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Abstract:  A dynamic crash loading experiment is performed on a polypropylene foam used in composite 
sandwich structures for safety applications. Several interrupted shocks are conducted, in between which 
microtomographic acquisitions are made, showing the evolution of the sample during its compression. This 
data can help construct and validate predictive models, although, because this material is multiscale 
(consitutive beads at the mesoscopic scale are made of microscopic closed cells), image processing is 
required to extract useful quantitative measurements. Such processing is described here, so as to determine 
a representative volume for each bead of the sample, in order to associate to each bead and to each stage 
of the compression values such as bead density. This can help build a predictive model at the mesoscopic 
scale. 
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ABSTRACT. A dynamic crash loading experiment is performed on a polypropylene foam 
used in composite sandwich structures for safety applications. Several interrupted shocks are 
conducted, in between which microtomographic acquisitions are made, showing the evolution 
of the sample during its compression. This data can help construct and validate predictive 
models, although, because this material is multiscale (consitutive beads at the mesoscopic 
scale are made of microscopic closed cells), image processing is required to extract useful 
quantitative measurements. Such processing is described here, so as to determine a 
representative volume for each bead of the sample, in order to associate to each bead and to 
each stage of the compression values such as bead density. This can help build a predictive 
model at the mesoscopic scale. 
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Introduction 
Composite multi-layers or sandwiches are becoming widely used in many industrial sectors 
for producing structural parts. Compiling an exhaustive list of all types of applications is 
difficult, but if we consider the transport sector, we find composite sandwiches for the 
aeronautic industry in key parts (wing leading edge, rudders). In the railroad industry, these 
structures are often used for wagon decor panels. As for the automotive and motorcycle 
industries, they are used in passive safety gear (bumpers or helmets). In all these applications, 
the intrinsic properties of light weight and rigidity are used. These sandwiches, composed of a 
core of cellular material and two composite skins, are light (since their constituents are of low 
density), rigid in traction and compression (the composite materials have good mechanical 
properties) but also in bending since the  foam core thickens the structure (and thus increases 
its quadratic moment while limiting its weight) and supports high bending moments. These 
properties are particularly interesting for producing functional structures that must sustain 
high stresses under normal conditions. During severe or extreme loadings (crashes or 
accidents), these structures must deform plasticly and absorbs the impact energy in order to 
protect either the rest of the structure or the passengers. In the case of a plane wing that can 
collide with a bird, the leading edge should be able to absorb the energy of the impact and 
lessen damage to the other structural elements. In a train accident, the composite decor panels 
must deform themselves if a passengers is thrown onto the structure. Finally, a car is the first 
passive safety element that protects the vehicle passenger or pedestrian involved in the 
accident. It is thus imperative to control the response of composite sandwiches to high stran 
rates. Characterisation of the behaviour of the composite material and core cellular material 
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under dynamic loadings is essential before considering numerical modelling of the real 
structure. The study we are particularly concerned with is the description of the cellular 
material behaviour during dynamic loading. 
Many studies have been carried out at the macroscopic scale to characterise the behaviour of 
this type of material under dynamic stresses [1-5]. Empirical laws were proposed to describe 
more or less accurately the relation between stress and strain according to different parameters 
such as density and strain rate (eventually the temperature). The behaviour of cellular material 
generally includes three steps in compression: an elastic response, a plastic regime with an 
important deformation of the material and quasi-constant stress, and finally a densification. It 
is the stress plateau of the plastic phase that is of interest for passive security applications 
since the material can absorb a significant fraction of the impact kinetic energy.  
The macroscopic laws used in finite element codes can coarsely describe the macroscopic 
behaviour of cellular materials (in the elastic and stress plateau phases) but do not take into 
account the localisations of the observed strains –and thus their heterogeneity. These laws, 
used in industry and numerically adjusted on the global stress curves, can be used to represent 
the behaviour of a large variety of cellular materials such as polymeric or aluminium foams. It 
is well known that for the former, the predominant phenomenon in its damage is the wall 
buckling of the constitutive cells whereas wall fractures can be observed in the latter. It is 
therefore essential to propose macroscopic behaviour models which take into account the 
physical phenomena observed at all scales (macroscopic scale, bead scale in the case of 
expanded polymeric foams and cell scale) of the cellular material structure. 
This study is part of a work whose aim is to propose a behaviour model based on the physical 
phenomena observed on expanded polymeric foam during dynamic loading. The structure of 
the considered polypropylene foam is multi-scale: at the mesoscopic scale, as seen in figure 
1a, the material consists of porous polypropylene beads agglomerated during manufacturing, 
beads that are composed of thousands of small closed cells, shown in figure 1b (microscopic 
scale). Evolution of this type of material under dynamic stress is thus foreseen by a multi-
scale description. It is obviously necessary to identify the global response of materials at the 
macroscopic scale for various strain rates, but also to investigate the response of the foam 
structure at the mesoscopic (that of the bead) and microscopic scales (that of the basic cell). 
Observation of the deformation of the meso- and microscopic walls (bead and cell) will be 
one of the elements that will help to establish phenomenological laws at these scales. 
Homogenisation methods will then be used to build a model describing the foam response at 
the macroscopic scale. The first step of this methodology, described in this article, is the 
observation, the comprehension and the characterisation of the physical phenomena. This step 
is essential to reach the final objective of foam structure modelling. The following steps will 
be to represent the polymeric foam by a polyhedral structure taking into account the two 
meso- and microscopic scales of the material (figure 1c) and to derive a macroscopic model 
fitting experimental results with numerical simulation ones.  
 
