed in space dimension 1 by
means of the following

Proposition 1 Let d = 1, E0, E1, n0 and n1 as in Corollary 2 (s > 1
2
). We

moreover suppose that n1 ∈ Ḣ−1(R). If ω is large enough, the solution to
(3.1)-(3.2) is global in time.

Proof of Proposition 1. Unlike the case ω = +∞, the L2 norm of Eω is not
conserved. In view of the above blow-up result, the first point is here to prove
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that for ω sufficiently large, |Eω|L2 is bounded independently of the time t.
For this purpose, we introduce the quantity H defined by

H ≡ Qω +
1

2ω2
Eω,

which is constant in time.
Estimating

1

ω2

∣∣∣∣∣∂Eω

∂t
Eω

∣∣∣∣∣ ≤ 1

2ω4

∣∣∣∣∣∂Eω

∂t

∣∣∣∣∣
2

+
1

2
|Eω|2 and nω|Eω|2 ≤ 1

2
(nω)2 +

1

2
|Eω|4,

we get

H ≥
∫ 1

2
|Eω|2 +

1

2ω2

(
|∇Eω|2 − 1

2
|Eω|4

)
.

We make use of the Gagliardo-Nirenberg inequality to sort out

H ≥
∫ 1

2
|Eω|2 − c

ω2

(∫
|Eω|2

)3

.

¿From this last inequality, it is easy to deduce that if ω is large enough, then,
thanks to the continuity of the map t 7→ |Eω|L2 , the L2 norm of Eω is bounded.
Employing this inequality, the same type of energy estimates as the ones per-
formed in Sulem and Sulem [7] yields the global existence result. Indeed, let
us now rewrite the system as

1

ω2
Eω
tt − 2iEω

t − Eω
xx = −nωEω, (4.10)

nωt = −cV ω
x , (4.11)

V ω
t = −c(nω + |Eω|2)x, (4.12)

where V ω = −cψωx . We know that |Eω|L2 is bounded and by virtue of (4.2),
as we deal with the subcritical 1-D case, 1

ω
Eω
t , Eω

x , V ω and nω are bounded in
L2, uniformly with respect to t and ω.

We first compute ∂t(4.11)× nωt + ∂t(4.12)× V ω
t and we get

d

dt
(
∫
|nωt |2 + |V ω

t |2) + 2
∫
|Eω|2tnωtt = 0, (4.13)

where, for the sake of clarity, the integral symbol with no other specifica-
tion henceforth refers to an integration over the whole 1-D space. Computing
Im(∂t(4.10)× Ēω

t ) leads to

d

dt

∫
|Eω

t |2 −
d

dt
Im

1

ω2

∫
Eω
ttĒ

ω
t = Im

∫
nωt E

ωĒω
t . (4.14)

Finally, computing Re(∂t(4.10)× Ēω
tt) gives

d

dt
(

1

ω2

∫
|Eω

tt|2 +
∫
|Eω

xt|2) = −
∫
nωt (|Eω|2tt − 2|Eω

t |2)−
∫
nω(|Eω

t |2t ). (4.15)
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Integrating the linear combination (4.13)+(4.14)+2×(4.15) over time yields:

|nωt |2L2 + |V ω
t |2L2 + |Eω

t |2L2 − Im(
1

ω2

∫
Eω
ttĒ

ω
t )

+
2

ω2
|Eω

tt|2L2 + 2|Eω
xt|2L2 + 2

∫
(nωt (|Eω|2)t + nω|Eω

t |2)

= Kω(0) +
∫ t

0
{Im

∫
nωt E

ωĒω
t + 6

∫
nωt |Eω

t |2},

(4.16)

where the constant Kω(0) depends on the initial data and behaves at most like
ω2, since (4.10) implies 1

ω2 |Eω
tt|L2 ≤ C. Here and in the following, C as well as

K and K ′ denote various constants whose unspecified values can change from
one line to another line. Following the procedure developped in [7], we then
obtain:

|Im
∫
nωt E

ωĒω
t + 6

∫
nωt |Eω

t |2| ≤ 6|nωt |H−1||Eω
t |2|H1 + |nωt |L2|Eω

t |L2 |Eω|L∞ ,

≤ K(|Eω
t |2H1 + |nωt |L2),

(4.17)
since |nωt |H−1 is controlled by |V ω|L2 .

