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In this article we establish the global well-posedness of a recent model proposed by Noguera, Fritz, Clément and Baronnet for simultaneously describing the process of nucleation, growth and ageing of particles in thermodynamically closed, initially supersaturated systems. This model, which applies to precipitation in solution, vapor condensation and crystallization from a simple melt, can be seen as a highly nonlinear age-dependent population problem involving a delayed birth process and a hysteresis damage operator.

1. Introduction. In a recent work [START_REF] Noguera | Nucleation, growth and ageing in closed systems I: a unified model for precipitation in solution, condensation in vapor phase and crystallization in the melt[END_REF], Noguera, Fritz, Clément and Baronnet proposed a unified mathematical model that accounts for the process of nucleation, size-dependent growth, dissolution and ripening of particles (or droplets) in a thermodynamically closed, initially supersaturated system. The model is relevant for precipitation in solution, vapor condensation as well as crystallization from a simple melt, and compared to popular population balance models, it explicitly keeps track of the time evolution of any particle nucleated in the system. Given three independent dimensionless parameters u, w and J, the master equations read n(s, t) = 2u ln 3 S(s) + 3w t s n 2/3 (s, t ′ ) S(t ′ ) -exp 2u n(s, t ′ )

1/3 dt ′ S(t) = S 0 -J t 0 exp - u ln 2 S(s)
n(s, t) -1 ds

(1) {orsys} where n(s, t) and S(t) represent at each time t the size of every particle nucleated at a previous time s ≤ t and a saturation index measuring the deviation from thermodynamic equilibrium (corresponding to S = 1), respectively. More specifically, as the size n is measured in terms of growth units -i.e., elementary units constituting the particles -it only makes sense for values larger or equal to 1, which is implicitly assumed in [START_REF] Noguera | Nucleation, growth and ageing in closed systems I: a unified model for precipitation in solution, condensation in vapor phase and crystallization in the melt[END_REF]. In order to take this feature into account we therefore had to add an hysteresis operator to the original equations and consider a modified system, as will soon be detailed -see System (6) below.

D T := {(s, t) : 0 ≤ s ≤ t < T } with T ≤ ∞, and rewrite the above system as ∂ t ρ(s, t) = w S(t) -exp ν ρ(s, t) for t ≥ s ρ(s, s) = ν ln S(s)

S(t) = S 0 -J t 0 exp - νρ 2 (s, s) 2 ρ 3 (s, t) -1 ds (2) 
{newsys} with ρ := n 1/3 and ν := (2u) 1/3 . Clearly, it is possible to remove the unknown function S: although this does not simplify the equations we observe that by introducing the age variable a := t -s ∈ [0, t] and setting ℓ(a, t) := ρ(t -a, t), this allows to interpret the above system as an atypical age-dependent population problem involving individuals born at positive times, i.e., 

∂ t + ∂ a ℓ(a, t) = G(ℓ(•, t), a) ℓ(0, t) = F (ℓ, t) for 0 ≤ a ≤ t, (3) 
{birth} (see [START_REF] Webb | Theory of nonlinear age-dependent population dynamics[END_REF] for an introduction to such equations, and [START_REF] Perthame | Transport equations in biology[END_REF] for a comprehensive mathematical treatment of biological scenarios, involving structured population dynamics). Note that problems involving delayed birth process have already been studied by several authors, see e.g. [START_REF] Milner | Age structured populations with history dependent mortality and natality[END_REF][START_REF] Piazzera | An age-dependent population equation with delayed birth process[END_REF][START_REF] Fragnelli | The asymptotic behavior of a population equation with diffusion and delayed birth process[END_REF], but none with such laws, at least to our knowledge.

1.2. Modeling with hysteresis. As already pointed out, we shall not consider the system (2) as it is, but add an hysteresis parameter to it. Indeed, because the function n = ρ 3 actually represents the particles volume in terms of growth units, it only makes sense for values larger or equal to 1. Now, although such a property is implicitly assumed in [START_REF] Noguera | Nucleation, growth and ageing in closed systems I: a unified model for precipitation in solution, condensation in vapor phase and crystallization in the melt[END_REF], it has no reason to be fulfilled by the solutions of (2). Therefore we have introduced the auxiliary parameter

χ (s, t) := H inf t ′ ∈[s,t] ρ(s, t ′ ) -1 with H(x) := 1 if x > 0, 0 otherwise, (5) 
{chi} and considered the following system:

∂ t ρ(s, t) = w χ (s, t) S(t) -exp ν ρ(s, t) for t ≥ s, ρ(s, s) = ν ln S(s) S(t) = S 0 -J t 0 exp - νρ 2 (s, s) 2 ρ 3 (s, t) -1 ds. ( 6 
)
{sys} Here χ (s, t) represents the activity at time t of the class ρ(s, •): it is 1 as long as the class has more than one growth unit, and jumps from 1 to 0 as ρ(s, •) reaches the critical value 1. Then the class is like "dead": its size ρ(s, •) remains equal to 1, and according to the nucleation law (4), it does not contribute to the dynamics anymore.

Note that χ indeed models an hysteresis phenomenon in the classical sense: the

operator Λ : C([0, T ); R) → C([0, T ); R) defined by Λφ(t) := H inf t ′ ∈[s,t] φ(t ′ ) -1
is an hysteresis operator of damage type -according to the terminology of Let us end this introduction by stating necessary bounds for S: first, we easily infer from ρ ≥ 1 that the initial data S 0 is an upper bound for S, hence the natural assumption S 0 < e ν suffices to ensure that every new class nucleates with a size ρ(s, s) greater than 1. Second, we observe that 1 is a lower bound for S, in that the solution (more precisely, the size of each new born particles) blows up when that value is reached. Note that this is not contradictory with the fact that S = 1 corresponds to the thermodynamic equilibrium, because the nucleation process occurs at an instantaneous rate F := F 0 exp(-u/ ln 2 S) which rapidly tends to 0 as S tend to 1.