1. Material and methodology 
 Polypropylene foam 
A polypropylene foam is investigated in this paper. The plates of cellular material are 
obtained by moulding; the expanded plastic foam beads are injected into a plate mould (700 
mm x 400 mm x 24 mm), where individual beads are fused together under steam heat and 
pressure. The average density of each plate intrinsically depends on the quantity of expanded 
beads injected into the mould.  For this study, the density of the plate is 80 kg/m3. The 
moulding process, particularly injector and vent positions, induces density heterogeneities. 
Horizontally, measurements on a large number of samples cut out from this plate show values 
as large as 92 kg/m3. Vertically, i.e. through the thickness of the plate, density increases 



significantly near the surfaces (12%), whereas in the central region it is relatively uniform. 
Consequently, the selected samples (10 mm in diameter and height) were taken from the 
centre of the plate.  
 Methodology 
The physical phenomena observed on polymeric foams during dynamic compression has 
already been studied under specific conditions [6]. After impact, the buckling of both cell and 
bead walls have been observed by SEM. A strong heterogeneity of the residual deformation 
can be seen. However, the main difficulty of these observations lies in the sample cutting.  
Complementary measurements were taken during impact with the use of optical acquisition 
apparatus and image processing techniques (high-speed camera, optical fibre spotlights and 
Digital Image Correlation software). A strong heterogeneity of the strain field was shown, and 
strain localisations appear in layers perpendicular to the loading direction. The material 
damage progresses close to these zones during the stress plateau [6, 7]. However these 
observations are only possible on the free faces of the sample, implying that this method 
cannot estimate the strain field inside the foam structure.  

In light of these first results, microtomography was considered for observing the 
deformation inside the foam structure. Tomography is a non-invasive process of generating 
images of cross-sections from a series of transmission data acquired by illuminating the object 
from different directions. In the case of X-ray tomography, for each direction of illumination, 
the process is similar to radiography: the acquired transmission data gives a map of the rays 
attenuation. Figure 2 illustrates this: the centre object, consisting of an ellipse and a circle, is 
illuminated from two directions by a parallel beam, the acquired images are called 
projections, which are used to reconstruct cross-sections of the object. In reality, many more 
projections  are needed for an accurate reconstruction (900 in our case). 
The identification of the foam deformation and damage propagation in 3D from 
microtomography measurements needs an original dynamic test methodology [8]. The 
adopted experimental approach consists in carrying out several interrupted impacts on a given 
sample using a drop tower, and acquiring a microtomogram in between each impact. The 
sample (diameter and height of 10 mm) is scanned a first time before the first impact. During 
each compression, the deformation amplitude is limited to fixed values: 1mm for the first 
impact and 2 mm for the following ones. Figure 3 shows on the stress-strain curves the 
different states the sample was in when acquisitions were made. The sample is maintained 
compressed and replaced on the microtomography setup for another acquisition (points A, B, 
C…figure 3). A second microtomogram is recorded when the sample is completely unloaded 
(points A’,B’, C’…). These operations (impact and 2 X-ray scans) are repeated until 
densification of the foam. The cellular material strain can then be evaluated from the 3D 
reconstructions at each stage of the dynamic test.  

Microtomographic images presented in this paper have been obtained on the BM05 beam 
line at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France), with a 
beam energy of 16 keV. The acquired projections are 2028x2048 pixels radiographs, with a 
pixel corresponding to 4.91 µm.  
The 3D reconstruction uses pre- and post-processing to reduce artifacts and noise, such as hot 
spots or ring artifacts. 
 
From these measurements, a first analysis was done in 2D. The deformation of beads located 
in a vertical section of the foam was calculated for each step of the experiment [8] and bead 
density was estimated. This first study shows that there is not a strong correlation between the 
density of beads and their volume deformation, meaning that bead density is not the principal 
parameter influencing the deformation heterogeneity. However, the arrangement of beads, 
their shapes and the geometry of the meso-structure seem to have an influence of the strain 



field. These results encourage us to complete the analysis of this sample by examining the 
entire 3D volume and all the beads it contains, for two main reasons. Firstly, in a 2D analysis, 
it is necessary to consider bead displacement out of the vertical section as negligible. This 
assumption seems to be verified globally but can introduce some error in the estimation of the 
deformation. In 3D, this hypothesis is not necessary; the volume strain is only calculated from 
the change of bead volume and the 3D result is necessarily more accurate. Secondly, the 
deformation calculation on the whole of the sample can confirm the first results obtained –in 
2D- on a few number of beads. In 3D, the deformation of a larger number of beads of 
different density can be compared. 
The main difficulty of a 3D analysis is to extract the bead walls from the multi-scale structure: 
figure 4 shows that, it is difficult even interactively to accurately position the walls. This 
problem is minimised for other types of foams that have been more extensively studied, such 
as metallic foams. Typical digital image filters are not sufficient to extract these complex 
walls: noise reduction and thresholding produces structures with unrealistic porous zones and 
traces of cells or bubbles with thick walls, as illustrated in figure 5, which cannot be used to 
quantify bead volume changes or bead strain, let even to obtain a FE mesh of the foam 
morphology. 
To overcome this, a new approach for identifying the bead structure was developed. The 
method requires a perspicacious sequence of typical image processing operations to extract a 
more accurate representation of the bead structure that is useable for calculating bead strain. 