On the other hand, we estimate:

2|
∫

(nωt (|Eω|2)t + nω|Eω
t |2)| ≤ 2(|nωt |H−1 |ĒωEω

t |H1 + |nω|L2 |Eω
t |2L4)

≤ C +
1

2
|Eω

t |2H1 +K|Eω
t |2L2 .

(4.18)
Inequalities (4.16), (4.17) and (4.18) imply

|nωt |2L2 + |V ω
t |2L2 +

1

2
|Eω

t |2H1 − Im(
1

ω2

∫
Eω
ttĒ

ω
t ) +

2

ω2
|Eω

tt|2L2

≤ Kω(0) + C +K|Eω
t |2L2 +

∫ t

0
C(|Eω

t |2H1 + |nωt |2L2).

(4.19)

In view of (4.14) we get

|Eω
t |2L2 ≤ K + Im(

1

ω2

∫
Eω
ttĒ

ω
t ) +

∫ t

0
C(|Eω

t |2L2 + |nωt |2L2),

and using this last inequality in (4.19), we find:

|nωt |2L2 + |V ω
t |2L2 +

1

2
|Eω

t |2H1 +
2

ω2
|Eω

tt|2L2

≤ Kω(0) + C +
K ′

ω2
Im(

∫
Eω
ttĒ

ω
t ) + C

∫ t

0
(|Eω

t |2H1 + |nωt |2L2)
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with ∣∣∣∣∣K ′ω2
Im(

∫
Eω
ttĒ

ω
t )

∣∣∣∣∣ ≤ K

∣∣∣∣Eω
t

ω

∣∣∣∣
L2

∣∣∣∣Eω
tt

ω

∣∣∣∣
L2
,

≤ K + 1
ω2 |Eω

tt|2L2 ,

which therefore yields

|nωt |2L2 + |V ω
t |2L2 +

1

2
|Eω

t |2H1 +
1

ω2
|Eω

tt|2L2 ≤ Kω(0) + C
∫ t

0
(|Eω

t |2H1 + |nωt |2L2).

The Gronwall’s lemma finally implies that |nωt |L2 , |V ω
t |L2 , |Eω

t |H1 and 1
ω
|Eω

tt|L2

are bounded, so that |V ω|H1 , |nω|H1 and |Eω|H2 can be bounded in turn by
means of the basic equations (4.10), (4.11) and (4.12). Note that all these
bounds depend on ω (see the remark after the proof), but they are sufficient
to prove the global existence of the solution for a fixed (even large) ω. In order
to estimate |V ω|H2 , |nω|H2 and |Eω|H3 , one has to perform again a calculation
similar to the former one: we compute ∂xx(4.11)×nωxx+∂xx(4.12)×V ω

xx, giving

1

2

d

dt
(|nωxx|2L2 + |V ω

xx|2L2) = −c
∫

(|Eω|2)xxxV
ω
xx, (4.20)

and we obtain

1

2

d

dt
(|nωxx|2L2 + |V ω

xx|2L2) ≤ K (|Eω
xxx|L2 + 1) |V ω

xx|L2 . (4.21)

On the other hand, ∂x(4.10)× Ēω
xxxt leads to:

d

dt
(

1

ω2
|Eω

xxt|2L2 + |Eω
xxx|2L2) = −2Re

∫
(nωEω)xxĒ

ω
xxt,

= −2Re
∫

(nωxxE
ω + 2nωxE

ω
x + nωEω

xx)Ē
ω
xxt.

