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Introduction

The interactions of subsurface and overland flows are an important ingredient for a comprehensive understanding of hydrology processes. While there is an extensive bulk of literature devoted to the numerical study of water flows in single-phase and variably saturated porous media, the issue of coupling such flows with surface flows generated by rivers, tides or floods has received less attention. One of the most popular ways to couple Darcy and Stokes flows is through the well-known Beavers-Joseph-Saffman condition [START_REF] Beavers | Boundary conditions at a naturally impermable wall[END_REF][START_REF] Saffman | On the boundary condition at the interface of a porous medium[END_REF][START_REF] Jäger | On the interface boundary condition of Beavers, Joseph and Saffmann[END_REF]. This condition was used for instance in [START_REF] Discacciati | Mathematical and numerical models for coupling surface and groundwater flows[END_REF][START_REF] Miglio | Coupling of free surface and groundwater flows[END_REF] in the mathematical and numerical study of the coupling of Darcy flow with a three-dimensional nonhydrostatic shallow-water model. Another approach used in numerical hydrology (see among others [START_REF] Vanderkwaak | Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model[END_REF]) considers discontinuous pressures at the interface and evaluates an interface flux as the pressure difference, modulated by a multiplicative exchange coefficient depending on the soil relative permeability. A third approach consists of assuming both normal flux and pressure continuity. This means that the hydraulic head of the subsurface flow matches the depth of the overland flow at the interface, while the normal ground flow velocity is used as a source term in the governing equation of the overland flow. Examples of studies based on this approach include coupling one-dimensional surface flow with vertical soil columns [START_REF] Singh | Conjonctive surface-subsurface modeling of overland flow[END_REF], coupling the two-dimensional Richards' equation with a one-dimensional kinematic or diffusive wave approximation for the overland flow [START_REF] Kollet | Integrated surface-groundwater flow modeling: A freesurface overland flow boundary condition in a groundwater flow model[END_REF][START_REF] Beaugendre | A seepage face model for the interaction of shallow water tables with the ground water surface: Application of the obstacle-type method[END_REF], and coupling the two-dimensional Darcy's equation with one-dimensional shallow-water equations [START_REF] Dawson | Analysis of discontinuous finite element methods for ground water/surface water coupling[END_REF] .

In the present work, we assume that the subsurface flow occurs in a variably saturated porous medium and that this flow can be described by Richards' equation, entailing in particular that there are no trapped air pockets in the soil; otherwise more general multi-phase models should be used [START_REF] Bastian | Efficient fully-coupled solution techniques for two-phase flow in porous media[END_REF]. Furthermore the kinematic wave approximation is used to describe the overland flow. This choice is solely made for ease of exposition and more general shallow water models can also be used. Concerning the coupling conditions, we adopt the third approach described above, namely enforcing the continuity of both normal flux and pressure at the interface. These coupling conditions are generally valid when the overland flow is mainly produced by exfiltration from the soil, so that normal flux and pressure equilibrium can be expected to hold at all times. A different situation, which falls beyond the present scope, is that of a runon surface wave rapidly propagating over a dry soil.

