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1 Introduction.

Fermi-Pasta-Ulam recurrence phenomenon has first been noticed in the con-
text of the numerical study of a chain of balls with nonlinear interactions.
This phenomenon has also been observed experimentally by Yuen, Lake and
Ferguson [23] in the frame of deep water waves governed by the cubic non-
linear Schrödinger equation. This phenomenon may be described as follows.
The energy of an initial data with a finite number of modes spreads to higher
modes and after a certain lapse of time we observe a return to the initial
modes. Such a behavior is ”almost” periodic in time.
The propagation of energy to higher modes is connected with an other phe-
nomenon which also occurs when dealing with certain equations with periodic
boundary conditions : Benjamin-Feir instability. This new phenomenon is the
instability of spatially uniform solutions for perturbations with a certain fre-
quency.
The link between both effects is made clear in [21] by Yuen and Ferguson.
Their numerical results tend to prove that a simple recurrence seems to ap-
pear only in the case when the higher modes of the perturbation are stable ac-
cording to a Benjamin-Feir analysis. These observations are carried out in the
1-dimensional case and generalized by the same authors to the 2-dimensional
case in [22]. However, this time, they do not produce the link with Benjamin-
Feir instability. This link is given in the article [16] by Martin and Yuen.
Thanks to a multiple scale method for the time variable, Janssen (cf. [11])
proves the recurrence for certain perturbations of the uniform solution and
shows that in such a case the recurrence time is connected with the amplitude
in a straightforward way. Using an Ansatz on the form of the solutions (3
Fourier modes) Infeld in [10] shows the recurrence in time of these modes. In
[20] Weideman and Herbst use such an approach for this equation but they
consider it as schemes and not as Ansatz. Recurrence for the Davey-Stewartson
equations has also been studied by K. Rachid using different methods.
In [3], Bourgain shows that the solution to the Korteweg-de Vries equation is
almost periodic in time for initial data in L2 using the theory of Hill’s opera-
tor with a periodic L2 potential. The same sort of result has been previously
obtained by McKean and Trubowitz [15] for initial data in C∞.
Lax in [12] constructs some particular solutions to the Korteweg-de Vries equa-
tion verifying a minimization problem with constraints. He proves that these
solutions are quasi-periodic, i.e. they return to their initial shape up to a trans-
lation. Some numerical results due to Hyman correspond to this theoretical
result (cf. [12] or [9]).
Our point of view is completely different. The matter is to find invariant
measures on Hilbert spaces which are the phase spaces of Hamiltonian sys-
tems with at least two conservation laws. Next we use this construction to
prove a Poisson’s recurrence like theorem. Such a construction has first been
carried out by Friedlander [6] for the wave equation with a cubic nonlinear-
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ity but some details in the proof seem obscure. It is also Zhidkov’s point of
view in different articles. In [25], he carries out this study for the equation
iut + uxx + f(x, |u|2)u = 0 where the nonlinearity is very weak. This study
is generalized to the equation iut + uxx + |u|2u = 0 in [27], except that the
existence result of solutions to this equation in L2(0, A) can not be deduced
from Tsutsumi’s results in [19], who makes use of Lp()−Lq() estimates which
are not valid in the periodic case. On the other hand, we may now base the
proof on a result of Bourgain [2]. In [28], Zhidkov studies in the same way the
wave equation utt− uxx + f(x, u) = 0, once more for weak nonlinearities. The
article [29] is the insertion of all former results in a wider frame of certain
Hamiltonian systems.
The present paper is the enlightenment of this last article as well as the ap-
plication to new classes of examples, in particular to numerical schemes. In
connection with that we give a brief survey of hamiltonian schemes for ap-
proximating nonlinear partial differential equations of hamiltonian type. The
outline is the following. In part 2, we construct invariant measures for Hamil-
tonian systems and we prove the Poisson’s recurrence. The process we use is
exactly the same as Zhidkov’s but it’s more explicit. Part 3 is devoted to the
study of a few fields of application of this general theory. Finally part 4 deals
particulary with recurrence in the case of schemes which is the phenomenon
one actually observes during numerical simulations.
We may regret the fact that this kind of study does not fulfill the original
aim. Indeed we do not really prove recurrence but the fact that the solutions
come infinitely often near the initial data (with time intervals which may be
not constant). Moreover the notion of proximity to the initial data is not the
one we may commonly observe on numerical computations ; we test whether
two neighborhoods (one for the initial data and one for the solution at time
t) which may have a very complex structure have a nonempty intersection. In
return, the results which are proved here may be applied to a far wider class
of initial data than perturbations of spatially uniform solutions.
While finishing the drafting of this article we have been informed of some very
similar work done by Bourgain (cf. [4]) for the nonlinear Schrödinger equation
inspired by the work done by Lebowitz, Rose and Speer [14].
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2 Construction of invariant measures.

The construction of invariant measures is made up of many steps. The first one
consists in associating to the initial equation and the initial functional spaces
projected equations on nested finite dimensional functional spaces. In these
spaces we construct invariant Gaussian measures for the projected problem.
The last step consists in passing to the limit as the dimension of the spaces
tend to +∞. This makes up the construction of so-called cylindrical measures
on the whole of the phase space X.

2.1 Setting the problem.

We study the following Cauchy problem : u̇(t) = JH ′(u(t)),

u(t0) = φ ∈ X,
(1)

where X is a Hilbert space such that D (= C∞0 ) is dense in X∗.
Let Y be a Hilbert space which is dense in X, and let us assume that

the functional H is C1 from Y into ,
the functional J is linear from X∗ into X,
for all g, h ∈ D, g(Jh) = −h(Jg).

These properties imply that H(u(t)) does not depend on t. This yields a
conservation law in X for the system (1). Besides, we assume that X may be
endowed with a norm which is as well invariant. This is crucial in order to
prove theorem 9.
We split H in two parts

g(u) = H(u)− 1

2
(Su, u)X .

The part g(u) has to contain all the nonlinearity of the initial equation and
has to be defined for functions belonging to X.
The operator S is assumed to be positive and self-adjoint on X and g defined
on X, real valued and continuous.
We assume (H2.1) that we know how to solve the problem (1) in X and that
the solution is continuous with respect to the initial data, that is : for every
t0 ∈ , ε > 0, T > 0, there exists δ > 0 such that

‖u1(t0)− u2(t0)‖X < δ ⇒ ‖u1(t)− u2(t)‖X < ε
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for all t ∈ I = [t0 − T, t0 + T ].
We associate to this problem a sequence of finite dimensional problems. With
that aim we construct a sequence of Hilbert subspaces of Y :

X1 ⊂ X2 ⊂ . . . ⊂ Xn ⊂ . . . ⊂ Y ⊂ X

where dn <∞ is the dimension of the space Xn and we assume that
⋃
n

Xn is

dense in Y .
We denote by Pn the orthogonal projector from X onto Xn, and we obtain a
new problem set on this space : u̇

n(t) = Pn[JH ′(Pnu
n(t))],

un(t0) = Pnφ ∈ Xn.
(2)

As in the case of (1), this system admits an invariant which is H(Pnu
n(t)).