This paper presents the image analysis that was implemented to identify distinct regions in 
the microtomograms for each bead that makes up the foam. The method was applied at 
several steps of the loading and the evolution of bead strain can be estimated and compared to 
bead density. 
 
 
3. Image Analysis Methodology 
 

The purpose of this work is to understand the behaviour of polypropylene foam at the 
mesoscopic scale (scale of the beads), for which extracting pertinent data from the 
microtomographic images is required. To perform measurements on the beads, a 
representative volume in each one is determined. The final objective of this work is to follow 
the deformation of these Representative Bead Volumes (RBV) and to estimate the influence 
of bead density. This section describes the way these volumes are extracted. 

The method consists in two steps: firstly, a series of filters applied on the reconstructed 
volumes gives approximate positions for the bead centres, and secondly each centre serves as 
starting point for a deformable surface algorithm, in which a triangulated surface placed 
inside a bead expands until coming in contact with bead walls. These surfaces are used to 
delimit representative bead volumes in the microtomograms. 
 
 
3.1 Extracting approximate bead centres  

 
Estimating bead centre positions requires a sequence of basic filtering operators to be applied 
on the reconstructed image. Figure 6 summarises the filtering sequence, and figure 7 shows 
various intermediary results. First, the image is sub-sampled: each 4-pixel wide cube in the 
image is replaced by one pixel, dividing the size of the numerical volume by 64 (step a). This 
was done because of hardware limitations, but in no way affects the correctness of the 
method. The next operation partially removes phase contrast (due to X-ray diffraction at the 
interfaces between phases of the sample, an enhanced contrast appears around portions of 



bead and cell walls [10]) by removing darker areas: if a pixel p has an intensity i lower than 
the intensity i0, equivalent to the attenuation of the air, then they are set to i0 (step b). The 
reason for this is that at some point small features such as noise and microscopic cells need to 
be smoothed out, and if a gaussian filter is applied on the image containing phase constrast, 
i.e. light zones next to dark ones, a smoothing operator will level these areas to that of the rest 
of the image. A gaussian filter (step c) is then applied to remove noise and microscale features 
inside the beads. The next operator (step d), a gradient (the Sobel norm was used), highlights 
the bead edges.  

 
The next part consists in extracting most pixels from the bead walls, which is where the 

gradient is higher. Operations described here are based on notions of digital topology [10]. 
First a hysteresis thresholding is applied (i.e. the image is thresholded with a high and low 
value, giving two binarised images, respectively Ih and Il, then a geodesic dilation is applied to 
Ih in Il [11]), which makes for a better binarisation than a classical thresholding since the bead 
walls are connected (step e). The thresholds are chosen so as to extract enough of the bead 
walls to obtain a single connected component for these pixels, and as little as possible of the 
inside of the beads. The result does not contain all the pixels of the bead walls and contains a 
few noticeable cells around and inside the beads. The cells around the bead walls hardly affect 
the bead centre approximation, but the ones inside the cells should be removed, which is done 
by extracting the largest connected component (step f). Afterwards, to avoid the 
unreconstructed area of the image to influence the ensuing operations, a cylindrical mask is 
applied (step g): the resulting image has foreground pixels belonging either to the 
unreconstructed areas of the image or the bead wall borders.  

The resulting image at step g is used to compute a distance map (i.e. the intensity of each 
pixel of the background is set to its distance from the foreground), in which pixels close to the 
bead centre are darker, and those in and around the bead walls are lighter (step h). The 
distance map is then binarised by a thresholding operator (with a threshold value high enough 
to disconnect all the beads, since portions of the bead walls were missing from the image used 
for the distance map). In the binarised image, smaller connected components that appear at 
junctions between beads due to artifacts from the previous operations are removed. Finally an 
image with as many connected components as there are beads in the sample is obtained. What 
is finally defined as bead centres is the barycentres of these connected components. Figure 8 
depicts this result: an isosurface of the distance map is drawn, with the isosurface value 
corresponding to the threshold used. 
 
3.2 Deformable surfaces  
 

Each bead centre serves as initial position for a deformable surface: a closed triangulated 
surface, initially having a spherical shape, is placed inside the bead and expands under given 
conditions such that it converges towards pixels of higher intensity, i.e. bead walls.  

It might be suggested that the volumes delimited by the isosurfaces used to define the 
centres can be directly used to estimate bead strain. However, the volumes of the isosurfaces 
identified are not large enough to be considered representative of the bead (the set of 
isosurfaces only encompass about 35% of the sample volume). By using a deformable surface 
algorithm, larger portions of the bead interiors are determined (around 75%) which account 
for a better bead representativity.  