Many methods can be employed to discretize in space Richards' equation, namely finite differences [START_REF] Woodward | Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media[END_REF][START_REF] Celia | A general mass-conservative numerical solution for the unsaturated flow equation[END_REF], finite volumes (FV) [START_REF] Manzini | Mass-conservative finite volume methods on 2-d unstructured grids for the Richards equation[END_REF], finite elements (FE) [START_REF] Celia | A general mass-conservative numerical solution for the unsaturated flow equation[END_REF][START_REF] Kavanagh | Nonsmooth nonlinearities and temporal integration of richards equation[END_REF] or mixed finite elements (MFE) [START_REF] Knabner | Adaptive hybrid mixed finite element discretization of instationary variably saturated flow in porous media[END_REF][START_REF] Bause | Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods[END_REF]. These methods are generally combined with an implicit Euler time scheme. An alternative approach for space discretization is to use a discontinuous Galerkin (DG) method. Advantages offered by DG methods include local (elementwise) conservation (as FV and MFE), high-order accuracy (as FE and MFE) and flexibility in the use of nonmatching meshes (as FV), in particular within multi-physics and multi-domain approaches. Various forms of DG methods can be used for Richards' equation and more generally for two-phase flows in porous media. Examples include the so-called Local Discontinuous Galerkin method [START_REF] Fagherazzi | Application of the discontinuous spectral Galerkin method to groundwater flow[END_REF][START_REF] Bastian | Numerical simulation and experimental studies of unsaturated water flow in heterogeneous systems[END_REF] and the non-symmetric or the symmetric interior penalty DG method [20,[START_REF] Bastian | Higher order discontinuous Galerkin methods for flow and transport in porous media[END_REF][START_REF] Bastian | Discontinuous galerkin methods for two-phase flow in porous media[END_REF]. In the present work, we choose the symmetric interior penalty DG method (in short SIPG), because it preserves the natural symmetry in the discrete diffusion operator. Regarding time discretization, the common approach when working with DG methods is to employ Runge-Kutta (RK) explicit schemes [START_REF] Cockburn | The local discontinuous Galerkin method for timedependent convection-diffusion systems[END_REF] or diagonally implicit ones [START_REF] Bastian | Higher order discontinuous Galerkin methods for flow and transport in porous media[END_REF]. Here, we propose instead to use a backward differentiation formula (BDF). We think that this approach offers several advantages, such as high-order accuracy in the time discretization, circumventing the CFL condition which can be very restrictive for explicit schemes when diffusion processes are dominant, and in general higher computational efficiency than implicit RK schemes for problems where the nonlinear solver is expensive. Typically, if piecewise polynomials of degree p are used in the DG method, a BDF of order (p + 1) can be employed.

The main objective of this work is to design robust and accurate schemes for coupling subsurface and overland flows. While Richards' equation is discretized by a BDF-SIPG method, the overland flow governing equation is discretized by a Godunov scheme and advanced in time with a different time step if the overland flow time scale is quite different from the subsurface flow time scale. Two important issues are addressed in the design of our coupling algorithms: 1) satisfy as accurately as possible the coupling conditions which impose certain specific inequality and equality constraints on the pressures and normal fluxes, similarly to the boundary conditions encountered in Signorini problems, and 2) ensure overall mass conservation for the whole system consisting of subsurface and overland flow. This point deserves some particular attention. Indeed, although mass conservative schemes are used for both subsurface and overland flows, the interface flux must be chosen appropriately when working with multi-step methods such as BDFs. For simplicity, we will discuss in detail only the design of the interface flux for the second-order BDF. Finally, although the material will be presented in a 2D/1D setting (that is, a two-dimensional subsurface flow coupled to a one-dimensional overland flow), the results extend naturally to the 3D/2D setting. In particular, the wet part of the interface is not tracked directly, but is determined at each time step by a cell-oriented procedure within an iterative loop that solves consecutively the overland and subsurface flow governing equations. This paper is organized as follows. In Section 2, we present the physical problem. In Section 3, we describe the time and space discretization of the model problem and design the coupling algorithms for both first-order and secondorder BDFs. Finally, in Section 4, we present numerical results assessing the performance of the proposed algorithms on three test cases.

Model problem

The setting

Let Ω ⊂ R 2 denote the bounded subsurface flow domain with outward normal unit vector n Ω . The boundary of Ω is divided into three parts (see Figure 1): I is the upper part of the boundary where overland flow can occur, W are lateral walls and B represents the lower part of the boundary. At any time t, the set I is divided into "wet" and "dry" parts I d,t ∪ I w,t , with

I w,t def = {x ∈ I; h(x, t) > 0}, I d,t def = {x ∈ I; h(x, t) = 0}, ( 1 
)
where h is the depth of the overland flow. Observe that the above partition of I is time-dependent.

I I d,t I w,t • • A B Ω W W B h n Ω Figure 1
. Schematic of the computational domain with basic notation.