We assume (H2.2) that un(t) exists globally in time for every initial data
φ ∈ X and that for all t0 ∈ , ε > 0, T > 0, there exists δ > 0 such that for all
n

‖un1 (t0)− un2 (t0)‖X < δ ⇒ ‖un1 (t)− un2 (t)‖X < ε

for all t ∈ I. The fact that δ does not depend on n is fundamental in the proof
of theorem 8.
We impose compatibility conditions over the different problems :
(H2.3) The solution un to (2) converges to the solution u to (1) in C(I;X)
(uniformly with respect to n (cf. theorem 8)).

Remark 1 The two former uniformity properties H2.2 and H2.3 imply the
aforementionned property H2.1 of continuity with respect to the initial data
for the problem (1).

(H2.4) The operator S−1 is nuclear (which means for example that the sum
of its eigenvalues is convergent) and maps Xn into Xn.
(H2.5) The operator J is defined on X∗n and PnJ = JP ∗n .

2.2 Invariant measures in finite dimension.

To begin with, we will construct an invariant measure for each finite dimen-
sional system. The construction is based on the classical Liouville theorem
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(see for example Arnold [1]) :

Theorem 2 (Liouville) Let us consider the equation ż = f(z) and

ρ(C) =
∫
C

λ(z)dz where λ is a positive function and C is a Borel set of m.

Then ρ is invariant if and only if
m∑
i=1

∂

∂zi
(λfi) = 0. 2

We will now carry out the construction of the invariant measure µn on the
phase space of the finite dimensional system on Xn.
Let (e1, . . . , edn) be the eigenvectors of S which generate Xn (cf. S−1 : Xn →
Xn) and let F be a Borel set of dn . Then we define the cylindrical set M by :

M = {x ∈ X/[(x, e1)X , . . . , (x, edn)X ] ∈ F}.

Let An be the algebra whose elements are these cylinders and let wn be the
function defined on An by

wn(M) = (2π)−dn/2
dn∏
j=1

λ
1/2
j

∫
F

e
− 1

2

dn∑
j=1

λjy
2
j

dy,

where λj is the eigenvalue of S corresponding to the eigenvector ej.
In that way we do have constructed a measure wn on An.

We set un(t) =
dn∑
j=1

aj(t)ej, a = (a1, . . . , adn) and h(a) = H

 dn∑
j=1

aj(t)ej

.

For every Borel set A of dn , we define the measure

µ′n(A) = (2π)−dn/2
dn∏
j=1

λ
1/2
j

∫
A

e−h(a)da,

and notice that

ȧ(t) = J∇ah(a).

We apply Liouville’s theorem with λ(a) = e−h(a), which yields the invariance
of µ′n on the Borel sets of dn . The inverse change of coordinates implies that
µn is invariant on An where

µn(M) = (2π)−dn/2
dn∏
j=1

λ
1/2
j

∫
M

e−H(u)du.
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This ends the construction of invariant measures in finite dimensional spaces.

2.3 Invariant measures in infinite dimension.

Let A =
⋃
n

An. We associate to this new algebra A the minimal Borel σ-

algebra M containing A.
For each M belonging toM, we set wn(M) = wn(M ∩Xn). This allows us to
extend the measures wn over the whole ofM. Such a construction is licit since
M ∩Xn belongs to M. The σ-additivity of the measure is conserved thanks
to the following lemma (cf. Dalecky and Fomin [5]) and the fact that wn is a
Gaussian measure with S−1 as correlation operator.

Lemma 3 The measure wn is σ-additive on the algebra M if and only if S−1

is a nuclear operator.

The proof of this lemma may be found in the appendix B.
We notice that for a fixed element M in A, and from a certain range n, the
sequence wn(M) is constant. We take this value as the value of w(M) and we
extend w over the σ-algebra M.

Lemma 4 (Zhidkov) The sequence {wn} is weakly convergent to w in X.

Proof. The only possible limit for wn is w since wn(M) tends to w(M) for
each element M of A and the extension to M is unique. There is also only
left to prove that the sequence {wn} is weakly compact. For that aim we use
Prohorov’s theorem.

Theorem 5 (Prohorov) A subset N of the set of finite positive Borel mea-
sures on a complete separable metric space (X, ρ) is precompact if and only if
(i) there exists M <∞, such that ν(X) ≤M for all ν ∈ N ,
(ii) for all ε > 0, there exists a compact set Kε in X, such that ν(X\Kε) < ε
for all ν ∈ N .

We take N = {wn}. It is obvious that for all n, wn(X) = 1, therefore (i) is
true.
Concerning (ii), the construction of the compact set Kε is carried out as fol-
lows.
Since S−1 is a nuclear operator, TrS−1 =

∑
λ−1
k <∞.

There exists a function p defined on [0,∞[ such that lim
x→+∞

p(x) = +∞ and∑
k

λ−1
k p(λk) <∞.
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We set T = p(S) and Q = S−1T .
Hence TrQ =

∑
k

λ−1
k p(λk) (< +∞ according to the assumption).

Let BR =
{
u ∈ X/‖T 1/2u‖X ≤ R

}
and B = BR

X
.

Let ψm =
∑
k

amk ϕk, be a sequence of elements of BR, ϕk denoting the eigen-

vectors of S.
Now T 1/2ψm =

∑
k

p(λk)
1/2amk ϕk and |T 1/2ψm|X = |

∑
k

p(λk)(a
m
k )2|1/2 ≤ R.

In order to prove the compactness of B, we only need to show that it is possi-
ble to make an estimate of the remainders of the series ψm which is uniform
in m.

Indeed
+∞∑
k=K

|amk |2 =
+∞∑
k=K

p(λk)(a
m
k )2

p(λk)
.

We choose K such that for all k ≥ K,
1

p(λk)
≤ R

ε
.

This shows that for all ε, there exists an integer K such that for all m

∣∣∣∣∣
+∞∑
k=K

amk ϕk

∣∣∣∣∣
2

X

≤ ε.

Then B is compact for all R.
Now, (cf. Lemma B.2 in Appendix B) for a Gaussian measure µB with B as
correlation operator we have µB{x : (Ax, x)X ≥ 1} ≤ TrAB.
We take B = PnS

−1 and A = T , hence

wn{x/(Tu, u)X ≥ 1}≤TrPnS
−1T ≤ TrQ,

wn(X\B) ≤ wn(X\BR) = wn{x/(Tu, u)X ≥ R}≤ TrQ

R2
.

Therefore wn(X\B) ≤ TrQ

R2
.

For each ε, we set R =

√
TrQ

ε
and Kε = B.

