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Abstract

Robust and accurate schemes are designed to simulate the coupling between sub-
surface and overland flows. The coupling conditions at the interface enforce the
continuity of both the normal flux and the pressure. Richards’ equation governing
the subsurface flow is discretized using a Backward Differentiation Formula and a
symmetric interior penalty Discontinuous Galerkin method. The kinematic wave
equation governing the overland flow is discretized using a Godunov scheme. Both
schemes individually are mass conservative and can be used within single-step or
multi-step coupling algorithms that ensure overall mass conservation owing to a
specific design of the interface fluxes in the multi-step case. Numerical results are
presented to illustrate the performances of the proposed algorithms.
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saturated porous medium, kinematic wave equation, Discontinuous Galerkin
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1 Introduction

The interactions of subsurface and overland flows are an important ingredi-
ent for a comprehensive understanding of hydrology processes. While there is
an extensive bulk of literature devoted to the numerical study of water flows
in single-phase and variably saturated porous media, the issue of coupling
such flows with surface flows generated by rivers, tides or floods has received
less attention. One of the most popular ways to couple Darcy and Stokes
flows is through the well-known Beavers–Joseph–Saffman condition [8,29,18].



This condition was used for instance in [12,24] in the mathematical and nu-
merical study of the coupling of Darcy flow with a three-dimensional non-
hydrostatic shallow-water model. Another approach used in numerical hydrol-
ogy (see among others [31]) considers discontinuous pressures at the interface
and evaluates an interface flux as the pressure difference, modulated by a mul-
tiplicative exchange coefficient depending on the soil relative permeability. A
third approach consists of assuming both normal flux and pressure continuity.
This means that the hydraulic head of the subsurface flow matches the depth
of the overland flow at the interface, while the normal ground flow velocity is
used as a source term in the governing equation of the overland flow. Exam-
ples of studies based on this approach include coupling one-dimensional surface
flow with vertical soil columns [30], coupling the two-dimensional Richards’
equation with a one-dimensional kinematic or diffusive wave approximation for
the overland flow [22,7], and coupling the two-dimensional Darcy’s equation
with one-dimensional shallow-water equations [11] .

In the present work, we assume that the subsurface flow occurs in a variably
saturated porous medium and that this flow can be described by Richards’
equation, entailing in particular that there are no trapped air pockets in the
soil; otherwise more general multi-phase models should be used [3]. Further-
more the kinematic wave approximation is used to describe the overland flow.
This choice is solely made for ease of exposition and more general shallow
water models can also be used. Concerning the coupling conditions, we adopt
the third approach described above, namely enforcing the continuity of both
normal flux and pressure at the interface. These coupling conditions are gen-
erally valid when the overland flow is mainly produced by exfiltration from
the soil, so that normal flux and pressure equilibrium can be expected to hold
at all times. A different situation, which falls beyond the present scope, is that
of a runon surface wave rapidly propagating over a dry soil.

Many methods can be employed to discretize in space Richards’ equation,
namely finite differences [32,9], finite volumes (FV) [23], finite elements (FE)
[9,19] or mixed finite elements (MFE) [21,6]. These methods are generally com-
bined with an implicit Euler time scheme. An alternative approach for space
discretization is to use a discontinuous Galerkin (DG) method. Advantages
offered by DG methods include local (elementwise) conservation (as FV and
MFE), high-order accuracy (as FE and MFE) and flexibility in the use of non-
matching meshes (as FV), in particular within multi-physics and multi-domain
approaches. Various forms of DG methods can be used for Richards’ equation
and more generally for two-phase flows in porous media. Examples include the
so-called Local Discontinuous Galerkin method [15,4] and the non-symmetric
or the symmetric interior penalty DG method [20,2,5]. In the present work, we
choose the symmetric interior penalty DG method (in short SIPG), because it
preserves the natural symmetry in the discrete diffusion operator. Regarding
time discretization, the common approach when working with DG methods is
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to employ Runge-Kutta (RK) explicit schemes [10] or diagonally implicit ones
[2]. Here, we propose instead to use a backward differentiation formula (BDF).
We think that this approach offers several advantages, such as high-order ac-
curacy in the time discretization, circumventing the CFL condition which can
be very restrictive for explicit schemes when diffusion processes are dominant,
and in general higher computational efficiency than implicit RK schemes for
problems where the nonlinear solver is expensive. Typically, if piecewise poly-
nomials of degree p are used in the DG method, a BDF of order (p + 1) can
be employed.

The main objective of this work is to design robust and accurate schemes
for coupling subsurface and overland flows. While Richards’ equation is dis-
cretized by a BDF-SIPG method, the overland flow governing equation is
discretized by a Godunov scheme and advanced in time with a different time
step if the overland flow time scale is quite different from the subsurface flow
time scale. Two important issues are addressed in the design of our coupling
algorithms: 1) satisfy as accurately as possible the coupling conditions which
impose certain specific inequality and equality constraints on the pressures
and normal fluxes, similarly to the boundary conditions encountered in Sig-
norini problems, and 2) ensure overall mass conservation for the whole system
consisting of subsurface and overland flow. This point deserves some particu-
lar attention. Indeed, although mass conservative schemes are used for both
subsurface and overland flows, the interface flux must be chosen appropriately
when working with multi-step methods such as BDFs. For simplicity, we will
discuss in detail only the design of the interface flux for the second-order BDF.
Finally, although the material will be presented in a 2D/1D setting (that is, a
two-dimensional subsurface flow coupled to a one-dimensional overland flow),
the results extend naturally to the 3D/2D setting. In particular, the wet part
of the interface is not tracked directly, but is determined at each time step by
a cell-oriented procedure within an iterative loop that solves consecutively the
overland and subsurface flow governing equations.

This paper is organized as follows. In Section 2, we present the physical prob-
lem. In Section 3, we describe the time and space discretization of the model
problem and design the coupling algorithms for both first-order and second-
order BDFs. Finally, in Section 4, we present numerical results assessing the
performance of the proposed algorithms on three test cases.
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2 Model problem

2.1 The setting

Let Ω ⊂ R
2 denote the bounded subsurface flow domain with outward normal

unit vector nΩ. The boundary of Ω is divided into three parts (see Figure 1):
I is the upper part of the boundary where overland flow can occur, W are
lateral walls and B represents the lower part of the boundary. At any time t,
the set I is divided into “wet” and “dry” parts Id,t ∪ Iw,t, with

Iw,t def
= {x ∈ I; h(x, t) > 0}, Id,t def

= {x ∈ I; h(x, t) = 0}, (1)

where h is the depth of the overland flow. Observe that the above partition of
I is time-dependent.

I
Id,t

Iw,t

•

•

A

B

ΩW W

B

h

nΩ

Figure 1. Schematic of the computational domain with basic notation.