To obtain an RBV, the implemented algorithm is based on the works of Delingette et al. 
[12,13]. The evolution of the surface, which is a 3-simple mesh (a mesh in which each vertex 
is contained in exactly 3 facets), is an explicit model, i.e. the evolution is calculated at each 
step t, and is made by subjecting each vertex p of the mesh to a second order Newtonian law 
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and rj are respectively the simplex angle of nj and radius of the circle circumscribing the 
neighbours of nj. Convergence is achieved when, for each vertex, all forces are balanced and 
speed drops to zero. 

An essential factor for this approach is the choice of the image that defines the force field 

iF . This image should contain higher intensity values near the areas where the deformable 
mesh is to converge. Altough the initial image, the reconstructed microtomogram, appears to 
have suitable features for this process, the amount of noise, significant cell wall intensity and 
higher intensity near the sample periphery make it an inappropriate choice. The best results 
were obtained with a smoothed gradient, as in step d of figure 7. To avoid surfaces expanding 
outside of the sample bounding volume, a cylindrical mask was applied to this image, as in 
step g. Results of this algorithm (obtained from the image of the sample before impact) is 
shown in figure 10: each bead is represented by a surface, and compared to figure 8, these 
surfaces are more tightly packed. There is still however a notable intersticial volume in 
between the beads, which has no physical significance: in the material, foam beads are in 
contact with each other and no space exists between them (except in some regions neighbour 
to three or more beads). This is due both to areas where bead delimitations are not marked by 
strong intensity variations, and to cell walls which are as pronounced as bead walls (even to 
the naked eye it is sometimes unclear where bead walls are located, see figure 4). 
Nevertheless, the present task is not to completely encompass the bead volumes, but to obtain 
an RBV. 
 
4. Results 
This methodology is applied on the polypropylene foam sample and for each stage of 
dynamic loading. The first  numerical process makes it possible to detect 87 bead centres. 
From these points, the deformable surface algorithm was used to create 87 meshes 
corresponding to the representative volume of  foam beads (figures 11 and 16a, b and c). This 
method was applied for all the acquired tomograms (points A, A’, B, B’…, figure 3). It is then 
possible to represent the sample as a set of surfaces and better visualise its deformation during 
the experiment: figure 11 shows this representation before impact and after the second impact 
(respectively left and right view). Each mesh can then be extracted and its deformation, which 
approximated that of the corresponding bead,  studied separately; in many cases, the bead 



strain is more complex than the strain obtained under a simple homogeneous uniaxial 
compression. For instance, if we consider the bead marked as number 61 and shown in figure 
12, visual analysis for the two first impacts reveals a inhomogeneous deformation; the lower 
portion of the mesh seems to become more compressed than the rest [14]. 
This qualitative observation can be completed by quantitative measurement in using the 
features of numerical algorithm. Firstly, for each bead, voxels contained in the RBV are 
counted: this gives a lower bound of the bead volumes, since the volume of a voxel is 4.91 3 
µm3. The intersticial volume between beads can be quantified from the ratio between the 
volume of meshes and the one of the sample (which we suppose being a perfect cylinder). For 
the CT-scans before loading and after the first and second impacts, this ratio is close to 0.74. 
For the third and fourth impacts (where the macroscopic strain reaches 50 and 70 %), this 
ratio is respectively 0.64 and 0.51. It means that this algorithm is sufficiently precise to obtain 
meshes with a nearly constant intersticial volume if the macroscopic deformation of the 
sample is lower than 50 %. For higher deformation rates, the foam structure becomes too 
complex (during its densification) and the volumes bounded by the meshes are less 
representative of the beads.  
 
Secondly, an average grey level can be calculated for each bead, by using the intensities of the 
pixels of the tomograms that are contained in its corresponding mesh. With common image 
processing software, the average grey level of each RBV was calculated. Theoretically, there 
is a linear relation between the grey level of a pixel and the density of the corresponding 
volume element. Indeed, the tomographic reconstruction produces a 3D mapping of µ, the 
linear attenuation coefficient of the material. The grey level image is obtained by applying the 
following affine transformation to this 3D mapping: the grey level assigned to the pixels 
having a value lower than µmin is 0, for the pixels having a value larger than µmax it is 255, and 
in between a linear interpolation is applied. The values of µmin and µmax are determined by the 
local range of porosity and the amount of noise in the acquisition. Noting that: 
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where ρ is the density, φ the porosity, and subscripts air and pp refer respectively to air and 
polypropylene. 
Combining equations 2 and the linear relation between µ and the grey level (between µmin and 
µmax), porosity and density could be obtained from grey level : 
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With i the bead number and j the compression stage (0 before loading, 1 after the first impact, 
point A in figure 3, and so forth).  
A volume variable can be chosen to estimate the deformation of each bead. If we consider the 
strain tensor ε , the trace of this tensor corresponds to the volume strain of the material 

( )εε trvol = . The volume strain of a porous media can be calculated from its porosity. In our 
case, the volume strain of a bead i, due to the dynamic loading (step j), is obtained from the 
relation :  
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It is then possible to retrieve the volume strain of each bead from the variation of its mean 
grey level in combining equations 3 and 4:  

  
ji

jiivol
ji

,

,0,
, µ

µµ
ε

−
=           (5) 