Consequently and thanks to Prohorov’s theorem, wn is weakly compact and
wn tends weakly to the only possible limit, w. 2

As in the case of wn, we set µn(M) = µn(M ∩Xn), for each element M ofM.
For each Borel set Ω of X, let us set

µ(Ω) =
∫
Ω

e−g(u)w(du).
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Then we get the following result

Lemma 6 Let Ω be an opened set of X such that µ(Ω) <∞. Then

lim inf
n→∞

µn(Ω) ≥ µ(Ω).

Proof. Let Ω be an open Borel set of X, then for every ε, there exists a
function θ defined on X, with 0 ≤ θ(u) ≤ 1, such that∫

Ω

θ(u)e−g(u)w(du) ≥ µ(Ω)− ε.

Let us set M = Ω∩Xn and let F be the Borel set of dn which is associated to
M .

µn(Ω) = (2π)−dn/2
dn∏
j=1

λ
1/2
j

∫
F

e−h(y)dy,

=
∫
F

e
−g(

dn∑
j=1

yjej)

(2π)−dn/2
dn∏
j=1

λ
1/2
j e−

1
2
λjy

2
j dy,

=
∫
Ω

e−g(u)wn(du).

lim inf
n→∞

µn(Ω) = lim inf
n→∞

∫
Ω

e−g(u)wn(du),

≥ lim inf
n→∞

∫
Ω

θ(u)e−g(u)wn(du),

=
∫
Ω

θ(u)e−g(u)w(du),

≥µ(Ω)− ε.

Letting ε tend to 0, we obtain lim inf
n→∞

µn(Ω) ≥ µ(Ω). 2

Corollary 7 Let Φ be a closed set of X. Then

lim sup
n→∞

µn(Φ) ≤ µ(Φ).

We finally state the theorem for the invariance of measure µ.
We denote
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f(φ, t) = u(t+ t0) where u is the solution to (1),
fn(φ, t) = un(t+ t0) where un is the solution to (2).

Theorem 8 Let Ω be an opened set of X and Ωt = f(Ω, t). Under asumptions
(H2.1) to (H2.5), we have the property

µ(Ω) = µ(Ωt)

.

Proof. The continuity assumption with respect to the initial data yields that
Ωt is as well an open set of X. We only make the proof in the case when µ(Ω)
and µ(Ωt) are assumed to be finite. Then for all ε > 0, there exists a compact
set K such that µ(Ω\K) ≤ ε. It is obvious that Kt ⊂ Ωt is compact.
Let α = min{dist(K, ∂Ω); dist(Kt, ∂Ωt)}. For each element u in K, there exists
an open ball B(u) with center u ∈ Ω such that dist(fn(u, t); fn(v, t)) < α

3
, for

all v ∈ B(u) and for all n according to the continuity assumption with respect
to the initial data for the problem (2).
We set Ωβ = {v ∈ Ωt/dist(v, ∂Ωt) ≥ β}, and we choose a finite covering B(u1),

. . . ,B(ul) of K. We set D =
l⋃

i=1

B(ui). Since un(t) converges uniformly with

respect to n to u(t), fn(D, t) ⊂ Ωα
4

for a sufficiently large n.

µ(Ω)≤µ(D) + ε,

≤ lim inf
n→∞

µn(D) + ε,

≤ lim inf
n→∞

µn(D ∩Xn) + ε,

≤ lim inf
n→∞

µn(fn(D ∩Xn, t)) + ε,

≤ lim sup
n→∞

µn(Ωα
4
) + ε,

≤µ(Ωt) + ε.

Hence µ(Ω) ≤ µ(Ωt), and since time has no privileged direction, µ(Ω) =
µ(Ωt). 2

2.4 Poisson’s Recurrence.

Theorem 9 For almost every initial data φ, the trajectory f(φ, t) is Poisson
recurrent.
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Proof. Thanks to theorem 8, for each neighborhood V of the initial data,
µ(V) = µ(Vt).
Let B(xi, ε) be a finite covering of the phase space which is weakly compact
thanks to the first conserved quantity. There exists an increasing sequence tn
tending to infinity and xi such that µ(Vtn ∩B(xi, ε)) > 0.
Let K be a compact subset of the union of the Vtn . There exists a finite
sequence tni such that {Vtni} is a finite covering of K. Hence there exists an
index j and a subsequence t′n of tn such that µ(Vtnj ∩ Vt′n) > 0. Let us set

t̃n = t′n − tnj , this defines a sequence which tends to infinity and such that
µ(V ∩ Vt̃n) > 0. So the solution comes for almost every initial data infinitely
often near its initial value. 2

Remark 10 This last argument is still valid in the case of schemes with a
time discretisation (cf. Part 4).
This last theorem is the only one which uses an invariant quantity in X. The
construction of measures holds even if this condition is not fulfilled. Theorem
9 is also valid in the case where the total measure is finite (µ(X) <∞).
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3 Applications.

Different classical equations may be written in the form (1). This is for example
the case of the Schrödinger or the wave equations.
These applications are nevertheless limited by the following facts :
∗ The nonlinearity of the equation has to be defined for functions belonging
to X.
∗ The space X endowed by the norm which is the invariant defined for the
less regular functions has to be a Banach space.
∗ The operator S−1 has to be nuclear.
Each of the following examples will be explained in two steps :
- the setting up of the equation into an Hamiltonian form. We determine
explicitly the invariants of the equation, the spaces X and Y , the operators J
and S as well as the functional g.
In this section we will have to check the following hypothesis :
(H3.1) X and Y are Hilbert spaces, and we have appropriate density results,
(H3.2) H : Y → is C1,
(H3.3) J : X∗ → X is linear and skew-adjoint,
(H3.4) there is at least one invariant norm,
(H3.5) g(u) is continuous and defined on X,
(H3.6) S > 0 is self-adjoint,
(H3.7) S−1 is nuclear,
(H3.8) J : X∗n → Xn and PnJ = JPn;
- the testing of the remaining hypotheses, that is :
(H3.9) there exist solutions in X and Xn,
(H3.10) these solutions are continuous with respect to the initial data.
(H3.11) un tends to n in C(I;X).
Since the study of Cauchy problems is not the aim of this article, we only refer
to other articles for the testing of these hypotheses.

3.1 Setting up.

3.1.1 The nonlinear Schrödinger equation.

We consider the problem
iut + ∆u+ f(x, |u|2)u = 0, x ∈ (0, A), t ∈ ,

u(0, t) = u(A, t),

u(x, t0) = u0(x).

(1)

We transform this problem setting u = (u1, u2).
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The partial differential equation becomes u1t + ∆u2 + f(x, (u1)2 + (u2)2)u2 = 0,

u2t −∆u1 − f(x, (u1)2 + (u2)2)u1 = 0.