Although continuity is a natural requirement for S and ρ(s, •), it is not clear whether ρ must be continuous with respect to its first argument. We shall nevertheless look for solutions (ρ, S) to [START_REF] Perthame | Transport equations in biology[END_REF] in spaces of the form R T × S T , which are defined for any given final time T and initial value S 0 by

R T := {ρ ∈ C(D T ; R) : 1 ≤ ρ(s, t)}, S T := {S ∈ C([0, T ); R) : 1 < S(t) ≤ S 0 < e ν }.
Our main result is then the following.

Main Theorem. For any set of positive dimensionless parameters ν = (2u) 1/3 , w, J, and initial data S 0 ∈ (1, e ν ), the system (6) possess a unique global solution (ρ, S) on R ∞ × S ∞ . Moreover the solution is locally stable with respect to the parameters, in the sense that if (ρ, S) and (ρ, S) are the solutions corresponding to admissible parameters D := (ν, w, J, S 0 ) and D := (ν, w, J, S0 ), respectively, then for any T < ∞ we have

S -S L ∞ (0,T ) ≤ C D -D ℓ ∞
for a constant C that only depends on T and on M := (D, D) ℓ ∞ .

Note that no stability result is expected with respect to ρ, due to the fact that this variable may grow arbitrarily as S approaches 1. The proof is organized as follows. In Section 2 we start by considering finite times T < ∞ and establish existence and uniqueness of solutions to an auxiliary problem: Given S ∈ S T , find

ρ S ∈ R T such that ∂ t ρ S (s, t) = w χ (s, t) S(t) -exp ν ρ S (s, t) for t ≥ s, ρ S (s, s) = ν ln S(s) (7) {parsys}
holds. Next we study solutions to the complete system in Section 3: by showing that the mapping Q T : S T → C([0, T ); R), defined for any T < ∞ by

Q T S(t) := S 0 -J t 0 exp - νρ 2 S (s, s) 2 ρ 3 S (s, t) -1 ds, (8) 
{QT} where ρ S is the unique solution of ( 7), possess unique fixed points S = S T for sufficiently small T , we first establish the existence of a maximal solution to [START_REF] Perthame | Transport equations in biology[END_REF].

We finally show that the solution is always global, and in Section 4 we establish the local stability.

2. Well-posedness of the partial problem involving hysteresis. In this section we shall prove existence and uniqueness of solutions to Problem [START_REF] Piazzera | An age-dependent population equation with delayed birth process[END_REF], and for that purpose we define a mapping P S,T : R T → L ∞ (D T ) for T < ∞ and S ∈ S T , as follows. For any ρ ∈ R T , s ∈ [0, T ), we first denote by f S,ρ ∈ C(D T ; R) the function

f S,ρ (s, t) := ν ln S(s) + w t s S(t ′ ) -exp ν ρ S (s, t ′ ) dt ′
and let τ (S, ρ, s) := inf{t ∈ [s, T ) : f S,ρ (s, t) ≤ 1} be the first time where f S,ρ (s, •) reaches 1 (remember that S(s) ≤ S 0 < e ν , hence f S,ρ (s, s) > 1, for any S ∈ S T ). For later purposes we shall adopt the convention that τ (S, ρ, s) := T whenever f S,ρ (s, •) is greater than 1 over [s, T ), hence τ (S, ρ, s) is always in [s, T ], and τ (S, ρ, s) < T implies f S,ρ (s, τ (S, ρ, s)) = 1. Next we set for any (s, t)

∈ D T (P S,T ρ)(s, t) := f S,ρ (s, t) if s ≤ t ≤ τ (S, ρ, s) 1 if τ (S, ρ, s) < t < T. (9) 

{PST}

As it can be checked, ρ is a fixed point of P S,T if and only if it is a solution to (7); hence we can derive the well-posedness of the latter by applying a fixed point theorem to P S,T . Let us recall that according to the Picard-Banach theorem (see e.g. [START_REF] Granas | Fixed point theory[END_REF]), if a mapping m : E → E is contracting on the Banach space E, then it possess a unique fixed point. For later purposes we also recall the following elementary corollary: if (at least) one iterate m p is contracting on E, then again m possess a unique fixed point. Now, it is clear that the function P S,T ρ is always bounded below by 1, and it is easily seen that it is Lipschitz, hence continuous, with respect to its second argument t: indeed we have

∂ t (P S,T ρ)(s, t) ≤ w S(t) -exp ν ρ(s, t) ≤ w(e ν -1), ( 10 
)
{Prho lip} but for general S and ρ, it has no reason to be continuous with respect to s. One can think for instance of the case where f S,ρ is lower than 1 on a ball B 2 m, r := {(s, t) ∈ D T : (s, t) -m 2 ≤ r} and greater than 1 outside B 2 m, R with R > r, which is always possible if S is bounded away from e ν (and for sufficiently large T ), by carefully choosing ρ ≥ 1. In order to apply a fixed point theorem we shall therefore restrict ourselves to the subset

R S,T := {ρ ∈ R T : ρ ≤ P S,T ρ} ⊂ R T ,
which, apart from clearly containing all the fixed points of P S,T , enjoys the following properties.