2.2 Subsurface flow

The soil is modeled as a non-deformable porous medium in which the pores
can contain both water and air (unsaturated zone) or only water (saturated
zone). We assume that water is incompressible and that air pressure does not
affect the flow. The water conservation equation takes the form

∂t[θ(ψ)] +∇ · v(ψ) = f, (2)

where ∂t denotes partial time-derivative, ψ is the hydraulic head (m), θ(ψ) the
volumetric water content (dimensionless), v(ψ) the flow velocity (ms−1), and
f a volumetric water source or sink (s−1). In the sequel, we assume that there
are no volumetric sources or sinks, so that f = 0. The flow velocity depends
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on the hydraulic head through the generalized Darcy law

v(ψ) = −K(ψ)∇(ψ + z), (3)

where K(ψ) is the (possibly tensor-valued) hydraulic conductivity (ms−1) and
z the vertical coordinate (m). Substituting (3) into (2), Richards’ equation is
obtained in the form [28]

∂t[θ(ψ)]−∇ · (K(ψ)∇(ψ + z)) = 0. (4)

Given at each time t ∈ [0, T ], where T is the total simulation time, the partition
{Iw,t, Id,t} of I, a Dirichlet datum ωψ defined on Iw,t and a Neumann datum
ωv defined on Id,t, the subsurface flow is governed by






∂t[θ(ψ)] +∇ · v(ψ) = 0 in Ω× [0, T ],

v(ψ) = −K(ψ)∇(ψ + z) in Ω× [0, T ],

ψ(·, 0) = ψ0 in Ω,

v(ψ) · nΩ = vN on (W ∪ B)× [0, T ],

v(ψ) · nΩ = ωv on {(x, t), x ∈ Id,t},

ψ = ωψ on {(x, t), x ∈ Iw,t},

(5)

where vN is the possibly time-dependent normal flow velocity prescribed on
W ∪ B and ψ0 the initial condition. Thus, Richards’ equation is a nonlinear
parabolic equation which degenerates into a nonlinear diffusion equation in the
saturated zone where θ and K are constant. Examples for the two constitutive
laws ψ 7→ θ(ψ) and ψ 7→ K(ψ), which are necessary to close the subsurface
flow model, are specified in §4.

2.3 Overland flow

Water surface flows are often modeled by a simplified form of the free boundary
Navier-Stokes equations. Assuming hydrostatic pressure, negligible vertical ve-
locity gradients and mild variations of the free surface leads to the well-known
shallow-water equations; see, e.g. [16] for a derivation of these equations. Ne-
glecting turbulence effects, the equations expressing the conservation of mass
and momentum reduce to

∂th + ∂xq = (v(ψ)− vr) · nΩ, (6)

∂tq + ∂x

[
q2

h
+
gh2

2

]

= gh(S − J), (7)
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where q is the discharge (m2s−1), v(ψ) · nΩ the source or sink term (ms−1)
resulting from mass transfer between subsurface and overland flows, vr the
possibly time-dependent prescribed rainfall intensity (ms−1), g the gravity
acceleration (ms−2), S the possibly space-dependent bottom slope (dimen-
sionless) and finally J (dimensionless) results from friction effects. Note that
the mass transfer term v(ψ) · nΩ in the mass conservation equation (6) in-
volves the subsurface flow velocity resulting from (5); infiltration occurs if
v(ψ) · nΩ < 0 whereas exfiltration occurs if v(ψ) · nΩ > 0. The Manning-
Strickler uniform flow formula is chosen to link J and q and assuming the flux
to be uni-directional from left to right so that q ≥ 0, this yields

q = Kh5/3J1/2, (8)

where K is the Strickler coefficient of roughness (m1/3s−1).

A common assumption is to neglect inertia and potential energy effects in (7),
so that momentum balance is governed by the equilibrium between slope and
friction, that is

S = J. (9)

Substituting (9) into (8) yields

q = ϕ(h, S)
def
= Kh5/3S1/2. (10)

Finally, using (10) in (6) leads to the so-called kinematic wave approximation
[26]

∂th+ ∂xϕ(h, S) = (v(ψ)− vr) · nΩ. (11)

This scalar conservation law is strictly hyperbolic wherever h > 0. In the
present case, waves travel rightwards and an upstream boundary condition in
A (see Figure 1) must be set. Let h0 be the initial condition and let hA be the
upstream boundary condition on the surface water depth prescribed at point
A. Then, the overland flow is governed by






∂th + ∂xϕ(h, S) = (v(ψ)− vr) · nΩ on I × [0, T ],

h(·, 0) = h0 on I,

h(A, ·) = hA at A× [0,T].

(12)

2.4 Admissible set

We refer to the quadruplet {Iw,t, Id,t, ωψ, ωv} as the coupling variables. The
model problem considered hereafter for coupling subsurface and overland flows
consists of finding functions (ψ, h) and the above coupling variables such that
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ψ solves (5) in Ω× [0, T ],

h solves (12) on I × [0, T ],

(ψ, h) ∈ A on I × [0, T ],

(13)

where A denotes the set of physically admissible states {ψ, h}. The admissible
set A (see Figure 2) has two branches, the branch {h = 0} is associated
with the dry surface where the soil hydraulic head is less than or equal to
zero corresponding to unsaturated conditions, while the branch {h = ψ} is
associated with the wet surface where the soil is saturated and the hydraulic
head is in hydrostatic equilibrium with the overland flow pressure. Thus, the
admissible set A is defined as

A
def
= {(ψ, h) ∈ R

2, h = ψ+}, (14)

where ψ+ = 1
2
(ψ + |ψ|) is the positive part of ψ.

h

ψ
dry

wet

Figure 2. The admissible set A.

We mainly focus here on situations where the overland flow is produced by
exfiltration. Indeed in this situation, a smooth behavior on the admissible set
can be expected. More drastic situations like runon surface waves on unsat-
urated soils can in many cases lead to a departure from the admissible set
especially if the soil is too dry. In these limit situations, other models can be
more suitable: for instance when infiltration processes are very slow, a model
where surface flow coexists with an unsaturated soil can be envisaged.

3 Discretization

3.1 Discretization of Richards’ equation

Let {Th}h>0 be a shape-regular family of unstructured meshes of Ω consisting
for simplicity of affine triangles. The meshes can possess hanging nodes. For
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an element τ ∈ Th, let ∂τ denote its boundary and nτ its outward unit normal.
The discontinuous finite element space Vh is defined as

Vh
def
= {φ ∈ L2(Ω), ∀τ ∈ Th, φ|τ ∈ Pp(τ)}, (15)

where Pp(τ) is the set of polynomials of degree less than or equal to p on an
element τ . We observe that the functions in Vh need not be continuous. This
fact is exploited by selecting basis functions which are locally supported in a
single mesh element. The set Fh of mesh faces is partitioned into F i

h∪F
WB
h ∪FI

h

where F i
h is the set of internal faces, FWB

h the set of faces located on W ∪ B
and FI

h the set of faces located on I. For a face F ∈ F i
h, there are τ+ and τ−

in Th such that F = ∂τ+ ∩ ∂τ− and we define the average operator {}F and
the jump operator [[]]F as follows: for a function ξ which is possibly two-valued
on F ,

{ξ}F
def
=

1

2
(ξ+ + ξ−) and [[ξ]]F

def
= ξ− − ξ+,

where ξ± = ξ|τ±. For vector-valued functions, average and jump operators
are defined componentwise. We define nF to be the unit normal vector to F
pointing from τ− to τ+. The arbitrariness in the sign of the jump is irrelevant
in the sequel.