We set F (x, s) =
1

2

s∫
0

f(x, σ)dσ. We know two invariants for this equation

E(u1, u2) =
1

2

A∫
0

{
(u1)2 + (u2)2

}
dx,

H(u1, u2) =

A∫
0

{
1

2
((∇u1)2 + (∇u2)2)− F (x, (u1)2 + (u2)2)

}
dx.

The gradient of this last invariant is :

H ′(u1, u2) =

−∆u1 + f(x, (u1)2 + (u2)2)u1

−∆u2 + f(x, (u1)2 + (u2)2)u2

 .

The functional spaces we will consider are X = L2 × L2 and Y = H1 × H1,
the operators J et S being respectively equal to

J =

 0 I

−I 0

 and S =

−∆ 0

0 −∆

 .

This allows us to compute

g(u1, u2) = −
A∫

0

F (x, (u1)2 + (u2)2)dx.

3.1.2 The wave equation.

We consider the problem
utt − uxx + f(x, u) = 0, x ∈ (0, A), t ∈ ,

u(0, t) = u(A, t),

u(x, t0) = u0(x), ut(x, t0) = v0(x)

(2)
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We transform this problem setting v = ut.
The partial differential equation becomes ut − v = 0,

vt − uxx + f(x, u) = 0.

We set F (x, u) =
1

2

u∫
0

f(x, s)ds, and we may find an invariant in the form :

H(u, v) =

A∫
0

{
1

2
((v)2 + (ux)

2) + F (x, u)
}
dx.

The computation of its gradient yields :

H ′(u, v) =

−∆u+ f(x, u)

v

 .

We consider the functional spaces X = L2 × H−1 and Y = H1 × L2. The
operators J and S are respectively equal to

J =

 0 I

−I 0

 and S =

−∆ 0

0 −∆

 .

The computation of g gives

g(u, v) =

A∫
0

F (x, u)dx.

3.2 Testing the hypotheses.

3.2.1 The nonlinear Schrödinger equation.

The global existence of solutions to (1) for an initial data in L2 is given in an
article by Bourgain [2] and the conditions that should be imposed on the non-
linearity f are studied in the appendix A. Concerning the finite dimensional

14



problem (2), it may be written in the form

u̇n = Pn

 0 I

−I 0


−∆un1 + f(x, (un1 )2 + (un2 )2)un1

−∆un2 + f(x, (un1 )2 + (un2 )2)un2

 .

Since Xn is supposed to be stable with respect to S, the operator representing
the linear part is the same one and the estimates obtained for the continuous
case are still valid. The assumption on the nonlinear part still holds. Hence
there exists a unique global solution.
The continuity with respect to the initial data may be studied in a classical
way thanks to estimates which are analogous to those of the proof for the local
existence.
The nonlinearities we choose here verify for example

‖f(x, |u|2)‖2 ≤ C
∑
γ

‖u‖γ4

and ‖∇sf(x, |u|2)‖4 ≤ C
∑
η

sup
u∈B(0,M)

‖u‖η4 when u ∈ B(0,M),

the sum over γ and η dealing with a finite number of terms with 0 ≤ γ and
−1 ≤ η.
These conditions are weaker than those initialy chosen by Zhidkov (cf. [29]),
that is

|f(x, s)|+ |(1 + s)∇sf(x, s)| < C for all x, s.

He also carries out the application of the method to the cubic nonlinear
Schrödinger equation. In the present paper our aim is to find the weakest
assumptions under which the construction is possible. The method used by
Zhidkov for the cubic Schrödinger equation is slighlty different. He defines a
sequence of Schrödinger equations with very weak nonlinearities which tend in
a certain sense to the cubic nonlinearity. He constructs an invariant measure
for each of these equations and then passes to the limit over the measures.
This yields an invariant measure for the cubic Schrödinger equation.

3.2.2 The wave equation.

Here we will keep Zhidkov’s hypotheses on the nonlinearity, that is

|f(x, u)| ≤ C(1 + u2)1/2
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and

|∂uf(x, u)| ≤ C.

We may remark that these conditions are non fulfiled in the case of the cubic
wave equation which is the case studied by Friedlander [6].
We refer to Zhidkov’s article [28] for the proof of the wellposedness for this
this equation. The wellposedness for the discretized equation is made with
the same type of arguments than in the case of the nonlinear Schrödinger
equation.

3.3 Why this approach fails in the Korteweg-de Vries equation case.

In [29] Zhidkov treats the case of a Korteweg-de Vries equation, but it is a
linear one :

ut + (a(x)u)x + uxxx = 0.

This induces us to study the usual Korteweg-de Vries equation. We will show
why it’s is impossible to apply the general theory to this problem. We will
also consider the equation

ut + uxxx + ukux = 0, x ∈ (0, A), t ∈ ,

u(0, t) = u(A, t),

u(x, t0) = u0(x).

(3)

This equation has the following invariants :

H0(u) =

A∫
0

udx,

H1(u) =
1

2

A∫
0

u2dx,

H2(u) =

A∫
0

{
1

2
u2
x −

1

(k + 1)(k + 2)
uk+2

}
dx,

and in the case when k = 1, there are some additional invariants, the first one
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being

H3(u) =

A∫
0

{
1

2
u2
xx −

5

6
uu2

x +
5

72
u4
}
dx.

Their gradients are respectively equal to

H ′1(u) = u,

H ′2(u) = −uxx −
1

(k + 1)
uk+1,

H ′3(u) = uxxxx +
5

6
u2
x +

5

2
uuxx +

5

18
u3.

The following problem faces us. The nonlinear part imposes X to be included
in H1. Since we dispose of various invariants we could take H3 as Hamiltonian
(in the case k = 1), unfortunately it is not possible to set the Korteweg-de
Vries equation in a Hamiltonian form with this invariant. We know of two
hamiltonian forms for the Korteweg-de Vries equation. The more classical one
is the following :

ut = ∂x

(
uxx +

1

2
u2
)

which is associated to H2 taking J2 = −∂x, S2 = −∆ and

g2(u) = −
A∫

0

1

(k + 1)(k + 2)
|u|k+2dx.

An other hamiltonian form is described by Olver [17] :

ut =
(
∂3
x +

2

3
u∂x +

1

3
ux

)
u

this time consideringH1 as hamiltonian and taking J1 = −
(
∂3
x +

2

3
u∂x +

1

3
ux

)
,

S1 = −I. and g1(u) = 0.
None of those two forms is compatible with our different assumptions on the
different operators.
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4 Particular case of numerical schemes.