Subsurface flow

The soil is modeled as a non-deformable porous medium in which the pores can contain both water and air (unsaturated zone) or only water (saturated zone). We assume that water is incompressible and that air pressure does not affect the flow. The water conservation equation takes the form

∂ t [θ(ψ)] + ∇ • v(ψ) = f, (2) 
where ∂ t denotes partial time-derivative, ψ is the hydraulic head (m), θ(ψ) the volumetric water content (dimensionless), v(ψ) the flow velocity (ms -1 ), and f a volumetric water source or sink (s -1 ). In the sequel, we assume that there are no volumetric sources or sinks, so that f = 0. The flow velocity depends on the hydraulic head through the generalized Darcy law

v(ψ) = -K(ψ)∇(ψ + z), (3) 
where K(ψ) is the (possibly tensor-valued) hydraulic conductivity (ms -1 ) and z the vertical coordinate (m). Substituting (3) into (2), Richards' equation is obtained in the form [START_REF] Richards | Capillary conduction of liquids through porous mediums[END_REF] ∂

t [θ(ψ)] -∇ • (K(ψ)∇(ψ + z)) = 0. ( 4 
)
Given at each time t ∈ [0, T ], where T is the total simulation time, the partition {I w,t , I d,t } of I, a Dirichlet datum ω ψ defined on I w,t and a Neumann datum ω v defined on I d,t , the subsurface flow is governed by

                                 ∂ t [θ(ψ)] + ∇ • v(ψ) = 0 in Ω × [0, T ], v(ψ) = -K(ψ)∇(ψ + z) in Ω × [0, T ], ψ(•, 0) = ψ 0 in Ω, v(ψ) • n Ω = v N on (W ∪ B) × [0, T ], v(ψ) • n Ω = ω v on {(x, t), x ∈ I d,t }, ψ = ω ψ on {(x, t), x ∈ I w,t }, (5) 
where v N is the possibly time-dependent normal flow velocity prescribed on W ∪ B and ψ 0 the initial condition. Thus, Richards' equation is a nonlinear parabolic equation which degenerates into a nonlinear diffusion equation in the saturated zone where θ and K are constant. Examples for the two constitutive laws ψ → θ(ψ) and ψ → K(ψ), which are necessary to close the subsurface flow model, are specified in §4.

Overland flow

Water surface flows are often modeled by a simplified form of the free boundary Navier-Stokes equations. Assuming hydrostatic pressure, negligible vertical velocity gradients and mild variations of the free surface leads to the well-known shallow-water equations; see, e.g. [START_REF] Gerbeau | Derivation of viscous saint-venant system for laminar shallow water; numerical validation[END_REF] for a derivation of these equations. Neglecting turbulence effects, the equations expressing the conservation of mass and momentum reduce to

∂ t h + ∂ x q = (v(ψ) -v r ) • n Ω , (6) 
∂ t q + ∂ x q 2 h + gh 2 2 = gh(S -J), (7) 
where q is the discharge (m 2 s -1 ), v(ψ) • n Ω the source or sink term (ms -1 ) resulting from mass transfer between subsurface and overland flows, v r the possibly time-dependent prescribed rainfall intensity (ms -1 ), g the gravity acceleration (ms -2 ), S the possibly space-dependent bottom slope (dimensionless) and finally J (dimensionless) results from friction effects. Note that the mass transfer term v(ψ) • n Ω in the mass conservation equation ( 6) involves the subsurface flow velocity resulting from (5); infiltration occurs if v(ψ) • n Ω < 0 whereas exfiltration occurs if v(ψ) • n Ω > 0. The Manning-Strickler uniform flow formula is chosen to link J and q and assuming the flux to be uni-directional from left to right so that q ≥ 0, this yields

q = Kh 5/3 J 1/2 , ( 8 
)
where K is the Strickler coefficient of roughness (m 1/3 s -1 ).