(4.22)
One obtains:

d

dt
(

1

ω2
|Eω

xxt|2L2 + |Eω
xxx|2L2) ≤ K(|nωxx|L2 + 1)|Eω

xxt|L2. (4.23)

Summing up (4.21) and (4.23), and applying Gronwall’s lemma yields the
boundedness of |nωxx|L2 , |V ω

xx|L2 , 1
ω
|Eω

xxt|L2 and |Eω
xxx|L2 , and therefore ends the

proof of the proposition 1.

Remark 5 This kind of energy estimates may be used to construct an alter-
native proof of the existence theorem 1. Indeed, in order to obtain local-in-time
estimates independent of ω, one has first to multiply ∂t(4.10) by 1

ω2 Ē
ω
tt, instead

of Ēω
tt, then to iterate again the above procedure.
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5 Conclusion.

Summarizing our results, we have solved the Cauchy problem associated with
the perturbed Zakharov equations (1.19) for a fixed value of c2 and proved the
convergence of the perturbed solution towards its time-enveloped limit. As
displayed from the corrector expressions given in Theorem 2 and Corollary 2,
it has moreover been proved that the time derivative of Eω generally becomes
oscillating when passing to the time envelope limit, unless the initial data
satisfy some compatibility conditions imposed by the time-enveloped version
of the Zakharov equations. Finally, we have shown the existence of unbounded
solutions as t → ∞ for not too large values of ω2. Even though the latter
proof only concerns some infinite-time blow-up, it can be emphasized that this
singular dynamics could yield a strong indication in favour of the fact that,
from a physical viewpoint, Langmuir wave-packets may catastrophically evolve
towards collapse in a finite time (this assertion remaining of course the salient
open question own to the mathematical treatment of the strong Langmuir
turbulence). Following the hypothesis (C1)-(C2) of the last theorem, such
singular solutions should physically develop for a strong coupling between the
cavities and the Langmuir envelope. When looking at Langmuir envelopes
whose frequency remains rather close to the plasma electron one, this situation
could indeed concern negative-energy states satisfying Eω < 0 as the charge
Qω is assured to be positive in the limit ω2 >> 1. In this situation, one
can expect that the ”mass” density |Eω|2 will rapidly increase, thus enhance
the ponderomotive force, and finally drive the ion cavities towards a strongly
supersonic evolution where Landau damping is awaited for saturating this
sudden growth of plasma waves. Before this ultimate stage, the proper mass
of the trapped Langmuir waves - corresponding here to their L2 norm - does
not remain invariant and can even strongly increase in time, unlike the time-
enveloped version of the Zakharov equations for which the same norm is a
constant of motion. As already encountered in the scope of the nonlinear
Schrödinger equation [3], the ”residual” variations induced by the electron
oscillations acting on the Langmuir envelope thus participate to the blow-up
dynamics, and compared with the standard Zakharov prescription, they could
be thought to accelerate the collapse process developing within the inertial
range of the SLT. To clear up this point, we should nevertheless understand
how the shape and the time scales of a blow-up described by the perturbed
Zakharov equations can fit with the ones associated with the singular solutions
to the usual Zakharov equations in the limit of large ω, since the characteristic
time scale for collapse may differ passing from the pertubed model to the usual
one. At the present state, this question, however, remains under investigation.
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6 Appendix.

As evoked in the introductory part of this paper, a difficult mathematical
problem arises when a subsonic limit is forced on both equations of motion,
i.e. when we simultaneously pass to the limits c2 →∞ and ω2 →∞ in system
(2.1)-(2.2). The main difficulties that hinder to answer this question can be
summarized as follows : let us first recall that Schochet and Weinstein [9]
addressed the case when c2 →∞ in the unperturbed Zakharov equations iEt + ∆E = nE,

1

c2
ntt −∆n = ∆|E|2,

about which they proved the convergence to the nonlinear Schrödinger equa-
tion by transforming this system into the dispersive perturbation of a symmet-
ric hyperbolic one. Nevertheless, in the present situation, this transformation
does not give a symmetric system when nE is replaced by −nE in the first
equation. Concerning (3.1)-(3.2), the decomposition of E into F and G in-
deed shows that both signs in front of the nonlinearity appear (see (2.14) and
(2.15)), so that Schochet-Weinstein’s method does not apply any longer. In
addition, our results cannot apply to the limits ω2 → ∞, c2 → ∞ because
our proofs are not uniform with respect to c. Therefore it seems impossible to
couple directly our asymptotics with Schochet-Weinstein’s one.