In the case of schemes, only the finite dimensional construction is useful. The
choice of spaces becomes now indifferent since all norms are equivalent. This
solves also the limitations on possible nonlinearities and the operator S−1 be-
comes necessarily nuclear. In the case when S is singular, we have to consider
its reduction to the orthogonal space of its kernel and choose a nonlinearity
such that the dynamical systems preserves this subspace. In the examples pre-
sented here S is a discretization of the Laplacian which happens to be singular
in the periodic case (the kernel is the constants) and nonsingular in the zero
boundary case.
We will now consider equations with two invariants and try to find a dis-
cretization which conserves analogous invariants. That way we may hope that
the observed phenomena which are connected to the existence of invariants
for the discretized equation may extend to the continuous case. The case of
semi-discretizations in space by a Galerkin method in bases of eigenvectors
of S has already been treated in the theoretical part (cf. Part 2.2). We will
produce here other types of discretizations.

4.1 The nonlinear Schrödinger equation.

We remind that the cubic Schrödinger equation

ut = iuxx + iq|u|2u, (1)

considered on the interval [−L
2
, L

2
] with periodic boundary conditions admits

two classical invariants :

1

2

L
2∫

−L
2

|u|2dx = c1, (2)

1

2

L
2∫

−L
2

(|ux|2 −
1

2
q|u|4)dx = c2. (3)

4.1.1 Space discretizations.

In what follows we will denote by δ the forward-space derivative

δUj = h−1(Uj+1 − Uj), (4)
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and δ2 the second central-space derivative

δ2Uj = h−2(Uj+1 − 2Uj + Uj−1). (5)

The indexes for the space variable will be j, for the Fourier variable k and the
superscript for the time variable will be n.

We discretise [−L
2
, L

2
] in K equal intervals. Let h =

L

K
.

We consider here three types of space discretizations : finite difference sche-
mes, spectral schemes and pseudo-spectral schemes.
Finite difference scheme.
Let Uj(t) be an approximation of u(−L

2
+(j−1)h, t). The most classical finite

difference scheme is given by

U̇j = iδ2Uj + iq|Uj|2Uj. (6)

Spectral scheme.
We make the following Ansatz : u is reduced to a finite number of frequences,
i.e. it may be written in the form

u(x, t) =
K/2∑
−K/2

Ak(t) exp(iµkx).

Hence we obtain

Ȧk = −iµ2
kAk + iq

∑
l1+l2−l3=k

Al1Al2A
∗
l3
. (7)

Pseudo-spectral scheme.
It is based on the fact that we may use a FFT to solve the problem numerically.
Therefore we define an analogue of the Fourier transform

FkUj = Ak =
1

K

(K/2)−1∑
−K/2

Uj exp(−iµkxj),

and of the inverse Fourier transform

F−1
j Ak = Uj =

(K/2)−1∑
−K/2

Ak exp(iµkxj).

The equation may also be discretised using

Ȧk = −iµ2
kAk + iqFk(Uj|Uj|2) (8)
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or equivalently

U̇j = −iF−1
k (µ2

kFk(Uj)) + iq|Uj|2Uj. (9)

A variant of the finite difference scheme is the following (cf. Herbst and
Ablowitz [8]).
Integrable scheme.

U̇j = iδ2Uj + i
1

2
q|Uj|2(Uj+1 + Uj−1). (10)

4.1.2 Analysis of space discretizations.

Finding two conservation laws allows the use of the general theory for these
schemes. Each of the three first schemes have two invariant quantities which
are similar to those of equation (1). The setting in an hamiltonian form ac-
cording to the notations of Part 2 is very similar to the continuous case.
Finite difference scheme.

h

2

(K/2)−1∑
−K/2

|Uj|2 = C1,1,

h

2

(K/2)−1∑
−K/2

{
|δUj|2 −

1

2
q|Uj|4

}
= C1,2.

We set U = (V−K/2, . . . , V(K/2)−1,W−K/2, . . . ,W(K/2)−1)T where Uj = Vj + iWj.
The scheme (6) becomes

 V̇j = −δ2Wj − q(V 2
j +W 2

j )Wj,

Ẇj = δ2Vj + q(V 2
j +W 2

j )Vj.

Then J =

 0 hIK

−hIK 0

 and S =

−D2
K 0

0 −D2
K
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where D2
K =

1

h2



−2 1 1

1
. . . . . .

. . . . . . 1

1 1 −2


and H ′(U) = (. . . , δ2Vj + q(V 2

j +W 2
j )Vj, . . . , δ

2Wj + q(V 2
j +W 2

j )Wj, . . .)
T .

Spectral scheme.

L

2

K/2∑
−K/2

|Ak|2 = C2,1,

L

2


K/2∑
−K/2

µ2
k|Ak|2 −

1

2
q

∑
−K/2≤l1,l2,l3≤K/2

Al1Al2A
∗
l3
A∗l1+l2−l3

 = C2,2.

Pseudo-spectral scheme.

h

2

(K/2)−1∑
−K/2

|Uj|2 = C3,1,

L

2

(K/2)−1∑
k=−K/2

µ2
k|Ak|2 −

1

4
qh

(K/2)−1∑
j=−K/2

|Uj|4 = C3,2.

Integrable scheme.
In the case of the integrable scheme we may also find two invariants but the
second one does not seem to have a counterpart at the level of the continuous
equation :

h

2

(K/2)−1∑
−K/2

|Uj|2 = C4,1,

h

2

(K/2)−1∑
−K/2

{
U∗j (Uj+1 + Uj−1)− 4q−1 ln(1 +

1

2
q|Uj|2)

}
= C4,2.

Remark 1 An other proof of recurrence.
A direct and straightforward proof of the periodicity of these three schemes
for a small number of modes as well as the expression of the recurrence time
thanks to an elliptic integral may be found in the article of Weideman and
Herbst [20].
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4.1.3 A full discretization.

For the effective computation of the former schemes we have to choose a time
discretization which has to conserve the different quantities. We may use the
mid-point scheme which is a finite difference scheme in both the time and the
space variables :

un+1
j − unj

∆t
= i

unj+1 − 2unj + unj−1

2h2
+ i

un+1
j+1 − 2un+1

j + un+1
j−1

2h2

+i
q

4

(
|unj |2 + |un+1

j |2
) (
unj + un+1

j

)
. (11)

4.1.4 Analysis of the full discretization.

Two quantities are conserved

h

2

(K/2)−1∑
−K/2

|unj |2 =
h

2

(K/2)−1∑
−K/2

|un+1
j |2,

h

2

(K/2)−1∑
−K/2

(
|δunj |2 −

1

2
q|unj |4

)
=
h

2

(K/2)−1∑
−K/2

(
|δun+1

j |2 − 1

2
q|un+1

j |4
)
.

Recurrence has been actually observed for this scheme but it seems never-
theless impossible to apply the above theory to such full discretized schemes,
indeed setting for example Un = (vn−K/2, . . . , v

n
(K/2)−1, w

n
−K/2, . . . , w

n
(K/2)−1)T

where unj = vnj + iwnj we may use the same operator S as in the space dis-
cretization case. On the other hand it is not possible to find an operator J
satisfying

Un+1 − Un

∆t
= JH ′(Un+1)

This is the only restriction since we noticed (cf. the end of part 2) that Theorem
9 also holds for schemes with a time discretization.