Lemma 2.1. For any S ∈ S T , R S,T is a closed, non-empty subset of R T such that

P S,T (R S,T ) ⊂ R S,T , (11) 
{submap} moreover the mapping P S,T is contracting on R S,T when equipped with the norm

ρ ∞,k := sup (s,t)∈D T e -k(t-s) |ρ(s, t)|, k := wνe ν , ( 12 
) {knorm} which clearly satisfies e -kT ρ L ∞ (D T ) ≤ ρ ∞,k ≤ ρ L ∞ (D T ) .
Before going further, we already observe that these properties permit to apply the Picard-Banach fixed point theorem, and by using (10), establish the following Theorem 2.2. For any S ∈ S T , the mapping P S,T possess a unique fixed point ρ S in R T . In particular, the auxiliary problem [START_REF] Piazzera | An age-dependent population equation with delayed birth process[END_REF] involving hysteresis admits a unique (continuous) solution. Moreover this solution is Lipschitz with respect to its second argument:

∂ t ρ S L ∞ (D T ) ≤ w(e ν -1). ( 13 
) {rho lip}
In order to prove Lemma 2.1 we shall begin with an elementary property of the mapping P S,T .

Lemma 2.3. For any S ∈ S T , we have P S,T ρ 1 ≤ P S,T ρ 2 as long as ρ 1 ≤ ρ 2 .

Proof. Take ρ 1 and ρ 2 in R T , such that ρ 1 ≤ ρ 2 on D T : since x → -exp(ν/x) is increasing on [1, ∞) we have f S,ρ1 (s, t) ≤ f S,ρ2 (s, t) for any (s, t) ∈ D T , hence τ (S, ρ 1 , s) ≤ τ (S, ρ 2 , s) by construction. In particular, for any s ∈ [0, T ) we have

P S,T ρ 2 (s, t) = 1 = P S,T ρ 1 (s, t) for τ (S, ρ 2 , s) ≤ t < T, P S,T ρ 2 (s, t) > 1 = P S,T ρ 1 (s, t)
for τ (S, ρ 1 , s) ≤ t < τ (S, ρ 2 , s), and finally for s ≤ t < τ (S, ρ 1 , s), we have

P S,T ρ 2 (s, t) -P S,T ρ 1 (s, t) = -w t s exp ν ρ 2 (s, t ′ ) -exp ν ρ 1 (s, t ′ ) dt ′ ≥ 0,
which ends the proof.

Let us now address the important properties of the set R S,T .

Proof of Lemma 2.1. First of all we observe that by construction of P S,T , R S,T contains the constant function ρ(s, t) = 1, hence it is a non empty subset of R T .

In order to show that it is closed (with respect to the sup norm), let us consider a sequence ρ n ∈ R S,T , n ∈ N, which tends uniformly to some ρ. Because R T is closed we know that ρ ∈ R T , hence if we establish the pointwise convergence of P S,T ρ n towards P S,T ρ, i.e., 

P
f S,ρn (s, τ (s)) → f S,ρ (s, τ (s)) = 1. ( 16 
)
{f1}

Moreover there would be a subsequence ρ ϕ(n) , n ∈ N, and some α > 0, such that

τ (s) + α < τ ϕ(n) (s), for n ∈ N, (17) 
{tau+a} and by using again the continuity of Φ s,t this would give

f S,ρ (s, t) = lim n→∞ f S,ρ ϕ(n) (s, t) ≥ 1, for t ≤ τ (S, ρ, s) + α,
which together with (16) implies that

0 ≤ ∂ t f S,ρ (s, τ (s)) = w S(τ (s)) -exp ν ρ(s, τ (s)) . ( 18 
)
{dtf} Now, (17) would also yield

P S,T ρ ϕ(n) (s, τ (s)) = f S,ρ ϕ(n) (s, τ (s) 
) for any n, according to the definition of P S,T , hence

1 ≤ ρ(s, τ (s)) = lim n→∞ ρ ϕ(n) (s, τ (s)) ≤ lim n→∞ P S,T ρ ϕ(n) (s, τ (s)) = lim n→∞ f S,ρ ϕ(n) (s, τ (s)) = 1
where we have also used that ρ ∈ R T , ρ ϕ(n) ∈ R S,T for any n, and (16). In particular, ρ(s, τ (s)) = 1, which contradicts (18): indeed any S ∈ S T must satisfy S(t) ≤ S 0 < e ν . It follows that τ + (s) ≤ τ (s). Let us now assume τ -(s) < τ (s), and let ρ ψ(n) , n ∈ N, be a subsequence of ρ n that satisfies

τ ψ(n) (s) < τ (s) and τ ψ(n) (s) → τ -(s). ( 19 
) {tau-} Because this first imply τ ψ(n) (s) < T , we would have f S,ρ ψ(n) (s, τ ψ(n) (s)) = 1 for any n, hence f S,ρ (s, τ -(s)) = lim n→∞ f S,ρ ψ(n) (s, τ ψ(n) (s)) = 1 by using the continuity of Φ s : [s, T ) × R T → R, (t, ρ) → f S,ρ (s, t)
. Now, the latter equality is clearly contradictory with τ -(s) < τ (s), therefore we must have τ -(s) = τ (s) = τ + (s), which proves our claim (15). We are then ready to prove the announced pointwise convergence property (14), and to do so we consider three cases, as follows: (i) if t < τ (s), then from (15) we have t < τ n (s) for n sufficiently large, hence

lim n→∞ P S,T ρ n (s, t) = lim n→∞ f S,ρn (s, t) = f S,ρ (s, t) = P S,T ρ(s, t),
by using again the continuity of the mapping Φ s,t : ρ → f S,ρ (s, t). (ii) if τ (s) < t, then we have τ n (s) < t for n sufficiently large, and lim n→∞ P S,T ρ n (s, t) = 1 = P S,T ρ(s, t).