On the other hand, the ”adiabatic” approximation on (2.1)-(2.2), which
consists in taking the limit of less physical significance c2 → ∞ while ω2 is
kept fixed, can be treated in the following way (arrows now concern the latter
limit) :

Theorem 4 Let us consider the system

1

ω2

∂2Ec

∂t2
− 2i

∂Ec

∂t
−∆Ec = −ncEc, (A.1)

1

c2

∂2nc

∂t2
−∆nc = ∆|Ec|2, (A.2)

with initial data Ec(0) = E0 ∈ Hs+1, Ec
t (0) = E1 ∈ Hs, nc(0) = n0 ∈ Hs and

nct(0) = n1 ∈ Hs−1 for s > d
2
. Then there exists T > 0 (independent of c) such

that there exists a unique solution (Ec, nc) to (A.1)-(A.2) satifying

(Ec, Ec
t , n

c, nct/c) ∈ C([0, T ], Hs+1 ×Hs ×Hs ×Hs+1).

Let T c be the existence time of (Ec, Ec
t , n

c, nct/c) and T∞ be the existence time
of the solution to

1

ω2

∂2E

∂t2
− 2i

∂E

∂t
−∆E = |E|2E, (A.3)

E(0) = E0,
∂E

∂t
(0) = E1. (A.4)
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Then
lim inf
c→∞

T c ≥ T∞,

and for all T1 < T∞ the following convergences hold as c2 →∞ :

Ec → E in L∞(0, T1, H
s+1),

Ec
t → Et in L∞(0, T1, H

s),

nc + |Ec|2 − cos(c(−∆)1/2t)(n0 + |E0|2)

−1

c
sin(c(−∆)1/2t)(−∆)−1/2(n1 + 2Re(Ē0E1))→ 0 in L∞(0, T1, H

s),

1

c
nct − (−∆)1/2 sin(c(−∆)1/2t)n0 − cos(c(−∆)1/2t)

n1

c
→ 0 in L∞(0, T1, H

s−1).

Sketch of Proof of Theorem 4. We use again the transformation (2.6) and

we introduce P c =
P

c2
. Equations (A.1) and (A.2) become

1

ω2

∂2Ec

∂t2
− 2i

∂Ec

∂t
−∆Ec = − 2ω2c2

c2 − ω2
P cEc +

c2

c2 − ω2
|Ec|2Ec, (A.5)

∂2P c

∂t2
−c2∆P c =

1

ω2

∣∣∣∣∣∂Ec

∂t

∣∣∣∣∣
2

−2Im(
∂Ec

∂t
Ēc)−|∇Ec|2− 2ω2c2

c2 − ω2
P c|Ec|2+

c2

c2 − ω2
|Ec|4,

(A.6)
and therefore lead to the following integral system

Ec = Sωo (t)E0+Sω1 (t)E1+ω2
∫ t

0
Sω1 (t−s)[− 2ω2c2

c2 − ω2
P cEc+

c2

c2 − ω2
|Ec|2Ec](s)ds,

(A.7)

P c = cos(c(−∆)1/2t)P c
0 +

1

c
sin(c(−∆)1/2t)(−∆)−1/2P c

1

+
∫ t

0

1

c
sin(c(−∆)1/2(t− s))(−∆)−1/2

 1

ω2

∣∣∣∣∣∂Ec

∂t

∣∣∣∣∣
2

− 2Im

(
∂Ec

∂t
Ēc

)
− |∇Ec|2 − 2ω2c2

c2 − ω2
P c|Ec|2 +

c2

c2 − ω2
|Ec|4

 (s)ds.

(A.8)
Using the same techniques as those employed in sections 2 and 3, we then
obtain the results of Theorem 4.
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