4.2 The wave equation.

4.2.1 A space discretization.

Let us consider a nonlinear wave equation in the form :

utt − uxx + f(u) = 0. (12)
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A space finite difference discretization is possible :

üj − δ2uj + f(uj) = 0. (13)

Setting F (s) =
1

2

s∫
0

f(σ)dσ, we obtain the following invariant quantity for

(13) :

(K/2)−1∑
−K/2

{
1

2

(
|u̇j|2 + |δuj|2

)
+ F (uj)

}
= C.

Let vj = u̇j,
setting U = (u−K/2, . . . , u(K/2)−1)T and V = (v−K/2, . . . , v(K/2)−1)T , we set the
discretized wave equation in the the hamiltonian form using

H(U, V ) = −1

2
(D2

KU,U) +
1

2
(V, V ) + F (U)

H ′(U, V ) =

−D2
KU + f(U)

V

, J =

 0 hIK

−hIK 0

, S =

−D2
K 0

0 IK

.

4.2.2 A full discretization.

To obtain an invariant for a full finite difference scheme for the wave equation,
we have to restrict ourselves once more to a smaller family of nonlinearities
that is f(u) = Au2m−1. Then we use for example the scheme :

un+1
j − 2unj + un−1

j

∆t2
− 1

2
δ2un+1

j − 1

2
δ2un−1

j +
A

2m

2m−1∑
l=0

(un+1
j )2m−1−l(un−1

j )l = 0.(14)

For this scheme the invariant quantity is :

(K/2)−1∑
−K/2

{
|un−1
j − unj |2

∆t2
+

1

2
(|δun+1

j |2 + |δunj |2) +
A

2m
((un+1

j )2m + (unj )2m)

}
= C.

In this case we are facing the same problem for the setting in an hamiltonian
form as in the case of the full discretization of the cubic nonlinear Schrödinger
equation.
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4.3 The Zakharov equations.

4.3.1 The continuous equations.

In the context of plasma physics, Zakharov [24] has introduced the following
system

iEt + Exx = NE,

Ntt −Nxx =
∂2

∂x2
(|E|2).

(15)

Setting M = Nt and
√

2E = F + iG, we obtain the following formulation.

Ft = −Gxx +NG,

Gt = Fxx −NF,

Nt = M,

Mt = Nxx +
1

2

∂2

∂x2
(F 2 +G2).

(16)

Considering these equations with periodic boundary conditions on the interval
[−L

2
, L

2
] and setting v = −ux where uxx = Nt, we formally get two invariant

quantities

1

2

L
2∫

−L
2

(F 2 +G2)dx = c1, (17)

1

2

L
2∫

−L
2

(
(Fx)

2 + (Gx)
2 + v2 +N2 +N(F 2 +G2)

)
dx = c2. (18)

Making an attempt at setting (formally) this system in an hamiltonian form
with the notations of Part 2 we set :

X = L2 × L2 ×H−1 ×H−2

and

Y = H1 ×H1 × L2 ×H−1,
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S =



−∆ 0 0 0

0 −∆ 0 0

0 0 −∆ 0

0 0 0 −∆


and u = (F,G,N,M)

and we get

1

2
(Su, u)X =

1

2

L
2∫

−L
2

(
(Fx)

2 + (Gx)
2 + v2 +N2

)
dx

and thus

g(u) =
1

2

L
2∫

−L
2

N(F 2 +G2)dx.

With J =



0 1 0 0

−1 0 0 0

0 0 0 −∂xx
0 0 ∂xx 0


and H ′(u) =



−Fxx +NF

−Gxx +NG

N +
1

2
(F 2 +G2)

−
x∫

0

(

ξ∫
0

M(ζ)dζ)dξ


,

the system (16) is written in an hamiltonian form with the second invariant
(18) as hamiltonian.
The hope of getting a result for this continuous equation in such a large space
as X is very small, but we can study numerical schemes.

4.3.2 A space discretization.

Using notations (4) and (5) for the space derivative as for the previous finite
difference schemes, it is possible to discretize (15) in the following way.

 iĖj + δ2Ej = NjEj,

N̈j − δ2Nj = δ2(|Ej|2),
(19)
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or setting
√

2Ej = Fj + iGj and Mj = Ṅj,

Ḟj = −δ2Gj +NjGj,

Ġj = δ2Fj −NjFj,

Ṅj = Mj,

Ṁj = δ2Nj + 1
2
δ2(F 2

j +G2
j).

(20)

It is possible to find two invariants for this scheme, namely

h

2

(K/2)−1∑
−K/2

{
F 2
j +G2

j

}
= C1, (21)

h

2

(K/2)−1∑
−K/2

{
(δFj)

2 + (δGj)
2 + (δuj)

2 +N2
j +Nj(F

2
j +G2

j)
}

= C1, (22)

where δ2uj = Ṅj. The setting into an hamiltonian form is made through the
following notations : we set U = (. . . , Fj, . . . , Gj, . . . , Nj, . . . ,Mj, . . .) and

H(U) =
1

2
{(−(D2

KF, F )− (D2
KG,G) + (D2

Ku, u)− (GM,M)+

+(N,N) + h
∑
j

Nj(F
2
j +G2

j)},

S =



−D2
K 0 0 0

0 −D2
K 0 0

0 0 IK 0

0 0 0 G



where

Gij =


xi(1−

xj
L

) si xi ≤ xj,

xj(1−
xi
L

) si xj ≤ xi.

An the hamiltonian form is obtained with :
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H ′(U) =



−D2
KF +N.F

−D2
KG+N.G

N + 1
2
(F.F +G.G)

−GM


, J =



0 IK 0 0

−IK 0 0 0

0 0 0 −D2
K

0 0 D2
K 0


,

where u.v denotes the vector whose components are the ujvj.

4.3.3 A full discretization.

The following full discretization of the Zakharov equations is due to Glassey
[7].


i
En+1
j − En

j

∆t
+

1

2
δ2En

j +
1

2
δ2En+1

j =
1

4
(Nn

j +Nn+1
j )(En

j + En+1
j ),

Nn+1
j − 2Nn

j +Nn−1
j

∆t2
− 1

2
δ2Nn+1

j − 1

2
δ2Nn−1

j = δ2
(
|En

j |2
)
.

(23)

As in the nonlinear Schrödinger case, we want to write this scheme in an
hamiltonian form. With this aim we set as in the continuous case

√
2En

j =

F n
j + iGn

j and Mn
j =

Nn
j −Nn−1

j

∆t
which yields the new scheme :



F n+1
j − F n

j

∆t
= −1

2
δ2Gn

j − 1
2
δ2Gn+1

j + 1
4
(Nn

j +Nn+1
j )(Gn

j +Gn+1
j ),

Gn+1
j −Gn

j

∆t
= 1

2
δ2F n

j + 1
2
δ2F n+1

j − 1
4
(Nn

j +Nn+1
j )(F n

j + F n+1
j ),

Nn+1
j −Nn

j

∆t
= Mn+1

j ,

Mn+1
j −Mn

j

∆t
= 1

2
δ2Nn+1

j + 1
2
δ2Nn−1

j + 1
2
δ2
(
(F n

j )2 + (Gn
j )2
)
.