(iii) finally if τ (s) = t < T , then P S,T ρ(s, t) = f S,ρ (s, t) = 1, and denoting

N -:= {n ∈ N : τ n (s) < τ (s) = t}, N + := N \ N -,
we observe that P S,T ρ n (s, t) = 1 for n ∈ N -, whereas

lim n→∞ P S,T ρ n (s, t) = lim n→∞ f S,ρn (s, t) = f S,ρ (s, t) = 1 for n ∈ N + .
At this point we have shown that R S,T is a closed, non-empty subset of R T (equipped with the sup norm). ⋄

Let us now prove the embedding (11), i.e., that P S,T maps R S,T into itself. For this purpose we consider an arbitrary ρ ∈ R S,T . Since we have P S,T ρ ≥ 1 by construction, and ρ ≤ P S,T ρ =⇒ P S,T ρ ≤ P S,T (P S,T ρ) by using Lemma 2.3, we only need to show that P S,T ρ is continuous, and more precisely, that it is continuous with respect to its first argument s since it is clearly Lipschitz with respect to t, see (10). Let us then take s, s ′ , t ∈ [0, T ) such that s < s ′ ≤ t, and estimate the difference ∆(s, s ′ , t) := P S,T ρ(s ′ , t) -P S,T ρ(s, t) by distinguishing the relative positions of t, τ (s) := τ (S, ρ, s) and τ (s

′ ) := τ (S, ρ, s ′ ). We have ∆(s, s ′ , t) = 0 if max{τ (s), τ (s ′ )} < t, and 
∆(s, s ′ , t) = ν ln S(s ′ ) - ν ln S(s) =: δ1(s,s ′ ,t) + w s ′ s e ν ρ(s,t ′ -S(t ′ ) dt ′ =: δ2(s,s ′ ,t) + w t s ′ e ν ρ(s,t ′ -e ν ρ(s ′ ,t ′ dt ′ =: δ3(s,s ′ ,t) if t ≥ min{τ (s), τ (s ′ )}. For the intermediate cases we can check that ∆ -(δ 1 + δ 2 + δ 3 ) (s, s ′ , t) =    w t τ (s) S(t ′ ) -e ν ρ(s,t ′ dt ′ if τ (s) ≤ t < τ (s ′ ) -w t τ (s ′ ) S(t ′ ) -e ν ρ(s ′ ,t ′ dt ′ if τ (s ′ ) ≤ t < τ (s).
Now if τ (s) < τ (s ′ ) (the other case will follow by the same argument), because τ (s) < T we observe that

P S,T ρ(s ′ , t ′ ) ≤ 1 = P S,T ρ(s, t ′ ) for t ′ ≥ τ (s) (20) {ss'}
which first implies that ∆(s, s ′ , t) ≥ 0, and second by using 1 ≤ ρ ≤ P S,T ρ, that ρ(s, t ′ ) = 1 for t ′ ≥ τ (s), hence

w t τ (s) S(t ′ ) -e ν ρ(s,t ′ dt ′ = w t τ (s) S(t ′ ) -e ν dt ′ ≤ 0 for t ′ ≥ τ (s).
Therefore we have

0 ≤ ∆(s, s ′ , t) ≤ (δ 1 + δ 2 + δ 3 )(s, s ′ , t)
in the case where τ (s) ≤ t < τ (s ′ ), and the same reasoning yields the reverse inequalities in the case where τ (s ′ ) ≤ t < τ (s). Summing up, we see that we always have |∆(s, s ′ , t)| ≤ (δ 1 + δ 2 + δ 3 )(s, s ′ , t) , and we easily check that every δ i (s, s ′ , t) goes to 0 as s → s ′ , which establishes the continuity of P S,T ρ, hence the embedding (11). ⋄

In order to finish the proof it remains to show that the operator P S,T is contracting over (R S,T , • ∞,k ). To do so, let us take ρ 1 , ρ 2 in R S,T and estimate the difference D(s, t) := P S,T ρ 2 (s, t) -P S,T ρ 1 (s, t) according to the relative positions of t, τ 1 (s) := τ (S, ρ 1 , s) and τ 2 (s) := τ (S, ρ 2 , s). Clearly, we have D(s, t) = 0 for t ≥ max{τ 1 (s), τ 2 (s)}, and

D(s, t) = w t s exp ν ρ 1 (s, t ′ -exp ν ρ 2 (s, t ′ dt ′ =: d(s, t)
for t ≤ min{τ 1 (s), τ 2 (s)}. In the intermediate case where τ 1 (s) ≤ t < τ 2 (s), we have

D(s, t) = d(s, t) + w t τ1(s) S(t ′ ) -exp ν ρ 1 (s, t ′ dt ′ . Now, by observing that 1 ≤ ρ 1 (s, t) ≤ P S,T ρ 1 (s, t) = 1 ≤ P S,T ρ 2 (s, t) for t > τ 1 (s)
we first see that D(s, t) ≥ 0 in this case. Second we infer ρ 1 (s, t) = 1 for t > τ 1 (s), hence according to S(t ′ ) ≤ S 0 < e ν , t τ1(s) S(t ′ ) -exp ν ρ1(s,t ′ dt ′ ≤ 0, which finally yields 0 ≤ D(s, t) ≤ d(s, t). Note that by symmetry, we have 0 ≥ D(s, t) ≥ d(s, t) when τ 2 (s) ≤ t < τ 1 (s). Summing up, we find that |D(s, t)| ≤ |d(s, t)| for any (s, t) ∈ D T , hence (remember that k = wνe ν )

|D(s, t)| ≤ k t s |ρ 2 (s, t ′ ) -ρ 1 (s, t ′ )| dt ′ indeed the mapping x ∈ [1, ∞) → e ν/x has Lipschitz constant νe ν . Next we compute k t s |ρ 2 (s, t ′ ) -ρ 1 (s, t ′ )| dt ′ ≤ t s ke k(t ′ -s) dt ′ ρ 2 -ρ 1 ∞,k ≤ (e k(t-s) -1) ρ 2 -ρ 1 ∞,k ≤ e k(t-s) L k ρ 2 -ρ 1 ∞,k
with L k := 1 -e -kT < 1, and it follows that

P S,T ρ 2 -P S,T ρ 1 ∞,k := sup (s,t)∈D T e -k(t-s) |D(s, t)| ≤ L k ρ 2 -ρ 1 ∞,k ,
which shows that P S,T is indeed contracting on (R S,T , • ∞,k ), and ends the proof of Lemma 2.1.