A common assumption is to neglect inertia and potential energy effects in [START_REF] Beaugendre | A seepage face model for the interaction of shallow water tables with the ground water surface: Application of the obstacle-type method[END_REF], so that momentum balance is governed by the equilibrium between slope and friction, that is

S = J. (9) 
Substituting ( 9) into (8) yields

q = ϕ(h, S) def = Kh 5/3 S 1/2 . (10) 
Finally, using [START_REF] Cockburn | The local discontinuous Galerkin method for timedependent convection-diffusion systems[END_REF] in ( 6) leads to the so-called kinematic wave approximation [START_REF] Ponce | Shallow wave propagation in open channel flow[END_REF] 

∂ t h + ∂ x ϕ(h, S) = (v(ψ) -v r ) • n Ω . (11) 
This scalar conservation law is strictly hyperbolic wherever h > 0. In the present case, waves travel rightwards and an upstream boundary condition in A (see Figure 1) must be set. Let h 0 be the initial condition and let h A be the upstream boundary condition on the surface water depth prescribed at point A. Then, the overland flow is governed by

             ∂ t h + ∂ x ϕ(h, S) = (v(ψ) -v r ) • n Ω on I × [0, T ], h(•, 0) = h 0 on I, h(A, •) = h A at A × [0, T]. ( 12 
)

Admissible set

We refer to the quadruplet {I w,t , I d,t , ω ψ , ω v } as the coupling variables. The model problem considered hereafter for coupling subsurface and overland flows consists of finding functions (ψ, h) and the above coupling variables such that

             ψ solves (5) in Ω × [0, T ], h solves (12) on I × [0, T ], (ψ, h) ∈ A on I × [0, T ], (13) 
where A denotes the set of physically admissible states {ψ, h}. The admissible set A (see Figure 2) has two branches, the branch {h = 0} is associated with the dry surface where the soil hydraulic head is less than or equal to zero corresponding to unsaturated conditions, while the branch {h = ψ} is associated with the wet surface where the soil is saturated and the hydraulic head is in hydrostatic equilibrium with the overland flow pressure. Thus, the admissible set A is defined as

A def = {(ψ, h) ∈ R 2 , h = ψ + }, (14) 
where We mainly focus here on situations where the overland flow is produced by exfiltration. Indeed in this situation, a smooth behavior on the admissible set can be expected. More drastic situations like runon surface waves on unsaturated soils can in many cases lead to a departure from the admissible set especially if the soil is too dry. In these limit situations, other models can be more suitable: for instance when infiltration processes are very slow, a model where surface flow coexists with an unsaturated soil can be envisaged.

ψ + = 1 2 (ψ + |ψ|) is the positive part of ψ.

Discretization

Discretization of Richards' equation

Let {T h } h>0 be a shape-regular family of unstructured meshes of Ω consisting for simplicity of affine triangles. The meshes can possess hanging nodes. For an element τ ∈ T h , let ∂τ denote its boundary and n τ its outward unit normal.

The discontinuous finite element space V h is defined as

V h def = {φ ∈ L 2 (Ω), ∀τ ∈ T h , φ| τ ∈ P p (τ )}, (15) 
where P p (τ ) is the set of polynomials of degree less than or equal to p on an element τ . We observe that the functions in V h need not be continuous. This fact is exploited by selecting basis functions which are locally supported in a single mesh element. The set F h of mesh faces is partitioned into

F i h ∪F WB h ∪F I h
where F i h is the set of internal faces, F WB h the set of faces located on W ∪ B and F I h the set of faces located on I. For a face F ∈ F i h , there are τ + and τ - in T h such that F = ∂τ + ∩ ∂τ -and we define the average operator {} F and the jump operator [[]] F as follows: for a function ξ which is possibly two-valued on F ,

{ξ} F def = 1 2 (ξ + + ξ -) and [[ξ]] F def = ξ --ξ + ,
where ξ ± = ξ| τ ± . For vector-valued functions, average and jump operators are defined componentwise. We define n F to be the unit normal vector to F pointing from τ -to τ + . The arbitrariness in the sign of the jump is irrelevant in the sequel.

In the present work, faces on I can exclusively be flagged either as dry or as wet, that is, we do not track the wet/dry interface inside such faces. As a result, the set F I h can be further divided into F d,t h and F w,t h , where F d,t h collects the faces flagged as dry and F w,t h those flagged as wet. These two sets of faces induce a partition of I as I d,t h ∪ I w,t h , where

I d,t h def = {x ∈ I, ∃F ∈ F d,t h , x ∈ F } and I w,t h def = {x ∈ I, ∃F ∈ F w,t h , x ∈ F }.