In the present work, faces on I can exclusively be flagged either as dry or
as wet, that is, we do not track the wet/dry interface inside such faces. As a
result, the set FI

h can be further divided into Fd,t
h and Fw,t

h , where Fd,t
h collects

the faces flagged as dry and Fw,t
h those flagged as wet. These two sets of faces

induce a partition of I as Id,t
h ∪ I

w,t
h , where

Id,t
h

def
= {x ∈ I, ∃F ∈ Fd,t

h , x ∈ F} and Iw,t
h

def
= {x ∈ I, ∃F ∈ Fw,t

h , x ∈ F}.

Space discretization

Let ψh be the discrete approximation of ψ. The symmetric interior penalty
discontinuous Galerkin method for Richards’ equation can be concisely written
as

∀τ ∈ Th, ∀φ ∈ Pp(τ),
∫

τ
∂t[θ(ψh)]φ+ aτ (ψh, ψh, φ) = bτ (ψh, φ), (16)

where for (ζ, ψ, φ) ∈ Vh× Vh× Pp(τ),

aτ (ζ, ψ, φ)
def
=

∫

τ
K(ζ)∇ψ · ∇φ+

∫

∂τ
K(ζ) ∇φ · nτ (ψ̂(ψ)− ψ)

+
∫

∂τ
û(ζ, ψ) · nτ φ, (17)

bτ (ζ, φ)
def
=

∫

τ
∇ · (K(ζ)∇z) φ+ b̃τ (ζ, φ). (18)
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Here, ψ̂(ψ) is the numerical flux associated with the hydraulic head

∀F ∈ Fh, ψ̂(ψ)|F
def
=






{ψ}F if F ∈ F i
h,

0 if F ∈ Fw,t
h ,

ψ if F ∈ Fd,t
h ∪ F

WB
h ,

and û(ζ, ψ) the numerical flux associated with u
def
= −K(ψ)∇ψ,

∀F ∈ Fh, û(ζ, ψ)|F
def
=






−{K(ζ)∇ψ}F + ηKsd
−1
F [[ψ]]FnF if F ∈ F i

h,

− K(ζ)∇ψ + ηKsd
−1
F ψnΩ if F ∈ Fw,t

h ,

0 if F ∈ Fd,t
h ∪ F

WB
h ,

where η is a positive parameter (to be taken larger than a minimal threshold
depending on the shape-regularity of Th), Ks the hydraulic conductivity at
saturation and dF the diameter of the face F which is defined as the largest
diameter of the triangle(s) of which F is a face. Observe that for a flow in
a porous medium with variable conductivity (as in variably saturated flows
because of the dependence of the conductivity on the hydraulic head), the
penalty coefficient at a given interface should scale as the harmonic means of
the normal hydraulic conductivity on both parts of the interface, see [25,14].
Here, the variations of K are sufficiently mild to use simply the hydraulic
conductivity at saturation. Furthermore, b̃τ (ζ, φ) collects the parts of the nu-
merical fluxes on boundary faces which are independent of ψ, namely

b̃τ (ζ, φ)
def
=

∫

∂τ∩Fw,t

h

(
−K(ζ) ∇φ · nΩ + ηKsd

−1
F φ

)
ωψ

−
∫

∂τ∩Fd,t

h

(ωv +K(ζ)∇z · nΩ)φ−
∫

∂τ∩FWB
h

(vN +K(ζ)∇z · nΩ)φ.

Summing aτ (ζ, ψ, φ) over all mesh elements yields the global form

ah(ζ, ψ, φ) =
∑

τ∈Th

∫

τ
K(ζ)∇ψ · ∇φ

−
∑

F∈F i
h

∫

F

(
{K(ζ)∇φ}[[ψ]] · nF + {K(ζ)∇ψ}[[φ]] · nF − ηKsd

−1
F [[ψ]][[φ]]

)

−
∑

F∈F
w,t

h

∫

F

(
K(ζ)∇φ ψ · nF +K(ζ)∇ψ φ · nF − ηKsd

−1
F ψφ

)
. (19)
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The parameter η must be chosen large enough to ensure that the form ah is
coercive, in the sense that there is α > 0 such that for all φ ∈ Vh,

ah(φ, φ, φ) ≥ α
( ∑

τ∈Th

∫

τ
K(φ)|∇φ|2 +

∑

F∈F i
h

Ksd
−1
F

∫

F
[[φ]]2 +

∑

F∈F
w,t

h

Ksd
−1
F

∫

F
φ2

)
.

Time discretization

Let NT be the total number of time steps and let δt be the time step taken

to be constant for the sake of simplicity and such that NT
def
= T/δt is an

integer. For any function of time χ and for any integer n ≥ 0, χn denotes the
value taken by χ at time nδt. Furthermore, the time derivative of χ can be
approximated by a backward differentiation formula [27] in the form

(∂tχ)n ≃
q∑

r=0

αqr
δt
χn−r, (20)

where q is the order of the formula and {αqr}0≤r≤q are suitable coefficients.
Using the approximation (20) in (16) for each n ∈ {1 · · ·NT} leads to

∀τ ∈ Th, ∀φ ∈ Pp(τ),

αq0
δt

∫

τ
θ(ψnh)φ+ aτ (ψ

n
h , ψ

n
h , φ) = bτ (ψ

n
h , φ)−

q∑

r=1

αqr
δt

∫

τ
θ(ψn−rh )φ. (21)

For the first few time steps, a BDF of lower order or a one-step implicit
scheme can be used, for example a diagonally implicit Runge-Kutta scheme
or the Crank–Nicolson scheme. The former can present the drawback that the
last stage can lead to difficulties where the soil is being saturated.

Nonlinear iterative solver

The nonlinear equation (21) is solved by the iterative algorithm outlined in

Algorithm 1. The discrete functions
{
ψn−rh

}

1≤r≤q
being known, successive ap-

proximations ψn,mh of ψnh are computed using a quasi-Newton procedure of the
form

∀τ ∈ Th, ∀φ ∈ Pp(τ),

αq0
δt

∫

τ

(
θ(ψn,mh ) + ∂ψ[θ(ψn,mh )](ψn,m+1

h − ψn,mh )
)
φ

+ aτ (ψ
n,m
h , ψn,m+1

h , φ) = bτ (ψ
n,m
h , φ)−

q∑

r=1

αqr
δt

∫

τ
θ(ψn−rh )φ.

(22)
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Let δψn,mh = ψn,m+1
h −ψn,mh and let dτ be defined as dτ (ζ, ψ, φ)

def
=

∫

τ
∂ψ[θ(ζ)]ψφ,

so that equation (22) can be written as

∀τ ∈ Th, ∀φ ∈ Pp(τ),

αq0
δt
dτ(ψ

n,m
h , δψn,mh , φ) + aτ (ψ

n,m
h , δψn,mh , φ) = bτ (ψ

n,m
h , φ)

−
q∑

r=1

αqr
δt

∫

τ
θ(ψn−rh )φ−

αq0
δt

∫

τ
θ(ψn,mh )φ− aτ (ψ

n,m
h , ψn,mh , φ).