 
4.1. Foam morphology 
a- Bead size 
For each bead, the number of pixels contained in the mesh multiplied by the corresponding 
volume occupied by a pixel ((4.91 µm)3 in this case) approximately measures the RBV. This 
first calculation gives an indication on the bead size variability before the loading. Initially, 
the mean volume of the RVBs is 6.7 mm3, ranging from 0.8 mm3 to 12,9 mm3. The smallest 
RBVs correspond to the outer beads that have been cut during sample preparation. If we omit 
these incomplete beads, the mean volume rises to 9.7 mm3, ranging from 6.2 mm3 to 12,5 
mm3. Assuming that there is a good correlation between the computed RBV and the 
corresponding bead in terms of volume, we observe a strong heterogeneity in bead size for the 
sample before impact. Paragraph 4.2 analyses the effect of this heterogeneity on bead 
deformation.  
 
b- Bead density 
Theoretically, using equation 3 the average density of a bead can be obtained from the grey 
levels of all pixels contained in that bead. It can be approximated by using the pixels 
contained in the corresponding RBV. In practice, the average grey levels obtained for each 
bead varies only weakly, from 77 to 84. The measurement dynamics, calculated as the ratio of 
grey level variation (84 – 77) to the measurement range (256), does not exceed 3 %. Those 
grey levels correspond to bead porosities ranging from 98 % to 78 % (with an 89 % average), 
and reveal for the first time a strong heterogeneity at the bead scale. Density heterogeneity 
also seems significant; the lower estimated densities are 10 kg/m3 whereas the maximum 
values reach 200 kg/m3. However, even if this high variation of porosity (i.e. density) is 
coherent with the visual observations, it is difficult to consider those results as realistic since 
the noise associated with grey level measurements generates a significant error on local 
porosity. 
Therefore, the grey levels were not used to determine bead densities with accuracy, but only 
to estimate relative bead density variations. In the rest of this paper, the densities are provided 
only to give an indication of foam density heterogeneity and should not be considered exact or 
absolute. It is then possible to plot the density distribution as a function of bead position. 
Recalling that the sample is cut in the middle of the polypropylene foam plate to avoid any 
density gradient, we should not observe any relation between the two. If we consider bead 
position in the sample only in the vertical direction, the plot shown in figure 13a reveals a 
random distribution. On the contrary, if we consider bead position as distance from the centre 
axis of the cylindrical sample, depicted in figure 13b, then a strong density gradient is seen: 
the densest beads are located around the edges. The induced radial shear caused by the crown 
saw during sample cutting most probably increased the foam density in the periphery. 
Further investigation of the volume strain of the beads will allow to evaluate the effects of this 
wide density distribution, a structural charactersistic of the sample, on local deformation. 
  
4.2. Volume strain 



The volume strain has been calculated (equation 5) for each RBV at different loading stages: 
before the impact, after the first impact when the sample is maintained compressed (point A 
figure 3), after the unloading of the first impact (point A’ figure 3), etc. These results show 
what influences localisation of foam strain.  
 

a- Volume strain vs bead size 
The volume strain vol

ji,ε of the beads has been evaluated at each step of the dynamic 
loading as a function of their size. Figure 14 shows the distribution of the volume strain vs the 
RBV values after the 4 first impacts when the sample is maintained compressed (points A, B, 
C  and D in figure 3). For each step, the vol

ji ,ε  distribution is strongly dispersed. However, there 
is a slight trend that the bigger beads seem to be more deformed than the smaller ones. This 
trend is more visible after the second impact. In fact, the influence of the bead size is difficult 
to highlight. The existence of a correlation between bead size and density can be presumed 
from the moulding process: beads of nearly constant mass are injected in the mould and 
during expansion, those that are able to occupy a larger volume have a lower density. 
Therefore, the influence of bead size can be confirmed by analysing the effect of bead density 
on volume strain. 
 
 b- Volume strain vs bead density 
 The evolution of the volume strain has been established as a function of bead density 
for the 4 impacts when the sample is still compressed (figure 15a) and after unloading (figure 
15b). The two configurations lead to the same remarks. For the first impact, the influence of 
the density on vol

ji,ε  can be detected despite a strong scattering. Coarsely, the lower the density, 
the greater the bead volume change. The effect of density is confirmed by the following 
loading stages, when the macroscopic strain imposed on the sample reaches high values. 
Lower density beads are siginificantly compressed whereas the denser ones –more rigid and 
resistant- are less deformed. This is in accordance with the fact that, firstly, the volume strain 
is a combination of elastic and plastic deformation and the values of vol

ji ,ε  depend on bead 
density, and secondly, when the sample is unloaded, vol

ji,ε  which corresponds to the plastic or 
residual deformation also depends on this parameter.  
To conclude on the influence of the foam morphology on its mesoscopic volume strain, we 
have underlined a significant correlation between bead volume change and density (and size 
by duality). The previous remarks appear to be evident, as many studies have already shown 
the influence of the foam density on its macroscopic behaviour: typically, denser foam has a 
higher mechanical response. However, to our knowledge, it is the first time that under 
dynamic loading and at the mesoscopic scale , the influence of local density on bead 
deformation is shown. To complete this study and qualify the strain – density correlation, 
localisation of foam strain has been analysed. 
 