Space discretization

Let ψ h be the discrete approximation of ψ. The symmetric interior penalty discontinuous Galerkin method for Richards' equation can be concisely written as

∀τ ∈ T h , ∀φ ∈ P p (τ ), τ ∂ t [θ(ψ h )]φ + a τ (ψ h , ψ h , φ) = b τ (ψ h , φ), (16) 
where for

(ζ, ψ, φ) ∈ V h × V h × P p (τ ), a τ (ζ, ψ, φ) def = τ K(ζ)∇ψ • ∇φ + ∂τ K(ζ) ∇φ • n τ ( ψ(ψ) -ψ) + ∂τ u(ζ, ψ) • n τ φ, (17) 
b τ (ζ, φ) def = τ ∇ • (K(ζ)∇z) φ + bτ (ζ, φ). (18) 
Here, ψ(ψ) is the numerical flux associated with the hydraulic head

∀F ∈ F h , ψ(ψ)| F def =                {ψ} F if F ∈ F i h , 0 if F ∈ F w,t h , ψ if F ∈ F d,t h ∪ F WB h ,
and u(ζ, ψ) the numerical flux associated with

u def = -K(ψ)∇ψ, ∀F ∈ F h , u(ζ, ψ)| F def =                -{K(ζ)∇ψ} F + ηK s d -1 F [[ψ]] F n F if F ∈ F i h , -K(ζ)∇ψ + ηK s d -1 F ψn Ω if F ∈ F w,t h , 0 if F ∈ F d,t h ∪ F WB h ,
where η is a positive parameter (to be taken larger than a minimal threshold depending on the shape-regularity of T h ), K s the hydraulic conductivity at saturation and d F the diameter of the face F which is defined as the largest diameter of the triangle(s) of which F is a face. Observe that for a flow in a porous medium with variable conductivity (as in variably saturated flows because of the dependence of the conductivity on the hydraulic head), the penalty coefficient at a given interface should scale as the harmonic means of the normal hydraulic conductivity on both parts of the interface, see [START_REF] Pietro | Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection[END_REF][START_REF] Ern | A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity[END_REF].

Here, the variations of K are sufficiently mild to use simply the hydraulic conductivity at saturation. Furthermore, bτ (ζ, φ) collects the parts of the numerical fluxes on boundary faces which are independent of ψ, namely bτ (ζ, φ)

def = ∂τ ∩F w,t h -K(ζ) ∇φ • n Ω + ηK s d -1 F φ ω ψ - ∂τ ∩F d,t h (ω v + K(ζ)∇z • n Ω )φ - ∂τ ∩F WB h (v N + K(ζ)∇z • n Ω )φ.
Summing a τ (ζ, ψ, φ) over all mesh elements yields the global form

a h (ζ, ψ, φ) = τ ∈T h τ K(ζ)∇ψ • ∇φ - F ∈F i h F {K(ζ)∇φ}[[ψ]] • n F + {K(ζ)∇ψ}[[φ]] • n F -ηK s d -1 F [[ψ]][[φ]] - F ∈F w,t h F K(ζ)∇φ ψ • n F + K(ζ)∇ψ φ • n F -ηK s d -1 F ψφ . (19) 
The parameter η must be chosen large enough to ensure that the form a h is coercive, in the sense that there is α > 0 such that for all φ ∈ V h ,

a h (φ, φ, φ) ≥ α τ ∈T h τ K(φ)|∇φ| 2 + F ∈F i h K s d -1 F F [[φ]] 2 + F ∈F w,t h K s d -1 F F φ 2 .