3.

Continuous solutions to the complete system. In this section we shall establish the existence and uniqueness of solutions to the complete system (6) with the aid of the operator Q T : R T → C([0, T ); R), defined for any T < ∞ by (8), i.e.,

Q T S(t) := S 0 -J t 0 exp - νρ 2 S (s, s) 2 ρ 3 S (s, t) -1 ds
where ρ S denotes the unique solution of the auxiliary system (7) -or equivalently, the unique fixed point of P S,T -which existence is guaranteed by Theorem 2.2. Indeed, it is readily checked that the couple (S, ρ S ) is a solution of (6) (on S T ×R T ) if and only if S is a fixed point of Q T .

3.1. Existence of maximal solutions. Again we shall apply the Picard-Banach fixed point theorem, and in order to do so we first establish the following result. 

|Q T Z(t) -Q T S(t)| ≤ C T,α t 0 |Z(s) -S(s)| ds (21) {Qlip}
for a constant C T,α that depends on T , α, ν, w and J.

For later purposes we let

q S (s, t) := exp - νρ 2 S (s, s) 2 ρ 3 S (s, t) -1 (22) {qS} so that Q T S(t) = S 0 -J t 0 q S (
s, t) ds, and denote by C T,α a generic constant that depends on T and α (in addition to ν, w, J), and which value may vary at each occurrence.

Proof. Let us start with a uniform bound for ρ: for any S ∈ S T,α we have Turning to the difference ∆(s, t) := ρ Z (s, t) -ρ S (s, t), we first check that

|∆(s, s)| = ν ln 2 α |Z(s) -S(s)| for all s ∈ [0, T ).
and in order to write estimates out of the diagonal, we distinguish between different cases corresponding to the relative positions of t, τ S (s) := τ (S, ρ S , s) and τ Z (s) := τ (Z, ρ Z , s): for t ≥ max{τ S (s), τ Z (s)}, we clearly have ∆(s, t) = 0, and

∆(s, t) = ∆(s, s) + w t s (Z -S)(t ′ ) -e ν ρ Z (s,t ′ ) -e ν ρ S (s,t ′ ) dt ′ =: δ(s,t)
for t ≤ min{τ S (s), τ Z (s)}. Now, in the intermediate case τ S (s) ≤ t < τ Z (s), we find (by using that τ S (s) < T )

ρ Z (s, t ′ ) ≥ 1 = P S,T ρ S (s, t ′ ) = ρ S (s, t ′ ) for t ′ ≥ τ S (s), hence 0 ≤ ∆(s, t) = ∆(s, s) + δ(s, t) + w t τ S (s) S(t ′ ) -e ν ρ S (s,t ′ ) dt ′ ≤ ∆(s, s) + δ(s, t).
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Note that by symmetry, 0 ≥ ∆(s, t) ≥ ∆(s, s) + δ(s, t) when τ Z (s) ≤ t < τ S (s). Therefore we have for any (s, t)

∈ D T |∆(s, t)| ≤ |∆(s, s)| + |δ(s, t)| ≤ C T,α |Z(s) -S(s)| + t s |Z(t ′ ) -S(t ′ )| + |∆(s, t ′ )| dt ′ ≤ C T,α |Z(s) -S(s)| + t s |Z(t ′ ) -S(t ′ )| dt ′
where we have used (again) that x ∈ [1, ∞) → e ν/x has Lipschitz constant νe ν in the second inequality, and the Gronwall Lemma in the third inequality. As for the differences q Z -q S , we find by using ( 22) and ( 23)

|q Z (s, t) -q S (s, t)| ≤ C T,α |∆(s, s)| + |∆(s, t)| , hence |Q T Z(t) -Q T S(t)| ≤ t 0 |q Z (s, t) -q S (s, t)| ds ≤ C T,α t 0 |∆(s, s)| + |∆(s, t)| ds ≤ C T,α t 0 |Z(s) -S(s)| + t s |Z(t ′ ) -S(t ′ )| dt ′ ds ≤ C T,α t 0 |Z(s) -S(s)| ds ends the proof.
This yields the following result, which we shall next extend to global solutions. Theorem 3.2. There exists a unique maximal solution to the complete system [START_REF] Perthame | Transport equations in biology[END_REF]. More precisely, for any S 0 there is a time T > 0 such that Q T possess a unique fixed point (which provides a solution of (6) on S T × R T ), moreover if S 1 and S 2 are the respective fixed points of Q T1 and

Q T2 with T 1 < T 2 , then S 1 = S 2 | [0,T1) .
Proof. Let S 0 be fixed, and consider two positive times T and T * that satisfy 0 < T ≤ T * < ∞. According to (13), we have |ρ S (s, t)| ≤ |ρ S (s, s)| + wT * (e ν -1) on D T , hence

q S (s, t) ≤ exp - νρ 2 S (s, s) 2 (|ρ S (s, s)| + wT * (e ν -1)) 3 + 1 ≤ C * ( 24 
)
{qbound} with a constant that only depends on T * and on the dimensionless parameters w, ν. By chosing T ≤ min{T * , S0 2JC * }, we then get