c- Volume strain vs bead position 

For each impact, bead volume strains were plotted versus barycentre positions; the 
objective is to detect any localisation of the strain at the scale of the sample. The coordinates 
of the bead barycentres are defined in a cylindrical system (r, θ, Z) since the sample is axi-
symetric. Given that θ  has no influence (this hypothesis has been checked), the beads 
(identified by a number, figure 16) are classified according to the vertical and radial positions, 
Z and r respectively, of their barycentres. For the sake of clarity, the results are separated, 
firstly for Z, in five 2mm high horizontal sections of the sample, and secondly for r, in two 
cylindrical regions of identical volume: a central cylinder (3.53 mm in diameter) and its 



oulying tube. Each bead is then assigned a horizontal section and a cylindrical region. For 
each defined portion of the sample, the average bead volume strain is calculated, and this 
process is repeated for each impact. 
The dependence of the strain vol

ji ,ε  on the Z position  is illustrated in figure 17. Each diagram 
presents the average volume strain of the RBVs belonging to the five vertical sections for 
each impact and when the sample is still compressed or unloaded. Slice 1 corresponds to the 
bottom of the sample and slice 5 to the top of the sample, in contact with the compression 
punch. 
For the first impact, the distribution of volume strain according to Z is clearly established: the 
slices closer to the compression surfaces of punch and die are more deformed than average 
(the global strain is 10 %) whereas the centre slice is only lightly deformed (5 %). This is 
verified in both the compressed and unloaded states. Moreover, the most deformed slice 
(number 5) is the one against the punch that inflicts the loading. Visual inspection of bead and 
cell wall deformation corroborates this analysis. Several factors could explain this behaviour, 
and they can be associated to the type of compression and to the morphology of the structure. 
Firstly, concerning the compression procedure, the contact of the sample with the rigid 
surfaces of the punch and die can generate a greater deformation for border beads, especially 
during a dynamic loading; the punch applies a shock wave directly to slice 5. There is not 
necessarily an equilibrium of the forces applied on the sample at the beginning of the test (this 
phenomenon has been proved in the case of dynamic loading of cellular materials with a 
Hopkinson Bar). In this case, at the beginning of the test, the compression force is 
concentrated on slice 5 and generates a higher damage. Secondly, and this concerns the 
preparation of the sample, the outer beads in contact with the punch and die have been cut and 
are thus weakened by the loss of part of their walls. The morphology of the foam structure is 
different in these two zones and can contribute to the modification of the behaviour. 
For the second impact, the observed phenomena are similar. The global deformation imposed 
on the sample is 30%. In the compressed state, the higher slices are the most deformed: the 
volume strain of slice 5 reaches 38 % whereas slice 2 is just deformed by 20 %. Again, the 
beads in contact with the rigid surfaces of the die and punch are particularly deformed. It is 
also interesting to compare the volume strain in the compressed and unloaded states. When 
the sample is unloaded, the measured volume strain corresponds to the residual or “plastic” 
deformation. In this configuration, the residual deformation is nearly constant for slices 2, 3 
and 4 after the second impact ( vol

i 2,ε = 20%), but in its compressed state, a strong difference can 
be noted. This means that the centre of the sample is not irreversibly damaged; the residual 
volume strain is low (less than 20 %) and the elastic response is still significant for slices 3 
and 4. On the contrary, the elastic response is particularly weak for slices 1 and 5 whereas the 
strain vol

i 2,ε  is significant. It seems that damage to the beads located in these two sections is 
high. This state of the microstructure has been controlled by visualising the shape of bead and 
cell walls. 
For the two last impacts corresponding respectively to a deformation of 50 and 70 %, vol

ji ,ε is 
more homogeneous; a slope is observed in the evolution of the volume strain according to Z; 
the denser slice (number 5) is again the one against the compression punch. Furthermore, for 
these levels of compression, the cellular material becomes strongly damaged (the sample is in 
the densification phase after the 4th impact), deformation of slice 5 reaching 71%. By the end, 
the elastic response (defined as the difference between the strains measured when the sample 
is compressed and unloaded) is very low and the values of volume strain are high.  
We have shown a dependence of the volume strain vol

ji ,ε  of the beads on their vertical position 
Z, after each impact. At the beginning, only the regions close to the punches are damaged, 
while the centre beads bear little strain. After more impacts, this heterogeneity decreases and 



damage spreads to all slices. Finally, the residual or plastic deformation increases for each 
region whereas it has been shown that the elastic response tends to zero after all impacts. The 
heterogeneity of vol

ji ,ε  and its evolution depends on the combination of the effect of the 
dynamic loading (certainly due to a propagation of a shock wave during the impact) and the 
effect of the foam microstructure. The beads cut during the preparation of the sample are 
more fragile and are the first to become damaged. The modification of the microstructure 
(some bead walls have been removed) has a strong consequence on the foam behaviour at the 
small scales (bead and cell scales) even if the macroscopic behaviour is unaltered – the 
response of the polypropylene foam measured during the impact corresponds to a typical 
behaviour for a cellular material; an elastic response followed by a plastic plateau and finally 
a densification [8]. 
Finally, bead volume strain is compared to radial position in table 1. Values of vol