Time discretization

Let N T be the total number of time steps and let δt be the time step taken to be constant for the sake of simplicity and such that N T def = T /δt is an integer. For any function of time χ and for any integer n ≥ 0, χ n denotes the value taken by χ at time nδt. Furthermore, the time derivative of χ can be approximated by a backward differentiation formula [START_REF] Quarteroni | Numerical Mathematics[END_REF] in the form

(∂ t χ) n ≃ q r=0 α q r δt χ n-r , ( 20 
)
where q is the order of the formula and {α q r } 0≤r≤q are suitable coefficients. Using the approximation (20) in [START_REF] Gerbeau | Derivation of viscous saint-venant system for laminar shallow water; numerical validation[END_REF] 

for each n ∈ {1 • • • N T } leads to ∀τ ∈ T h , ∀φ ∈ P p (τ ), α q 0 δt τ θ(ψ n h )φ + a τ (ψ n h , ψ n h , φ) = b τ (ψ n h , φ) - q r=1 α q r δt τ θ(ψ n-r h )φ. (21) 
For the first few time steps, a BDF of lower order or a one-step implicit scheme can be used, for example a diagonally implicit Runge-Kutta scheme or the Crank-Nicolson scheme. The former can present the drawback that the last stage can lead to difficulties where the soil is being saturated.

Nonlinear iterative solver

The nonlinear equation ( 21) is solved by the iterative algorithm outlined in Algorithm 1. The discrete functions ψ n-r h 1≤r≤q

being known, successive approximations ψ n,m h of ψ n h are computed using a quasi-Newton procedure of the form

∀τ ∈ T h , ∀φ ∈ P p (τ ), α q 0 δt τ θ(ψ n,m h ) + ∂ ψ [θ(ψ n,m h )](ψ n,m+1 h -ψ n,m h ) φ + a τ (ψ n,m h , ψ n,m+1 h , φ) = b τ (ψ n,m h , φ) - q r=1 α q r δt τ θ(ψ n-r h )φ. ( 22 
) Let δψ n,m h = ψ n,m+1 h -ψ n,m h and let d τ be defined as d τ (ζ, ψ, φ) def = τ ∂ ψ [θ(ζ)]ψφ,
so that equation ( 22) can be written as

∀τ ∈ T h , ∀φ ∈ P p (τ ), α q 0 δt d τ (ψ n,m h , δψ n,m h , φ) + a τ (ψ n,m h , δψ n,m h , φ) = b τ (ψ n,m h , φ) - q r=1 α q r δt τ θ(ψ n-r h )φ - α q 0 δt τ θ(ψ n,m h )φ -a τ (ψ n,m h , ψ n,m h , φ). ( 23 
)
Algorithm 1 Iterative algorithm at each time step for solving Richards' equation

Input: ψ n-1 h , ψ n-2 h , • • • , ψ n-q h , ψ n,0 h , ǫ alg1 set m = 0 repeat Find δψ n,m h ∈ V h solving (23) set ψ n,m+1 h = ψ n,m h + δψ n,m h m ← m + 1 until E ≤ ǫ alg1 Output: ψ n h = ψ n,m h
The simplest initialization of Algorithm 1 consisting of choosing the approximation of the solution at the previous time step (ψ n,0 h = ψ n-1 h

), but a higher order initialization can also be used (see §4). The error measure E is the relative Euclidean norm of the component vector associated with δψ n,m h , and ǫ alg1 is a user-defined convergence criterion.

Discretization of the kinematic wave equation

The kinematic wave equation is discretized on a surface mesh on I which is simply the trace of the mesh T h on I. Let N I be the number of mesh faces covering I. A finite volume scheme with Godunov flux and time step δt ′ is used. The time step is taken less than or equal to the time step for Richards' equation, that is, δt ′ = δt/n ′ with n ′ ≥ 1 (see Figure 3). This choice is made because the explicit FV scheme is, as usual, restricted by a CFL condition to ensure its stability. This is not the case for the discrete Richards' equation where, owing to the use of a BDF, a larger time step can be employed. This leads to the following notation:

h n,k h for n ∈ {1 • • • N T } and k ∈ {0 • • • n ′ }
denotes the discrete approximation of h at time nδt + kδt ′ and for brevity we write mesh face e i on I respectively as the center, the length, and the left and right vertices of e i (see Figure 4). S i denotes the slope of the face e i . Since the flux function ϕ is convex and the surface water depth is nonnegative, the Godunov flux coincides with the upwind flux, yielding