(23)

Algorithm 1 Iterative algorithm at each time step for solving Richards’
equation

Input: ψn−1
h , ψn−2

h , · · · , ψn−qh , ψn,0h , ǫalg1

set m = 0

repeat

Find δψn,mh ∈ Vh solving (23)

set ψn,m+1
h = ψn,mh + δψn,mh

m← m+ 1

until E ≤ ǫalg1

Output: ψnh = ψn,mh

The simplest initialization of Algorithm 1 consisting of choosing the approxi-
mation of the solution at the previous time step (ψn,0h = ψn−1

h ), but a higher
order initialization can also be used (see §4). The error measure E is the rela-
tive Euclidean norm of the component vector associated with δψn,mh , and ǫalg1
is a user-defined convergence criterion.

3.2 Discretization of the kinematic wave equation

The kinematic wave equation is discretized on a surface mesh on I which is
simply the trace of the mesh Th on I. Let NI be the number of mesh faces
covering I. A finite volume scheme with Godunov flux and time step δt′ is
used. The time step is taken less than or equal to the time step for Richards’
equation, that is, δt′ = δt/n′ with n′ ≥ 1 (see Figure 3). This choice is made
because the explicit FV scheme is, as usual, restricted by a CFL condition to
ensure its stability. This is not the case for the discrete Richards’ equation
where, owing to the use of a BDF, a larger time step can be employed. This
leads to the following notation: hn,kh for n ∈ {1 · · ·NT} and k ∈ {0 · · ·n′}
denotes the discrete approximation of h at time nδt+ kδt′ and for brevity we

write hnh
def
= hn,0h = hn−1,n′

h . Let xi, li, xi− 1
2

and xi+ 1
2

be defined on a generic
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t

t

t+ δt

t+ n′δt′

δt

δt′

timesubsurface flow

overland flow | | | | |

Figure 3. Multiple time-stepping for subsurface and overland flows.

mesh face ei on I respectively as the center, the length, and the left and right
vertices of ei (see Figure 4). Si denotes the slope of the face ei. Since the flux
function ϕ is convex and the surface water depth is nonnegative, the Godunov
flux coincides with the upwind flux, yielding

∀k ∈ {1 · · ·n′}, ∀i ∈ {1 · · ·NI},

hn−1,k
i = hn−1,k−1

i +
δt′

li

(
ϕ(hn−1,k−1

i−1 , Si−1)− ϕ(hn−1,k−1
i , Si) (24)

− liv
n−1,k−1
r · nΩ +

∫

ei

v⋆,nh

)
,

where for all i ∈ {1 · · ·NI}, h
n,k
i

def
= hn,kh |ei

and v⋆,nh is a discrete interface flux
yet to be defined (see §3.3). Observe that a fixed interface flux is used for
the multiple time steps comprised in a single time step of Richards’ equa-
tion. Equation (24) requires the knowledge of the surface water depth at

• •
•

•
•

li

x− 1
2

A
xi− 3

2 xi− 1
2 xi+ 1

2 xi+ 3
2

h−1

hi−1 hi
hi+1

×
xi

Figure 4. Space discretization at the ground surface.

t = 0 (initial condition) and to the left of the first face on a fictitious cell
(boundary condition) at all discrete times, ∀i ∈ {1 · · ·NI}, h

0
i = h0(xi) and

∀n ∈ {1 · · ·NT}, ∀k ∈ {0 · · ·n
′ − 1}, hn,k−1 = hn,kA .

The CFL condition for the explicit scheme (24) can be expressed as

δt′ ≤ min
1≤i≤NI

( li
∂hϕ(hmax, Si)

)
, (25)

where hmax is an a priori bound for the surface surface water depth h on
I × [0, T ]. By definition of the flux function ϕ, this yields

δt′ ≤
3

5Kh2/3
max

· min
1≤i≤NI

(
liS

− 1
2

i

)
.
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In the absence of rainfall and coupling terms, the satisfaction of the CFL
condition implies a discrete maximum principle and a decrease in the total
variation for the discrete surface water depth.

3.3 Single-step coupling algorithm

We consider in this section the case where Richards’ equation is discretized
in time using a first-order BDF (that is, the Euler implicit scheme). Together
with the finite volume scheme described in §3.2 for the kinematic wave equa-
tion, this yields a scheme to approximate the coupled system (13) provided
we specify the time evolution of the coupling variables {Id,n

h , Iw,n
h , ωnv , ω

n
ψ} for

n ∈ {1 · · ·NT} (see §2.4). Here, as before, the superscript n stands for the
value at nδt, so that Id,n

h = Id,nδt
h and so on. This time evolution is designed

with the twofold objective to ensure that a suitable approximation of (ψ, h)
lies in the admissible set A at all discrete times and to ensure overall mass
conservation for the whole system (subsurface and overland flows). The re-
sulting algorithm is outlined in Algorithm 2. It is termed single-step coupling
algorithm in reference to the use of the first-order BDF which spans a single
time step interval. For simplicity in the presentation of Algorithm 2, we define

• ψnh ← Richards BDF1(Id,n
h , Iw,n

h , ωnv , ω
n
ψ, ψ

n−1
h ) as the resolution by Algo-

rithm 1 of Richards’ equation on a time step by the SIPG method, the first-
order BDF and boundary data on I determined from {Id,n

h , Iw,n
h , ωnv , ω

n
ψ},

• hnh ← Kinematic wave(hn−1
h , n′, vr, v

⋆,n
h ) as the resolution of the kinematic

wave equation by using (24) n′ times,

• v⋆,nh ← Normal Velocity(Id,n
h , Iw,n

h , ωnv , ω
n
ψ, ψ

n
h) as the evaluation of the in-

terface normal velocity v⋆,nh on I defined as

v⋆,nh |F
def
=






ωnv |F if F ∈ Id,n
h ,

v(ψnh |F ) · nΩ + ηKsd
−1
F (ψnh |F − ω

n
ψ|F ) if F ∈ Iw,n

h .
(26)

Note that the expression for v⋆,nh on Iw,n
h corresponds to the normal compo-

nent of the H(div,Ω)-conforming velocity reconstruction derived in [13] for
DG methods.