(24)

Glassey proves that for initial data M1
j such that

(K/2)−1∑
j=−K/2

M1
j = 0 (zero mean)

the numerical scheme is well posed at each step.
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For this scheme we have similar invariants to (17) and (18) :

h

2

(K/2)−1∑
−K/2

((F n
j )2 + (Gn

j )2) = C1, (25)

h

2

(K/2)−1∑
j=−K/2

{
(δF n+1

j )2 + (δGn+1
j )2 + (δunj )2 +

1

2
((Nn

j )2 + (Nn+1
j )2)

+
1

2
(Nn

j +Nn+1
j )((F n+1

j )2 + (Gn
j )2)

}
= C2. (26)

where δ2unj =
Nn+1
j −Nn

j

∆t
.

4.4 The Korteweg-de Vries equation.

We do not know of any finite difference scheme for the Korteweg-de Vries
equation with two laws of conservation corresponding to H1 and H2. In return,
problems connected with the nature of the nonlinearity are solved.
As far as we know, the only numerical method which allows a large number
of conservation laws is the one developped by Hyman (cf. [9]). This method is
based on the work of Lax [12] who shows that a certain class of solutions to
the Korteweg-de Vries equation are solutions to a minimization problem. The
main idea is to minimize the N -th invariant quantity under constraints which
are the previous invariants. This is done thanks to an augmented Lagrangian
method. This method is not based on an hamiltonian form of the equation.
So it is impossible to study it as the restriction of a continuous problem on a
finite dimensional phase space. The argument which is used for the different
numerical schemes for the nonlinear Schrödinger equation does not apply in
the present case.
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5 Conclusion.

It seems very difficult to make some great improvements for applying Zhidkov’s
theoretical frame to partial differential equations. Two facts are responsible
for that. First, there are some strong limitations on the nature of both the
linear operator and the nonlinearity. Second, in general we need an existence
theory in a large space like L2 and such results are known for a very limited
number of equations especially for periodic boundary conditions. Bourgain has
for example also proved some existence results for the Kadomtsev-Petviashvilli
II equations in L2 for periodic boundary conditions. It seems very difficult to
write an hamiltonian numerical scheme for these equations since it is some
generalization of the Korteweg-de Vries equation.

29



Appendix.

For the sake of completeness, we cite here the proofs of some results which are
only stated in the body of the article. It concerns global existence and unique-
ness for the Cauchy problems for the different equations we have studied. We
also give useful measure theory results.

A Global existence and uniqueness results.

We retranscript here Part 4 of Bourgain’s article [2] with the adaptation to
other nonlinearities. We use the estimates on tori which are explicited in the
second part of the same article.
We consider the NLS equation

∆u+ i∂tu+ f(x, |u|2)u= 0,

u(x, 0) =φ(x),

where u is periodic in the x variable.
Let us set w = f(x, |u|2)u, the associated integral equation is

u(·, t) = U(t)φ+ i

t∫
0

U(t− τ)w(·, τ)dτ,

where U(t) = eit∆.
We want to use estimates on tori, hence it is useful to make a time localization.
For that aim we introduce a cut-off function ψ1 which is equal to 1 on [−δ, δ]
with a support in [−2δ, 2δ]. It also possible to write the integral equation in
the form

u(·, t) = ψ1(t)U(t)φ+ iψ1(t)

t∫
0

U(t− τ)w(·, τ)dτ.

Using the Fourier transform, we find

u(x, t) =ψ1(t)
∑
n∈
φ̂(n)e2πi(nx+n2t)
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+ iψ1(t)
∑
n∈
e2πi(nx+n2t)

+∞∫
−∞

e2πi(λ−n2)t − 1

2πi(λ− n2)
ŵ(n, λ)dλ.

We introduce a new cut-off function ψ2 which is equal to 1 on [−B,B] and
with support in [−2B, 2B]. Hence we get

ψ1(t)

+∞∫
−∞

e2πi(λ−n2)t − 1

λ− n2
ŵ(n, λ)dλ =

+
∑
k≥1

(2πi)k

k!
ψ1(t)tk

+∞∫
−∞

ψ2(λ− n2)(λ− n2)k−1ŵ(n, λ)dλ

+ ψ1(t)

+∞∫
−∞

(1− ψ2)(λ− n2)
e2πi(λ−n2)t

λ− n2
ŵ(n, λ)dλ

− ψ1(t)

+∞∫
−∞

(1− ψ2)(λ− n2)
ŵ(n, λ)

λ− n2
dλ.

It is also necessary to estimate the following terms :

I = ψ1(t)
∑
n∈
φ̂(n)e2πi(nx+n2t),

II =
1

2B

∑
k≥1

(2πi)k

k!
(2Bt)kψ1(t)

∑
n∈

 +∞∫
−∞

ψ2(λ− n2)

(
λ− n2

2B

)k−1

ŵ(n, λ)dλ

 e2πi(nx+n2t)

 ,

III = ψ1(t)
∑
n∈
e2πinx

+∞∫
−∞

(1− ψ2)(λ− n2)

λ− n2
e2πiλtŵ(n, λ)dλ,

IV = −ψ1(t)
∑
n∈
e2πi(nx+n2t)

+∞∫
−∞

(1− ψ2)(λ− n2)

λ− n2
e2πiλtŵ(n, λ)dλ.

In the same way as in [2], we get

‖I‖L4(dxdt) ≤ c‖φ‖2,

‖II‖L4(dxdt) ≤ cδB‖w‖L4/3(dxdt),

‖III‖L4(dxdt) ≤ CB−1/4‖w‖L4/3(dxdt),
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‖IV ‖L4(dxdt) ≤ CB−1/4‖w‖L4/3(dxdt).

With the aim to have the same sort of estimates than Bourgain we impose for
example that

‖w‖4/3 ≤ C
∑
β

‖u‖β4 ,

‖w1 − w2‖4/3 ≤ C
∑
γ

(‖u1‖4 + ‖u2‖4)γ ‖u1 − u2‖4,

where wi = f(x, ‖ui‖2)ui, i = 1, 2, the sums over β or γ containing a finite
number of terms and 1 ≤ β, 0 ≤ γ. Let us set

Tu(x, t) =ψ1(t)
∑
n∈
φ̂(n)e2πi(nx+n2t)

+ iψ1(t)
∑
n∈
e2πi(nx+n2t)

+∞∫
−∞

e2πi(λ−n2)t − 1

2πi(λ− n2)
ŵ(n, λ)dλ.