ji ,ε  in the 
periphery are lower than those in the central region after each impact and whether the sample 
is compressed or unloaded. This variation in strain according to radial position is certainly due 
to two phenomena. Firstly, it has been shown that for this sample there is a dependence of the 
density on the radial position. Subsequently, this strain heterogeneity is one effect of the 
gradient of bead density. Secondly, the denser peripheral beads constitute a rigid shell for the 
core of the sample. During the compression, the volume variation of this external shell skin is 
low, and its thickness increases while its height decreases. The increase in thickness implies a 
radial stress imposed on the central beads. For these beads, the loading is in fact a 
combination of an uniaxial compression and a radial pressure: their volume strain is higher. 
Therefore, this particular heterogeneous microstructure in terms of bead density generates a 
stress field between beads more complex than the uniaxial compression imposed by the 
punch. This hypothesis is confirmed when observing the shape of the deformed beads [15]. 
 
d- Conclusion  
This analysis identifies the effect of different parameters on the deformation of the cellular 
material at the scale of the beads. Influence of parameters such as bead size and density has 
been evaluated and localisation of mesoscopic deformation is highlighted. Many publications 
have already demonstrated the influence of foam density on mechanical response at the 
macroscopic scale, but this original approach allows to characterise at a finer scale and during 
dynamic loading the effects of bead density on volume strain. Density may have an influence 
on local deformation in different ways. First, we have shown that denser beads are less 
deformed, but this microstructural heterogeneity introduces a specific mesoscopic behaviour: 
the force field generated during impact depends on the geometry of the microstructure and 
bead density distribution. The influence of bead walls was also described. During sample 
preparation, the microstructure of the cellular material was modified in that the peripheral 
beads cut in the process were weakened. The thicker bead walls then influence the behaviour 
of the cellular material. 
 
In order to confirm that density is not the only  parameter that acts on sample deformation, 
volume strain was examined for specific beads. Four beads have been selected in the centre of 
the sample since deformation in this area seems more homogeneous. Figures 16 allows to 
visualise the positions and shapes of these beads. Table 2 indicates the bead number and 
density, and gives the volume strains calculated for the three last impacts (the results for the 
first impact are not significant). When comparing the volume strain calculated for beads 31 
and 41 (of equal density) after the second impact, one observes that their deformation is 
clearly different. Similarly, volume strain of bead 45 is higher than the one of bead 61 
whereas their densities are equivalent. On the other hand, between beads 61 and 31, 



deformation is similar but bead 31 has a higher density. These observations can be made for 
other beads at other levels of the impact (what level ? position ?).  
Consequently, it is clear that bead density has an influence on local deformation but the 
morphology of the structure (size and shape of the beads, thickness of bead walls…) must 
also be taken into account to improve constitutive model of the of this multiscale material. 
 
 
5. General conclusion and perspectives 
 
This articles presents the last results on the analysis of the localization of foam strain at 
mesoscopic scale. To reach these results and add a complementary description of the damage 
phenomena of a polypropylene foam under dynamic loading, a new approach has been 
developed in combining original impact device, micro tomography techniques and specific 
image algorythms. Firstly, dynamic compression interrupted tests were carried out on 
polypropylene foam and microtomographic acquisitions (made after each impact) allowed 
visualising bead wall buckling within the sample. First analysis of the reconstruction in 2D 
obtained from these acquisitions have shown the heterogeneity of the strain at the bead scale. 
These encouraging results, presented in a previous paper, have to be confirmed by the study 
of the strain field ( at the mesoscopic scale) on the entire impacted sample. It was then 
necessary to developp new numerical algorithm to extract the volume of each bead from the 
complex microstructure of the multi scale foam. An image processing method has been then 
applied to extract pertinent information from the microtomograms and a representative 
volumes of foam beads have been underlined in 3D. The evolution of these meshed 
deformable surfaces allows determining the porosity variation of beads and their volume 
strain at several steps of the dynamic compression. A map of volume strain was therefore 
established and compared with initial density field. 
Influence of parameters such as bead size and density has been evaluated and localisation of 
mesoscopic strain is highlighted. This approach has also allowed characterising at a finer 
scale and during dynamic loading the effects of bead density on the volume strain. The denser 
bead, the lower volume change. Nevertheless, density is not the only parameter that acts on 
sample deformation, the thicker bead walls also influence the behaviour of the cellular 
material. Moreover, it was shown that the combination of the microstructure and bead density 
distribution has an influence of the volume strain field. The analysis of these data concerning 
specific beads have revealed that bead density and volume change are not necessarily 
correlated. A complementary study using our micro tomograms and 3D Digital Image 
Correlation techniques [14] had confirmed our measurements of the mean volume change on 
a bead (labelled 61) and had furthermore highlighted the heterogeneity of strain inside this 
bead, at a scale close to the cell scale 

To conclude, bead density has an influence on local strain but the morphology of the 
structure (size and shape of the beads, thickness of bead walls…) has to be also taken into 
account to improve behaviour model of the of this multi scale cellular material. From this 
analysis, the behaviour of this EPP foam is better understood at mesoscopic scale. The next 
step of this research is the modelling of the foam morphology (bead and cell structures) taking 
into account the phenomena observed. A multi scale model will be soon developed 
representing the dense wall of beads (mesoscopic scale) by a surface mesh (with properties of 
dense polypropylene) and volumic meshes corresponding to the volume of cells within beads.  