The principle of Algorithm 2 is the following. Firstly, the surface water depth is
predicted without subsurface coupling term (v⋆,nh = 0). This predicted surface

water depth h̃nh then serves as a Dirichlet boundary condition for Richards’
equation. Because the Godunov scheme satisfies a discrete maximum principle,
h̃ni ≥ 0 for all i ∈ {1 · · ·NI}, so that Id,n,1

h = ∅ and Iw,n,1
h = I. That is, we

begin the iterations by assuming that I is totally wet. Thus, for p = 1, the

13



Algorithm 2 Single-step coupling algorithm

Input: ψn−1
h and hn−1

h

h̃nh ←Kinematic wave(hn−1
h , n′, vn−1

r , 0)

Set p = 0 and hn,1h = h̃nh,

repeat
p← p+ 1

Partition of I: Id,n,p
h = {ei ∈ F

I
h , ∀k ∈ {1 · · · p}, h

n,k
i < 0} and Iw,n,p

h =

I\Id,n,p
h

ωn,pv ← −h̃
n
h/δt on Id,n,p

h

ωn,pψ ← h̃nh on Iw,n,p
h

ψn,ph ← Richards BDF1(Id,n,p
h , Iw,n,p

h , ωn,pv , ωn,pψ , ψn−1
h )

v⋆,n,ph ← Normal Velocity(Id,n,p
h , Iw,n,p

h , ωn,pv , ωn,pψ , ψn,ph )

∀i ∈ {1 · · ·NI}, h
n,p
i = h̃ni + δt/li

∫
ei
v⋆,n,ph

until ∀ i ∈ {1 · · ·NI}, h
n,p
i ≥ 0

Output: ψnh = ψn,ph and hnh = hn,ph

determination of ωn,pv is irrelevant. Then, Richards’ equation is solved and a
first estimate of the normal velocity v⋆,n,ph is used to evaluate the surface water
depth hn,ph . The sign of hn,ph is subsequently checked on the faces of I. If hn,pi
is nonnegative on all faces, the evaluation of the hydraulic head and of the
surface water depth can be accepted as the solution to the coupled system
at time nδt. Otherwise, a new partition of I is determined and a Neumann
condition is enforced on those faces where the surface water depth is negative.
This Neumann condition is evaluated in such a way that at the corresponding
interface cells, the surface water is completely infiltrated into the soil since
ωn,pv = −h̃nh/δt. A new hydraulic head and a new surface water depth are then
calculated and the loop is repeated until convergence. Note that convergence
occurs since the set Id,n,p

h increases with p while the set Iw,n,p
h decreases.

Admissibility of (ψ, h)

An important point is that Algorithm 2 delivers nonnegative surface water
depths. Moreover, on the wet part of the interface, there holds

∀n ∈ {1 · · ·NT}, ∀F ∈ Iw,n
h , ψnh |F = h̃nh|F ,

since the value of the Dirichlet data ωn,pψ on Iw,n,p
h is fixed during the loop.

This is not the condition ψ = h enforced by the admissible set A but an O(δt)
approximation of it. Furthermore, on the dry part of the interface, the surface
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water depth is equal to zero and there holds

∀n ∈ {1 · · ·NT}, ∀F ∈ Id,n
h , ψnh |F ≤ h̃nh|F .

Again, this is an O(δt) approximation of the condition ψ ≤ 0 enforced by
the admissible set. Furthermore, we observe that, if on a given face ei, the
surface water depth hn−1

i is zero as well as the upwind fluxes over the time
step [(n−1)δt, nδt], the Neumann condition on Richards’ equation is equal to
the rainfall intensity. Moreover, we observe that in contrast to front tracking
schemes, Algorithm 2 does not use any information from the previous time
step to determine the wet portion of the interface. This offers the advantage
of robustness and ease of extension to 3D/2D settings, but can entail higher
computational costs than those incurred by front tracking schemes in the
absence of exfiltration (see for instance [7]).

Overall mass conservation

The total volume of water in the domain Ω at time nδt is obtained by inte-
grating the volumetric water content in Ω

V n
grnd

def
=

∫

Ω
θ(ψnh).

Taking the test function φ equal to 1 in the SIPG scheme (23), summing
over the mesh elements and using the first-order BDF to approximate the non
stationary term yields

V n
grnd − V

n−1
grnd =

(
F n
I + F n

WB

)
δt+ ǫn, (27)

where F n
I (resp. F n

WB) is the flux over the time step [(n− 1)δt, nδt] across the
interface I (resp. across the bottom and lateral walls),

F n
I

def
= −

∫

I
v⋆,nh and F n

WB

def
= −

∫

W∪B
vnN , (28)

and ǫn represents the numerical error in the resolution of the nonlinear sys-
tem. Recall that |ǫn| ≤ Cǫalg1, where ǫalg1 is the convergence tolerance of
Algorithm 1 and C a constant due to the fact that the convergence criterion
in Algorithm 1 limits the norm of the variation of the hydraulic head ψ rather
than the one of the volumetric water content θ(ψ). The total volume of water
in the overland flow at time nδt is obtained by integrating the surface water
depth over I

V n
over

def
=

∫

I
hnh.

The total variation of water volume in the kinematic wave equation over the
time step [(n−1)δt, nδt] is obtained by summing the elementary contributions
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in equation (24), yielding

V n
over − V

n−1
over =

(
− F n

I + F n
ABr

)
δt, (29)

where F n
I is already defined above and where F n

ABr represents the water flux
over the time step [(n− 1)δt, nδt] due to the rain and the discharge at points

A and B, with F n
ABr

def
= F n

A + F n
B + F n

r , and

F n
A

def
=
δt′

δt

n′∑

k=1

ϕ(hn−1,k
A ), F n

B

def
= −

δt′

δt

n′∑

k=1

ϕ(hn−1,k
NI

), F n
r

def
= −

δt′

δt

n′∑

k=1

∫

I
vn−1,k
r ·nΩ.

The total volume of water contained in the coupled system is the sum of the

volume of each system, V n def
= V n

grnd + V n
over. When (27) and (29) are summed,

the interface flux cancels, yielding

V n − V n−1 =
(
F n
WB + F n

ABr

)
δt+ ǫn. (30)

This relation readily implies the following overall water volume conservation
result for the single-step algorithm.

Property 1 Let δV n be the overall water volume defect over the time step

[(n − 1)δt, nδt] defined as δV n def
= V n − V n−1 − (F n

WB + F n
ABr)δt. Let △V n

be the overall water volume defect over the time interval [0, nδt] defined as

△V n def
=

∑n
i=1 δV

i. Then,

|△V n| ≤ nCǫalg1, (31)

where C is a constant and ǫalg1 is the tolerance in Algorithm 1.

3.4 Two-step coupling algorithm

We consider in this section the case where Richards’ equation is discretized in
time using a second-order BDF for which

(
∂χ

∂t

)n
≃

1

δt

(
3

2
χn − 2χn−1 +

1

2
χn−2

)
. (32)

The single-step coupling algorithm is not conservative when the non-stationary
term of Richards’ equation is approximated by the second-order BDF owing
to the fact that the Euler explicit scheme used to solve the kinematic wave
equation spans only a single time step. Consequently, to obtain a mass con-
servative scheme, the interface flux F n

I used in the kinematic wave equation
needs to be transformed into a new interface flux Φn

I , so that (29) becomes

V n
over − V

n−1
over =

(
− Φn

I + F n
ABr

)
δt. (33)
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To identify the expression for Φn
I , observe that using a second-order BDF

modifies (27) into

3

2
V n

grnd − 2V n−1
grnd +

1

2
V n−2

grnd =
(
F n
I + F n

WB

)
δt+ ǫn,

which can be rewritten as

3

2

(
V n

grnd − V
n−1
grnd

)
−

1

2

(
V n−1

grnd − V
n−2
grnd

)
− F n

WBδt = F n
I δt+ ǫn, (34)

where the fluxes F n
I and F n

WB are still defined by (28). Moreover it results from
(33) that

3

2

(
V n

over − V
n−1
over

)
−

1

2

(
V n−1

over − V
n−2
over

)
+

(
−

3

2
F n

ABr +
1

2
F n−1

ABr

)
δt

=
(
−

3

2
Φn

I +
1

2
Φn−1

I

)
δt. (35)

The new interface flux Φn
I is determined so that the mass flux F n

I is exactly
counter-balanced by the interface flux in (35), whence

F n
I =

3

2
Φn

I −
1

2
Φn−1

I =⇒ Φn
I =

2

3
F n
I +

1

3
Φn−1

I .