Q T S(t) = S 0 -J t 0 q S (s, t) ds ≥ S 0 -JT C * ≥ S 0 /2,
for any S ∈ S T , in particular we see that Q T maps the Banach space (S T,S0/2 , L ∞ ) into itself. In order to apply the Picard-Banach theorem (more precisely, its p-th iterate corollary) we next estimate n p (t

) := |(Q T ) p Z(t) -(Q T ) p S(t)| for Z, S in S T,S0/2
with a classical bootstrap technique: since n 0 (s) ≤ Z -S L ∞ (0,T ) for any s ∈ [0, T ) and according to Lemma 3.1, we have by induction for any p ≥ 1

n p (t) ≤ C 0 t 0 n p-1 (s) ds ≤ C 0 t 0 (C 0 s) p-1 (p -1)! Z -S L ∞ (0,T ) ds ≤ (C 0 t) p p! Z -S L ∞ (0,T )
where C 0 := C T,S0/2 denotes the (fixed) constant appearing in (21). It follows that for sufficiently large p the iterate (Q T ) p is a contractive mapping on (S T,S0/2 , L ∞ ), and by the Picard-Banach theorem this yields the existence of a unique fixed point S ∈ S T,S0/2 of Q T , hence a unique solution (ρ, S) = (ρ S , S) to the system (6) corresponding to the final time T . In order to show that two solutions S 1 , S 2 corresponding to different times T 1 < T 2 coincide on [0, T 1 ), let us observe that if ) , the associated partial solution ρ * 1 (defined as the unique fixed point of P S * 1 ,T1 ) coincides with 2 on D T1 , hence q S * 1 coincides with q S2 on [0, T 1 ), and in particular we have

S * 1 := S 2 | [0,T1
Q T1 S * 1 (t) = S 0 -J t 0 q S * 1 (s) ds = S 0 -J t 0 q S2 (s) ds = S 2 (t) = S * 1 (t) for t < T 1 , i.e., S * 1 (t) is a fixed point of Q T1 .
The announced result clearly follows from the uniqueness of this fixed point.

Note that we just have seen that if the function S 2 ∈ S T2 is a fixed point of Q T2 , then its restriction to any interval [0, T 1 ) with T 1 < T 2 is a fixed point of Q T1 . In for all initial data S 0 there exists a largest time

T max := sup{T > 0 : Q T admits a fixed point in S T } (25) {Tmax}
the maximal solution to [START_REF] Perthame | Transport equations in biology[END_REF]. According to Theorem 3.2 we already know that this time is always positive. The remainder of this section is devoted to show that it can never be finite.

Existence of global solutions. Let us begin with an intermediate result.

Lemma 3.3. If the maximal time T max given by (25) is finite, then the maximal solution (ρ, S) to (6) satisfies

S(t) → 1 as t → T max . Proof. Since S (restricted to [0, T )) is a fixed point of Q T for any T < T max , we have S ′ (t) = -J t 0 ∂ t q S (s, t) ds + q S (t, t) for t < T max (26) {Sder} with q S (s, t) = exp -νρ 2 (s,s) 2 (ρ 3 (s, t) -1) ≥ 0.
In particular, we know from (24) that q S is bounded on any bounded set, and by using (13) and (23) we find that

|∂ t q S (s, t)| = 3 exp - νρ 2 (s, s) 2 ρ 2 (s, t)|∂ t ρ(s, t)| ≤ C exp - νρ 2 (s, s) 2 (ρ 2 (s, s) + 1) ≤ C ′ (27) {qlip t}
with constants C, C ′ depending on T max , w and ν, hence S ′ is bounded on the bounded interval [0, T max ) . In particular, it is easy to check that S possess a limit on T max which we shall denote by S(T max ) and which, by construction, is larger or equal to 1. Let us now show that if S(T max ) > 1, it would be possible to extend the maximal solution beyond T max , yielding a contradiction. To do so we first consider an auxiliary time T ∈ (T max , 2T max ] and introduce the set 

Q Tmax, T Z(t) := S(T max ) -J Tmax 0 q Z (s, t) -q Z (s, T max ) ds -J t Tmax q Z (s, t) ds
for any t in [T max , T ). Let us observe that up to choosing T close enough to T max , the resulting Q Tmax, T Z is bounded below α: indeed, according to (24) and ( 27), there exists constants c, c ′ depending only on T max , ν, w and J such that

Q Tmax, T Z(t) ≥ S(T max ) -J T sup s≤Tmax |q Z (s, t) -q Z (s, T max )| -J|t -T max |c ≥ S(T max ) -|t -T max |c ′ .
Hence by choosing T so that

T max < T ≤ T max + min{T max , (S(T max ) -α)/c ′ },
we find that Q Tmax, T Z(t) ≥ α for all t ∈ [T max , T ). As in the proof of Theorem 3.2, we next observe that because S and Z coincide on [0, T max ), q S and q Z coincide on D Tmax . In particular, we have

Q Tmax, T Z(t) = S(T max ) + J Tmax 0 q S (s, T max ) ds S0 -J t 0 q Z (s, t) ds, (28) 
{Qtbis} which shows that Q Tmax, T Z is nothing but the restriction of Q T Z to [T max , T ). From these facts we can infer that Q T maps the Banach set S S T := {Z ∈ C([0, T )) : Z| [0,Tmax) = S and Z| [Tmax, T ) ∈ S Tmax, T } into itself. Because this is a subset of S T , the arguments detailed in the proof of Theorem 3.2 show that one iterate of Q T is contractive on S S T . Therefore Q T possess one fix point in the small set, hence in S T , which yields a contradiction with the definition of T max .