The next challenge of this study will be to construct this finite element model from the 
extracted cellular structure and verify model accuracy by comparing its numerical results with 
experimental ones.  
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Figure 1a: Micrograph of polypropylene foam showing the bead structure 
 
 

 
Figure 1b: Micrograph of polypropylene foam showing the cell structure 
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Figure 1c: Multi-scale modeling scheme of foam 

 
 
 
 
 

 
Figure 2: Illustration of the principle of parallel beam X-ray tomography 

 
 



 
Figure 3: Typical evolution of compression stress versus strain for a cellular material 

 
 
 
 

 
Figure 4: An axial cross-section of a microtomogram of the studied polypropylene foam. The 
left image is a view of the entire section, where the bead walls seem well-defined. The image 
on the right is a zoomed portion of the image, an example of why localising these walls with 

precision is not possible. 
 



 
Figure 5: 3D reconstruction of bead walls in using classical numerical filters 

 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 6: Method applied to the reconstructed microtomograms in order to extract 
approximate grain centres. Some parameters (such as the theshold levels) need to be manually 

set. Illustrations at steps a) through h) are presented in figure 7. 
 

 

 
a) 

 
b) c) d) 

 
e)  

f) g) h) 
Figure 7: Illustration of the method used to extract approximate positions of the grain centres. 

It consists of a series of simple arithmetic and morphological operators on the 
microtomograms. 
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Figure 8: Representation of the distance map thresholding which allows to locate bead 

centres. An isosurface of the distance map (figure 7h), with the threshold value used for 
finding the barycentres,  is displayed. The dots inside the isosurfaces are the bead centres. 

 
 
 
 
 

 

Figure 9. Simplex angle and elevation of a vertex of the deformable mesh, used to regularise 
the mesh to obtain a smooth surface. p  is the considered vertex, n1, n2 and n3 are its 

neighbours, h is p's projection on the plane defined by the triangle n1n2n3, c is the centre of the 
circle circumscribing n1n2n3, a  and b are the points of the circle aligned with (hc), and g is the 

triangle's centre of gravity. Finally, d is called the elevation and φ the simplex angle of p. 
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Figure 10: A view of the calculated surfaces that delimit the grains, with a colourmap 

corresponding to the relative density of the beads. Beads at the periphery are noticeably 
denser. 

 
 

 
Figure 11: Reconstruction of bead morphology: before compression (left picture) and after the 

second impact (right picture). Each bead is identified by its colour. 
 
 
 
 



 
Figure 12: Reconstruction of the morphology of bead 61: before compression (a), after the 

first impact (b) and after the second one (c) 
 
 

 
Figure 13a: Bead density as a function of vertical position in the sample 

 



 
Figure 13b: Bead density as a function of its radial position 
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Figure 14: RBV values as a function of volume strains, plotted for each bead and at each 

impact stage 
 
 
 



 

R2 = 0,91

R2 = 0,82

R2 = 0,70

R2 = 0,31

-1

-0,8

-0,6

-0,4

-0,2

0

0 50 100 150 200
density

V
ol

um
e 

st
ra

in

1st impact
2d impact
3d impact
4th impact

 
Figure 15 a: Bead density as a function of RBV variation after each impact when the sample 

is maintained compressed 
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Figure 15b: Bead density as a function of RBV variation after each unloading stage 

 
 



 
Figure 16a 

 

 
Figure 16b 

 

 



Figure 16c 
Figure 16: Slices in different directions (a: XY or axial, b: XZ or coronal, c: YZ or sagittal) of 
the RBVs for two stages: before impact (left), and after the second impact (right). Beads are 

all identified by a number.  
 

Figure 17: Volume strain as a function of bead vertical (Z) position  
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 1st impact 2d impact 3d impact 4th impact 
 compressed unloaded compressed unloaded compressed unloaded compressed unloaded 

Internal 
zone - 0.24 - 0.17 -0,43 -0,38 -0,64 -0,63 -0,82 -0,76 

External 
zone - 0.07 -0.06 -0,18 -0,14 -0,35 -0,32 -0,57 -0,47 

Table 1: Volume strain mean as a function of the radial position (internal or external) of beads 
for each impact 

 
  2nd impact 3rd impact 4th impact 
  unloaded compressed unloaded compressed unloaded compressed 
Bead 
number Density Vol. strain Vol. strain Vol. strain Vol. strain Vol. strain Vol. strain 

45 84,2 -0,22 -0,26 -0,49 -0,56 -0,61 -0,69 
61 93,8 -0,13 -0,17 -0,43 -0,44 -0,56 -0,64 
31 178,7 -0,16 -0,18 -0,29 -0,37 -0,48 -0,53 
41 178,8 -0,06 -0,15 -0,28 -0,29 -0,40 -0,53 

Table 2: Volume strain for four beads calculated for the second, third and fourth impact (in 
the compressed and unloaded states)  

 
 

Table(s)