At the first time step where a one-step implicit scheme is used, water volume

conservation is directly enforced by setting Φ1
I

def
= F 1

I .

Algorithm 3 Two-step coupling algorithm

Input: ψn−1
h , ψn−2

h and hn−1
h

...

repeat
...

ωn,pv ← −(3h̃nh/δt+ v⋆,n−1
h )/2 on Id,n,p

h

ψn,ph ← Richards BDF2(Id,n,p
h , Iw,n,p

h , ωn,pv , ωn,pψ , ψn−1
h , ψn−2

h )

...

∀i ∈ {1 · · ·NI}, h
n,p
i = h̃ni + δt/li

∫
ei
(2v⋆,n,ph + v⋆,n−1

h )/3

...

until ∀ i ∈ {1 · · ·NI}, h
n,p
i ≥ 0

...

Output: ψnh , h
n
h and v⋆,nh = v⋆,n,ph

The resulting algorithm, referred to as two-step coupling algorithm, is outlined
in Algorithm 3. Only the differences with Algorithm 2 are indicated. The key
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modification concerns the evaluation of the interface normal velocity in the
calculation of hn,pi . The Neumann data ωn,pv is also modified to ensure that
the Neumann condition indeed leads to a dry state in the corresponding cell.
Also, the discrete approximation ψn−2

h at time (n− 2)δt is added to the input
and the interface normal velocity v⋆,nh is added to the output at each time step
since it is used in the subsequent time step.

The main result concerning the overall water volume conservation for Algo-
rithm 3 is the following.

Property 2 Let δV n be the overall water volume defect over the time step
[(n− 1)δt, nδt] defined as

δV n def
= V n − V n−1 − (F̃ n

WB + F n
ABr)δt, (36)

where F̃ n
WB

def
= 2

3
F n
WB + 1

3
F̃ n−1
WB . Let △V n be the overall water volume defect

over the time interval [0, nδt] defined as before. Then

|△V n| ≤
1

2
|δV 1|+ nCǫalg1,

where C is a constant and ǫalg1 is the tolerance in Algorithm 1.

Proof : Owing to (35), the coupling terms are eliminated when (33) et (34) are
summed, leading to

3

2

(
V n − V n−1

)
−

1

2

(
V n−1 − V n−2

)
−

(
F n
WBδt+

3

2
F n

ABrδt−
1

2
F n−1

ABr

)
δt = ǫn.

Using the definition of δV n yields the recurrence relation δV n = 1
3
δV n−1+ 2

3
ǫn,

so that

δV n =
1

3n
δV 1 +

2

3

n∑

i=1

3i−n × ǫi.

Owing to the triangle inequality, it is inferred that

|△V n| ≤
3

2

(
1

3
−

1

3n+1

)
|δV 1|+

n∑

i=1

(
1−

1

3i+1

)
|ǫi|,

whence

|△V n| ≤
1

2
|δV 1|+

n∑

i=1

|ǫi| ≤
1

2
|δV 1|+ nCǫalg1. 2

Finally, we observe that similar developments can be considered for arbitrary
order BDFs with additional technicalities and longer recursion formulas.
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4 Results

Algorithm 3 is assessed on three test cases: the first one concerns overland
flow over a variable topography, the second one infiltration due to rainfall and
the third one exfiltration resulting from injected water at the bottom of the
aquifer. The soil consists of sand and is parameterized by the Haverkamp’s
constitutive relations [17]

θ(ψ) =
θs − θr

1 + |α̃ψ|β
+ θr and K(ψ) =

Ks

1 + |Ãψ|γ
,

with parameters

θs = 0.5, α̃ = 0.028cm−1, Ks = 10−2cm.s−1, γ = 4,

θr = 0.05, β = 4, Ã = 0.030cm−1.

Figure 5 presents the volumetric water content and the hydraulic conductivity
as a function of the hydraulic head. Furthermore, the Strickler coefficient K
is set to 60m1/3s−1. For all test cases, the bottom boundary B is located at
z = 0.
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Figure 5. Hydraulic properties of the soil used in the test cases.

Piecewise affine finite elements are used (p = 1 in (15)) along with the usual
local Lagrangian basis functions. For the first time step, the Crank–Nicolson
scheme is used. A direct solver based on the LU decomposition is employed
to solve the linear systems. The convergence tolerance ǫalg1 in Algorithm 1
is set to 10−6 and the parameter η is set to 10. Moreover, we focus on the
use of the second-order coupling algorithm. This choice is motivated by the
fact that it yields second-order discretization errors in time along with second-
order discretization errors in space in the L2-norm since p = 1. In addition, a
second-order initialization of Algorithm 1 is chosen in the form

∀n ≥ 3, ψn,0h = 3ψn−1
h − 3ψn−2

h + ψn−3
h , (37)
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except for the second time step where the first-order initialization ψ2,0
h =

2ψ1
h−ψ

0
h is used. The second-order initialization (37) can decrease significantly

the CPU time in comparison with the initialization ψn,0h = ψn−1
h .

4.1 Test case 1 (TC1)

In this first test case, the runoff flow and the drainage of the subsurface domain
is induced by the presence of the outlet, located below the initial height of
the water table. The geometry is presented in Figure 6. The interface I is
divided into three parts, I1 = {(x, z) ∈ I, x ∈ [0, 1.4]} (slope J1 = 0.1%),
I2 = {(x, z) ∈ I, x ∈ [1.4, 1.6]} (slope J2 = 0.3%), and I3 = {(x, z) ∈ I, x ∈
[1.6, 3]} (slope J3 = 0.1%). The final simulation time is T = 300s. The initial
condition is an horizontal water table located at 0.3025m with an hydrostatic
pressure profile and the boundary condition on walls and bottom is a zero
flux,

ψ0 = −z + 0.3025m in Ω,

vN = 0 on (W ∪B)× [0, T ].

For the overland flow, the initial condition is a horizontal free surface and the
boundary condition is a zero water depth

h0 = −z + 0.3025m on I,

hA = 0 at A× [0,T].

3m

0.3m0.3025m

vN = 0

▽
J1 = 0.1% J2 = 0.3% J3 = 0.1%

z = 0

Figure 6. TC1 - Geometry, initial water table position and hA.