According to the above lemma, we now know that the maximal solution S is continuous on the closed interval [0, T max ] in the case where the latter is bounded. In order to prove our Main theorem, we are thus left to show the following Lemma 3.4. The maximal time T max given by (25) is infinite.

Proof. In order to establish this result we will assume that T max is finite, and show that Lemma 3.3 yields a contradiction. First, observe that since ρ is Lipschitz with respect to t, it is continuous on every closed interval [s, T max ] with s < T max . Next we introduce the set A := {s ∈ [0, T max ) : τ (S, ρ, s) = T max } and remember from Section 2 that ∂ t ρ(s, T max ) = 0 holds for all s ∈ A, whereas for s ∈ A we have ∂ t ρ(s, t) = w(S(t)-exp ν ρ(s,t) ). According to the above observation, the latter expression is continuous on the closed interval [s, T max ], hence by using Lemma 3.3 we have

∂ t ρ(s, T max ) = w 1 -exp ν ρ(s, T max )
< 0 for all s ∈ A, since ρ ≥ 1 by construction. Now, assume for a moment that the set A is of zero measure: ρ(s, T max ) = 1 for any s outside A, this would yield

S(T max ) = S 0 -J A exp - νρ 2 (s, s) 2 (ρ 3 (s, T max ) -1) ds = S 0 > 1,
hence a contradiction with Lemma 3.3. It follows that A is of positive measure. Let us now consider the derivative of S. By using again Lemma 3.3 we observe that ρ(t, t) → ∞ as t → T max hence

q S (t, t) = exp - νρ 2 (t, t) 2 ρ 3 (t, t) -1 → 0 as t → T max .
In addition we note that for all s ∈ A,

lim t→Tmax ∂ t q S (s, t) = 3 exp - νρ 2 (s, s) 2 ρ 2 (s, T max )∂ t ρ(s, T max ) < 0,
whereas this limit vanishes for s ∈ A. By gathering the above arguments we find lim t→Tmax S ′ (t) = -J Tmax 0 ∂ t q S (s, T max ) ds = -J A ∂ t q S (s, T max ) ds > 0, which clearly contradicts the fact that S(t) > 1 = S(T max ) for t < T max .

4. Stability with respect to the parameters. In this section we shall establish the following stability result, which completes our Main Theorem. Remark 1. As already pointed out in the introduction, we shall emphasize that no stability is expected to hold with respect to ρ, as this variable is not even bounded on compact sets. so that q(s, t) = q S (s, t) = r 3 (s, t) -ε 3 (s), and hence

S(t) = S 0 -J t 0 r 3 (s, t) -ε 3 (s) ds.
As it can be easily checked, ε(s) and r(s, t) are bounded: indeed we clearly have 0 < ε(s) ≤ 1, and it follows from (23) that

0 ≤ r(s, t) ≤ ε(s) ρ(s, s) + C ≤ C. ( 29 
) {boundr}
As a first consequence we see that In order to finally write an estimate for ∆ r , we next observe that (on D T ) ∆ r = ερ -ερ = (εε) 1/2 ∆ ρ + (ε 1/2 ρ + ε1/2 ρ)(ε 1/2 -ε1/2 ). This is helpful indeed, since by using that ε and ε are uniformly bounded (by 1), we can first check that, as in (31), we have 

|∆ S (t)| ≤ C |∆ D | + t 0 |∆ r (s, t)| + |∆ ε (s)| ds . ( 30 

{adp}

  with balance and (delayed) birth laws respectively given by G(φ, a) := w exp ν/φ(0) -exp ν/φ(a) , (for any continous φ) andF (ℓ, t) := ν ln S 0 -J t 0 exp -νℓ 2 (0, t -a) 2 ℓ 3 (a, t) -1 da -1

Lemma 3 . 1 .

 31 Let α > 1. For any S, Z in the space S T,α := {S ∈ S T : S(t) ≥ α, t ∈ [0, T )}, and any t ∈ [0, T ), we have

  |ρ S (s, s)| = ν ln S(s) ≤ ν ln α for all s ∈ [0, T ) hence out of the diagonal we find, according to (13), |ρ S (s, t)| ≤ |ρ S (s, s)| + w(t -s)(e ν -1) ≤ ν ln α + wT (e ν -1). (23) {boundrho}

S

  Tmax, T := {Z ∈ C([T max , T )) : Z(T max ) = S(T max ) and α ≤ Z ≤ S 0 } with α := (S(T max ) -1)/2 > 1, then we construct a new operator Q Tmax, T on S Tmax, T as follows. For any Z ∈ S Tmax, T we denote by Z its continuous extension to [0, T ) obtained by stitching it to S, i.e., Z(t) := S(t)1 [0,Tmax) (t) + Z(t)1 [Tmax, T ) (t) for t ∈ [0, T ),and then we set

Theorem 4 . 1 .

 41 If (ρ, S) and (ρ, S) are the solutions (in R ∞ × S ∞ ) to 6 corresponding to admissible sets of data D := (ν, w, J, S 0 ) and D := (ν, w, J, S0 ), respectively, then for any T < ∞ we haveS -S L ∞ (0,T ) ≤ C D -D ℓ ∞for a constant C that only depends on T and on M := (D, D) ℓ ∞ .

Proof.