The proof of the global existence in L2 is carried out as follows :
- there exists a constant M such that T maps B(0,M) in itself ;
- on this ball T is a contraction (for these two points we have to impose
conditions on δ and B) ;
- thanks to a fixed point argument the problem is locally well posed in L2 ;
- according to the conservation of the L2 norm for this equation, the solution
is global in time.
Les us check the first two points :

‖Tu‖4 ≤ c1

‖φ‖2 + δB

∑
β

‖u‖β4

+B−1/4

∑
β

‖u‖β4

 ,
which may be brought to be lower than M , for a sufficiently large M , since it
is possible to fix δB and B−1/4 arbitrarily small.
Hence ‖u‖4 ≤M implies that ‖Tu‖4 ≤M .

‖Tu1 − Tu2‖4 ≤ c1(δB +B−1/4)
∑
γ

(‖u1‖4 + ‖u2‖4)γ ‖u1 − u2‖4,

≤ 2c1(δB +B−1/4)
∑
γ

(M)γ‖u1 − u2‖4.

The quantity 2c1(δB+B−1/4)
∑
γ

(M)γ may be brought to be lower than
1

2
up
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to a new decreasing of δB and B−1/4 which is compatible with the former one.
We now give a few fields of application for this result.
The case which is studied by Bourgain is w = |u|αu. He shows that the two
hypotheses on w are verified in the case when 0 < α ≤ 2.

The two nonlinearities Zhidkov proposes are w =
u|u|2

1 + |u|2
and w = 1− e−αu.

In the frame we adopt here, we want that

‖f(x, |u|2)u‖4/3 ≤ C
∑
β

‖u‖β4 ,

‖f(x, |u|2)u− f(x, |v|2)v‖4/3 ≤ C
∑
γ

(‖u‖4 + ‖v‖4)γ ‖u− v‖4.

The first estimate is true if

‖f(x, |u|2)‖2 ≤ C
∑
γ

‖u‖γ4 .

The second may be fulfilled under one of the two following conditions :

sup
u∈B(0,M)

‖∇sf(x, |u|2)u‖2 ≤ C
∑
γ

sup
u∈B(0,M)

‖u‖γ4 when u ∈ B(0,M),

or ‖∇sf(x, |u|2)‖4 ≤ C
∑
η

sup
u∈B(0,M)

‖u‖η4 when u ∈ B(0,M),

the sum over η containing a finite number of terms and −1 ≤ η.
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B Gaussian measures on a Hilbert space.

The following ingredients are contained in Dalecky and Fomin’s book [5]. This
appendix is by no means meant to be an abstract about Gaussian measures
in Hilbert spaces, we only give some hints to make clear the proof of Lemma
3.
Let us begin with a theorem which gives a condition for a premeasure to be
σ-additive.

Let ν be a premeasure on an algebra U of subsets of a set X. We say that a
class K ⊂ U approximates ν from below if for each A ∈ U and each ε > 0,
there exists a K ∈ K such that K ⊂ A and |ν|(A\K) < ε.
According to this definition, we may state :

Proposition B.1 Let ν be a premeasure on an algebra U of subsets of a
topological space X and let F ⊂ U be a class of closed subsets of X, which is
closed under intersection and approximates ν from below.
If for every ε > 0, there exists a compact set Kε such that for all F ∈ F ,

F ∩Kε = ∅ ⇒ |ν|(F ) < ε,

then ν is σ-additive, i.e. it is a measure.

On a Hilbert space, we can define particular measures called Gaussian cylin-
drical measures. The construction is carried out as follows.
Let ν be a measure on n, its characteristic functional χν is given by the formula

χν(ξ) =
∫
n

eiξ·xρ(x)dx,

where ρ is the density of ν with respect to Lebesgue’s measure dx. The measure
ν is said to be Gaussian if its characteristic functional may be expressed in
the form

χν(y) = exp
{
−1

2
(By, y) + i(α, y)

}
,

where B is a positive operator. It is said to be centered if α is zero.
In a Hilbert space X we call cylindrical a set in the form

C = {x ∈ X;Px ∈M},

where P is a projection onto a subset of a finite dimension of X, and M is a
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Borel set of this subspace called the base of C.
We define a cylindrical measure ν over X by the measure of the cylindrical
sets of X. The measure of a cylindrical set C is chosen to be equal to the
measure of the base M of C in PX.
Such a measure is said to be a centered Gaussian measure if each projection
onto a finite dimensional space is a centered Gaussian measure. Hence its
characteristic functional is in the form

χν(y) = e−b(y,y)/2

where b is a nonnegative bilinear form which is continuous on every finite
dimensional subset and is called the correlation of ν. If b(y, y) may be written
in the form (By, y), B is called the correlation operator of ν. We will denote
by νB the centered Gaussian cylindrical measure with correlation operator B.
Now we have the lemma

Lemma B.2 Let A be a positive operator then

νB{x : (Ax, x)X ≥ 1} ≤ TrAB,

νB{x : |(Ax, x)− TrAB| ≤ c
√

TrAB} ≥ 1− 2

c2
‖AB‖X .

It is now possible to prove lemma 3 which gives a necessary and sufficient
condition of σ-additivity for a centered Gaussian cylindrical measure.

Lemma 3. A centered Gaussian cylindrical measure ν on X is σ-additive if
and only if its correlation operator is in the form b(y1, y2) = (By1, y2), where
B is a nuclear positive operator X.

Sufficient condition :
If ν is σ-additive then its characteristic functional and its correlation are con-
tinuous on X, hence b(y, y) = (By, y) with B ∈ L(X). Let us show by contra-
diction that B is nuclear. If it is not the case, we may find a projection onto
a finite dimensional subspace such that its trace TrPBP = R is arbitrarily
large. Then we set

C = {x ∈ X : |‖Px‖2
X −R| < α

√
R}.

The intersection of this cylinder with the ball of center 0 and radius R−α
√
R

is empty.
According to lemma 1.1, we have

ν(C) ≥ 1− 2‖b‖
α2

=
1

2
if we take α = 2

√
‖B‖.
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We may consider balls of X centered in 0, with an arbitrarily large radius and
with a measure which is lower than 1

2
. This is impossible since ν(X) = 1.

Necessary condition :
Let C be a cylinder which does not intersect the ball in X with center 0 and
radius R. Its baseM also does not intersect the ball of center 0 and radius R
in PX. According to lemma 1.1, we get

ν(C) ≤ TrPBP

R2
≤ TrB

R2
,

which is finite since we assume that B is nuclear. We use proposition B.1 with
U equal to the Borel σ-algebra of X and F to the set of cylinders in X.

For all ε > 0, there exists Kε = B(0, R) with ε =
TrB

R2
such that, for all

F ∈ F such that F ∩B(0, R) = ∅, then ν(F ) ≤ ε. 2
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