A mesh with 2063 triangles (corresponding to a typical mesh-size of 3.5cm)
along with time steps δt = 2.5s and δt′ = 0.25s have been used. We have
verified that the interface normal velocity obtained with δt = δt′ = 0.25s can
be superimposed to that reported below. In this case, the use of δt = 2.5s
instead of δt = δt′ = 0.25s leads to a gain of 89% in the computational
time (i.e. the computation effort required for performing one time-step in the
solution of Richards’ equation is eighty times more expensive than the one of
the kinematic wave).
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Figure 7 presents the free surface of the overland flow (hnh + topography) and
the interface normal velocity v⋆,nh along the interface at three characteristic
times of the simulation (10s, 100s and 300s). The free surface being piecewise
constant, it is depicted on each interface cell by a solid line. The interface
normal velocity v⋆,nh is plotted with circles if the interface is wet (that is, on

Iw,n
h ) and with crosses if the interface is dry (that is, on Id,n

h ).

Figure 8 provides a closer insight at the issue of staying on the admissible set
A. For the same times as in Figure 7 and for each face of FI

h , each couple
(ψnh , h

n
h) is represented by a cross (the mean-value of ψnh is considered on each

face). The admissible set A is also plotted with a solid line.

The hydraulic jump in the overland flow is visible at the beginning of the
simulation on Figure 7 at 10s. Moreover, exfiltration appears on some faces
located on I2 and I3. During the simulation, a Neumann boundary condition is
imposed on the faces where the water becomes equal to zero. It is confirmed by
Figure 8 where the number of couple (ψnh , h

n
h) situated on the branch {h = 0}

increases.

4.2 Test case 2 (TC2)

The principle of this test case is inspired by the work of Abdul and Gilham [1]:
a constant rainfall intensity is imposed on the upper part of the domain for a
fixed period of time, whereas the lateral and lower boundaries are imperme-
able. In our case, the geometry is shown in Figure 9 and the final simulation
time is T = 360s. The initial condition is an horizontal water table located
at 0.85m with an hydrostatic pressure profile and the boundary condition on
walls and bottom is a zero flux,

ψ0 = −z + 0.85m in Ω,

vN = 0 on (W ∪ B)× [0, T ].

For the overland flow, the initial condition and the boundary condition are

h0 = 0 on I,

hA = 0 at A× [0,T].

A constant rainfall intensity equal to 10% of the hydraulic conductivity at
saturation is imposed during 180s and is stopped afterwards,

vr · nΩ = −0.1Ks on I × [0, 180],

vr · nΩ = 0 on I × [180, T ].

A mesh with 2049 triangles (corresponding to a typical mesh-size of 10cm) and
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Figure 7. TC1 - Free surface (solid
line) and interface normal velocity
(cm/12min) plotted with circles if in-
terface is wet and with crosses if inter-
face is dry.
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Figure 8. TC1 - Cloud of points
(ψnh , h

n
h) on the admissible set A at dif-

ferent times.

time step δt = δt′ = 1s have been used. We have verified that the interface
normal velocity obtained with a finer mesh (8763 elements) and a smaller
time step (δt = δt′ = 0.5s) can be superimposed to that reported below. Also,
observe that δt′ = 1s roughly corresponds to the CFL condition, so that,
for the present test case, the accuracy limit on the time step for Richards’
equation is comparable to the CFL restriction.

Figure 10 presents the free surface and the normal velocity v⋆,nh along the in-
terface at four characteristic times of the simulation (10s, 60s, 180s and 360s).
The same notation is used as in Figure 7. The hydrological response of the
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|vr · nΩ| = 0.1Ks = 3.6mmh−1

▽

z = 0

Figure 9. TC2 - Geometry, initial water table position and constant rainfall intensity.
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Figure 10. TC2 - Free surface (solid line) and interface normal velocity (cm/15min)
plotted with circles if interface is wet and with crosses if interface is dry.

system can be divided into four phases.
1 - Soil saturation [0, 50s]. In this phase, which results from the initial water
table position, the 15cm top layer is being saturated. The rainfall is totally
absorbed by the soil, the surface water depth is equal to zero and a Neumann
condition is imposed on the all faces of I (Figure 10 at 10s).
2 - Surface runoff occurs on part of I [50s, 90s]. The rainfall is still partially
absorbed by the soil, but a Dirichlet condition is now being imposed on the
part of I located near the outlet. Interestingly, infiltration occurs on the most
part of the interface since the normal velocity is negative, but some exfiltration
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occurs on the first few faces located near the outlet where the normal velocity
becomes positive (Figure 10 at 60s).
3 - Surface runoff occurs on I [90s, 180s]. Surface runoff occurs on the whole
interface and the soil is totally saturated. A Dirichlet condition is imposed
throughout the interface and the surface water depth is positive (Figure 10 at
180s).
4 - Drainage [180s, 360s]. When rainfall stops, the surface water depth returns
to zero on the faces located near the point A because of infiltration and surface
runoff. A Neumann boundary condition is imposed on the dry zone near the
point A (Figure 10 at 360s).

Figure 11 provides a closer insight at the issue of staying on the admissible
set A. For the same times as in Figure 10 and for each face of FI

h , each couple
(ψnh , h

n
h) is represented as in Figure 8. Note that different scales are used,

so that the branch {h = ψ} is almost vertical. The four phases described
above are clearly illustrated by the position of the cloud of points. At 10s, the
hydraulic head is negative and the water depth is equal to zero. The cloud of
points is only on the branch {h = 0} corresponding to a dry soil. At 60s, the
hydraulic head is equal to the water depth for some faces. The cloud of points
is located on the two branches because the soil contains both saturated and
unsaturated zones. At 180s, the hydraulic head is equal to the water depth for
all the faces. The cloud of points is only on the branch {h = ψ} corresponding
to a wet soil. At 360s, the hydraulic head becomes again negative where the
surface water depth is equal to zero. The cloud of points is again located on
the two branches.
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Figure 11. TC2 - Cloud of points (ψnh , h
n
h) on the admissible set A at different times.
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Figure 12 presents results on mass conservation issues. Multiplying equation
(36) by the water density ρ, summing over the time intervals in [0, nδt], know-
ing that F̃WBn = 0 and the definition of V n, F n

ABr and ∆V n yields

ρ(V n
grnd − V

0
grnd)

︸ ︷︷ ︸
∆M

n
grnd

+ ρ(V n
over − V

0
over)

︸ ︷︷ ︸
∆Mn

over

=
n∑

i=1

ρδt
(
F i

A + F i
r

)

︸ ︷︷ ︸
M

i
in

+
n∑

i=1

ρδtF i
B

︸ ︷︷ ︸
M

i
out

+ ρ∆V n

︸ ︷︷ ︸
En

.

∆M
n is defined as the total mass variation over the time interval [0, nδt]

and is the sum of the total groundwater mass variation ∆M
n
grnd and the to-

tal overland mass variation ∆M
n
over. The quantities

∑n
i=1 M

i
in,

∑n
i=1 M

i
out and

E
n are respectively the total inflow of water, the total outflow of water and

the total mass balance defect cumulated at time nδt. The five quantities
∆M

n,∆M
n
grnd,∆M

n
over,

∑n
i=1 M

i
in and

∑n
i=1 M

n
out are presented in the left part

of Figure 12. In particular, this figure confirms the four phases of the sim-
ulation. The rainfall is totally absorbed by the soil at the beginning of the
simulation until 50s since ∆M

n = ∆M
n
grnd. Then, the increase of ∆M

n
grnd di-

minishes and ∆M
n
over becomes positive as a result of soil saturation. From 90s

to the end of the simulation, the variations of ∆M
n and ∆M

n
over are the same,

corresponding to a complete saturation of the soil. Moreover, during the last
phase, the total water inflow is constant because the rainfall stops, so that the
total water outflow is the same as the total mass variation.