  For sake of conciseness we write in this proof ∆ S := S -S, ∆ ρ := ρ -ρ, ∆ w := w -w, . . . and finally ∆ D := D -D (for simplicity we shall write |∆ D | instead of ∆ D ℓ ∞ ). Moreover by C we will denote a generic constant depending on M and T , and which value may vary at each occurrence. Let us now introduce ε(s) := exp -ν 6 ρ 2 (s, s) = exp -ν 3 6 ln -2 S(s) and r(s, t) := ε(s)ρ(s, t),

  32) holds for all (s, t) ∈ D T . Let us now estimate the two last terms in the corresponding right hand side. With straightforward computations (and by making use of the intrinsic bounds satisfied by the solutions), we find that|wS(t ′ ) -w S(t ′ )| ≤ C |∆ w | + |∆ S (t ′ )| (33) {inrho1} and |we ν ρ(s,t ′ ) -we ν ρ(s,t ′ ) | ≤ C |∆ w | + |∆ ν | e ν ρ(s,t ′ ) -e ν ρ(s,t ′ ) ≤ C |∆ w | + |∆ ν | + |∆ ρ (s, t ′ )| . (34){inrho2} By gathering (32), (33), (34) and applying the Gronwall lemma, we thus obtain|∆ ρ (s, t)| ≤ |∆ ρ (s, s)| + C t s |∆ w | + |∆ S (t ′ )| + |∆ ν | + |∆ ρ (s, t ′ )| dt ′ ≤ |∆ ρ (s, s)| + C t s |∆ w | + |∆ S (t ′ )| + |∆ ν | dt ′ ≤ |∆ ρ (s, s)| + C |∆ D | +

  (εε) 1/2 (s)|∆ ρ (s, s)| ≤ |ε 1/2 (s)ρ(s, s) -ε1/2 (s)ρ(s, s)| ≤ C |∆ ν | + |∆ S (s)| ,second, by using (23) and computing as in (29),ε 1/2 (s)|ρ(s, t)| ≤ ε 1/2 (s) |ρ(s, s)| + C ≤ C(and similarly for ε1/2 ρ), and third, again as in (31),|ε 1/2 (s) -ε1/2 (s)| ≤ C |∆ ν | + |∆ S (s)| .According to (35), it thus follows that|∆ r (s, t)| ≤ (εε) 1/2 (s) |∆ ρ (s, s)| + C |∆ D | + t s |∆ S (t ′ )| dt ′ + ε 1/2 (s)ρ(s, t) + ε1/2 (s)ρ(s, t) (ε 1/2 (s) -ε1/2 (s)) ≤ C |∆ D | + |∆ S (s)| + t s |∆ S (t ′ )| dt ′ .Plugging this and (31) into (30) yields then (for any t ∈ [0, T ))|∆ S (t)| ≤ C |∆ D | + t 0 |∆ S (s)| + t s |∆ S (t ′ )| dt ′ ds ≤ C |∆ D | + 2 t 0 |∆ S (s)| ds ≤ C|∆ D |by using the Gronwall lemma, which ends this proof.

  -(s) ≤ τ + (s) ≤ T , and first assume τ (s) < τ + (s): this would yield τ (s) < T , hence f S,ρ (s, τ (s)) = 1, and by using the continuity of Φ s,t : R T → R, ρ → f S,ρ (s, t) we would have

	for any s ∈ [0, T ),	(15) {limtau}
	and this property will suffice to establish (14). In order to prove the claim, denote
	τ -(s) := lim inf	

S,T ρ n (s, t) → P S,T ρ(s, t) for any (s, t) ∈ D T , (14) {pointconv} we can infer that ρ(s, t) ≤ P S,T ρ(s, t) for any (s, t) ∈ D T , i.e., ρ ∈ R S,T . Note that due to the hysteresis phenomenon, P S,T is not continuous in general, think of the case where ρ n is such that f S,ρn reaches a minimum value 1 + 1/n over -at leasta fixed ball inside D T . Nevertheless we claim that τ n (s) := τ (S, ρ n , s) → τ (s) := τ (S, ρ, s) n→∞ τ n (s) and τ + (s) := lim sup n→∞ τ n (s), which always satisfy s ≤ τ

)

  {DS}It then remains to bound ∆ r and ∆ ε in terms of ∆ S (via the equation satisfied by ρ), and apply a gronwall Lemma to conclude. Let us carry out this program: by observing that both the functions φ :x ∈ (1, M ] → exp -ν 3 ln -2 (x)/6 and ψ : x ∈ (1, M ] → exp -ν 3 ln -2 (x)/6 ν ln -1 (x)are uniformly Lipschitz, we first find that max{|∆ ε (s)|, |∆ r (s, s)|} ≤ C(|∆ ν | + |∆ S (s)|).

				(31)
	t	we ν ρ(s,t ′ ) -we	ν ρ(s,t ′ )	dt ′
	s			

{inegve} Next, we turn to ∆ ρ and remind that according to Section 2, ρ reads

ρ(s, t) = ρ(s, s) + w t s S(t ′ ) -e ν ρ(s,t ′ ) dt ′ if s ≤ t ≤ τ (s) := τ (S, ρ, s) 1 if τ (s) < t

(and similarly for ρ, with τ ( S, ρ, s) denoted τ (s) for conciseness). It follows that for any (s, t) ∈ D T such that t > max{τ (s), τ (s)}, we have |∆ ρ (s, t)| = 0, whereas for s ≤ t ≤ min{τ (s), τ (s)}, it holds |∆ ρ (s, t)| ≤ |∆ ρ (s, s)| + t s |wS(t ′ ) -w S(t ′ )| dt ′ + t s |we ν ρ(s,t ′ ) -we ν ρ(s,t ′ ) | dt ′ . (32) {inrho} As for the remaining cases, say for τ (s) < t ≤ τ (s), we have ρ(s, t ′ ) = 1 for t ′ > τ (s) and S < e ν , hence 0 ≤ ∆ ρ (s, t) ≤ ∆ ρ (s, s) + t s wS(t ′ ) -w S(t ′ ) dt ′ +