Both total mass balance defects obtained with the single-step and two-step
coupling algorithms are compared in the right part of Figure 12. While Algo-
rithm 3 yields a sizable improvement over Algorithm 2, it can still be noticed
that the mass balance defect produced by Algorithm 2 is only of the order of
a few percent of the global quantities such as ∆M

n.
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Figure 12. TC2 - Left: Mass repartition in the coupled system; Right: Mass balance
defect E

n for Algorithm 2 (dashed) and Algorithm 3 (solid).

Finally, Figure 13 studies in more detail the mass fluxes in the kinematic
wave equation. The mass flux F̃ n

I is decomposed into the exfiltration flux

F̃ n,+
I and the infiltration flux F̃ n,−

I in the form F̃ n
I

def
= F̃ n,+

I + F̃ n,+
I , with

F̃ n,+
I

def
= −

∫
I

n,+

h
v⋆,nh and F̃ n,−

I

def
= −

∫
I

n,−

h
v⋆,nh , where the time-dependent sets
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In,+h and In,−h are defined as follows

In,+h

def
= {x ∈ I; v⋆,nh (x) < 0} and In,−h

def
= {x ∈ I; v⋆,nh (x) > 0}.

The four quantities ρδtF̃ n,+
I , ρδtF̃ n,−

I ,Mn
in and M

n
out are plotted on Figure 13

as a function of time.
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Figure 13. TC2 - Mass fluxes in the kinematic wave equation.

4.3 Test case 3 (TC3)

In this third test case, an exfiltration is produced on the upper part of the
domain by injecting water at the bottom-left part. The geometry is presented
in Figure 14 and the final simulation time is T = 360s. The initial condition is
an horizontal water table located at 0.1m with an hydrostatic pressure profile
and the boundary condition on the walls corresponds to a zero flux,

ψ0 = −z + 0.1m in Ω,

vN = 0 on W × [0, T ].

The rainfall intensity is set to zero. An infiltration flux with a parabolic profile
and a mean-value v̄N equal to 5% of hydraulic conductivity at saturation is
imposed during 2 minutes on the left half Bl of the bottom (Bl = {(x, z) ∈
B, x ∈ [0, 1]} and Br = {(x, z) ∈ B, x ∈ [1, 2]}). This infiltration flux is linear
during the first 10s, constant on [10, 120], and equal to zero for t > 120s:

vN(x, t) =






x(x− 1) 0.003Ks t, if (x, t) ∈ Bl × [0, 10],

x(x− 1) 0.03Ks, if (x, t) ∈ Bl × [10, 120],

0, otherwise.
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For the overland flow, the initial condition and the boundary condition are

h0 = 0 on I,

hA = 0 at A× [0,T].

A mesh with 1874 triangles (corresponding to a typical mesh-size of 2.5cm)
and time step δt = δt′ = 1s have been used. We have verified that the interface
normal velocity obtained with a finer mesh (7310 elements) and a smaller time
step (δt = δt′ = 0.5s) can be superimposed to that reported below.

J = 0.2%

1m 1m

0.2m

0.1m

v̄N = 0.05Ks

vN = 0

▽

z = 0

Figure 14. TC3 - Geometry, initial water table position and flux infiltration in
groundwater.

Figure 15 presents the free surface and the normal velocity v⋆,nh along the
interface at six characteristic times of the simulation (5s, 35s, 50s, 100s, 150s
and 360s) and Figure 16 presents the surface water depth hnh at these different
times. The same notation is used as in Figure 7. The hydrological response of
the system can be divided into six phases.

1 - Soil saturation [0, 15s]. This phase results from the initial water table
position. At the beginning of the simulation, the soil is partially saturated and
the injection at the bottom of the domain increases the hydraulic head. The

interface is totally dry and a zero Neumann boundary condition is enforced
everywhere on I (Figure 15 at 5s).
2 - Partial exfiltration [15s, 45s]. The soil becomes saturated in the left part of
the domain and the interface normal velocity positive, so that water begins to
exfiltrate from the faces situated in this saturated zone. A Dirichlet condition
is enforced on those faces (Figure 15 at 35s).
3 - Full exfiltration [45, 100s]. When the soil is totally saturated, the amount
of exfiltrated water is equal to the amount of injected water. We observe that
overland flow occurs over the whole interface I and that a Dirichlet condition
is being enforced everywhere. However, most of the overland flow still remains
concentrated near the upper part of the interface (Figure 15 at 50s).
4 - Propagation of the runon wave [100, 120s]. In this phase, the runon wave
propagates downstream. It is worthwhile to notice that a slight part of the
surface water infiltrates back into the soil as indicated by the sign of the
normal velocity near the heading part of the runon wave (Figure 15 at 100s).
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Figure 15. TC3 - Free surface (solid line) and interface normal velocity (cm/6min)
plotted with circles if interface is wet and with crosses if interface is dry.
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5 - Outflow [120, 200s]. When water injection ceases at the bottom of the
domain, the amount of exfiltrated water decreases sharply and there is even a
small portion of the interface located near the point A where water infiltrates
back into the soil (despite the boundary condition is of Dirichlet type since the
surface water depth is still positive) while most of the overland flow reaches
the outlet and exits the system (Figure 15 at 150s).
6 - Drainage [200, 360s]. The surface water depth vanishes on the upper part
of the interface I where a zero Neumann condition is now imposed (Figure 15
at 360s).

Figure 17 shows that each couple (ψnh , h
n
h) stays on the admissible set A. As

in the previous test case, the phases described above are clearly illustrated by
the position of the cloud of points. It is located on the branch {h = 0} when
the soil is unsatured, on the branch {h = ψ} when the soil is saturated and
on the two branches when there are both saturated and unsaturated zones at
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Figure 17. TC3 - Cloud of points (ψnh , h
n
h) on the admissible set A at different times.
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the interface.

Results on Figure 18 and Figure 19 are similar to the ones of the previous test
case, in particular the comparison of the mass balance defects for the one-step
and the two-step algorithms.
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Figure 18. TC3 - Left: Mass repartition in the coupled system; Right: Mass balance
defect E

n for Algorithm 2 (dashed) and Algorithm 3 (solid).
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Figure 19. TC3 - Mass fluxes in the kinematic wave equation.

5 Conclusion

In this work we have presented a robust and accurate numerical method to sim-
ulate coupled subsurface and overland flows governed by Richards’ equation
and the kinematic wave equation. Special care was taken to design coupling
algorithms that preserve the overall mass in the system and that also satisfy
the various equality and inequality constraints imposed at the interface. Ex-
tensions of this work include the use of more complex models, such as the
shallow-water equations, to describe the overland flow and the possibility to
account for drainage pipes in the soil. Extension to two-dimensional surface
flows and three-dimensional subsurface variably saturated flows can also be
considered. The present algorithms are currently being tested in more complex
and realistic test cases related to field studies.
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