h n h def = h n,0 h = h n-1,n ′ h . Let x i , l i , x i-
∀k ∈ {1 • • • n ′ }, ∀i ∈ {1 • • • N I }, h n-1,k i = h n-1,k-1 i + δt ′ l i ϕ(h n-1,k-1 i-1 , S i-1 ) -ϕ(h n-1,k-1 i , S i ) ( 24 
)
-l i v n-1,k-1 r • n Ω + e i v ⋆,n h , where for all i ∈ {1 • • • N I }, h n,k i def = h n,k h | e i and v ⋆,n
h is a discrete interface flux yet to be defined (see §3.3). Observe that a fixed interface flux is used for the multiple time steps comprised in a single time step of Richards' equation. Equation ( 24) requires the knowledge of the surface water depth at 

• • • • • l i x -1 2 A x i-3 2 x i-1 2 x i+ 1 2 x i+ 3 2 h -1 h i-1 h i h i+1 × x i
N I }, h 0 i = h 0 (x i ) and ∀n ∈ {1 • • • N T }, ∀k ∈ {0 • • • n ′ -1}, h n,k -1 = h n,k A .
The CFL condition for the explicit scheme ( 24) can be expressed as

δt ′ ≤ min 1≤i≤N I l i ∂ h ϕ(h max , S i ) , (25) 
where h max is an a priori bound for the surface surface water depth h on I × [0, T ]. By definition of the flux function ϕ, this yields

δt ′ ≤ 3 5Kh 2/3 max • min 1≤i≤N I l i S -1 2 i .
In the absence of rainfall and coupling terms, the satisfaction of the CFL condition implies a discrete maximum principle and a decrease in the total variation for the discrete surface water depth.

Single-step coupling algorithm

We consider in this section the case where Richards' equation is discretized in time using a first-order BDF (that is, the Euler implicit scheme). Together with the finite volume scheme described in §3.2 for the kinematic wave equation, this yields a scheme to approximate the coupled system (13) provided we specify the time evolution of the coupling variables

{I d,n h , I w,n h , ω n v , ω n ψ } for n ∈ {1 • • • N T } (see §2.4).
Here, as before, the superscript n stands for the value at nδt, so that I d,n h = I d,nδt h and so on. This time evolution is designed with the twofold objective to ensure that a suitable approximation of (ψ, h) lies in the admissible set A at all discrete times and to ensure overall mass conservation for the whole system (subsurface and overland flows). The resulting algorithm is outlined in Algorithm 2. It is termed single-step coupling algorithm in reference to the use of the first-order BDF which spans a single time step interval. For simplicity in the presentation of Algorithm 2, we define

• ψ n h ← Richards BDF1(I d,n h , I w,n h , ω n v , ω n ψ , ψ n-1 h
) as the resolution by Algorithm 1 of Richards' equation on a time step by the SIPG method, the firstorder BDF and boundary data on

I determined from {I d,n h , I w,n h , ω n v , ω n ψ }, • h n h ← Kinematic wave(h n-1 h , n ′ , v r , v ⋆,n h
) as the resolution of the kinematic wave equation by using (24) n ′ times,

• v ⋆,n h ← Normal Velocity(I d,n h , I w,n h , ω n v , ω n ψ , ψ n h )
as the evaluation of the interface normal velocity v ⋆,n h on I defined as

v ⋆,n h | F def =      ω n v | F if F ∈ I d,n h , v(ψ n h | F ) • n Ω + ηK s d -1 F (ψ n h | F -ω n ψ | F ) if F ∈ I w,n h . (26) 
Note that the expression for v ⋆,n h on I w,n h corresponds to the normal component of the H(div, Ω)-conforming velocity reconstruction derived in [START_REF] Ern | An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems[END_REF] for DG methods.

The principle of Algorithm 2 is the following. Firstly, the surface water depth is predicted without subsurface coupling term (v ⋆,n h = 0). This predicted surface water depth hn h then serves as a Dirichlet boundary condition for Richards' equation. Because the Godunov scheme satisfies a discrete maximum principle,

hn i ≥ 0 for all i ∈ {1 • • • N I }, so that I d,n,1 h = ∅ and I w,n,1 h = I.
That is, we begin the iterations by assuming that I is totally wet. Thus, for p = 1, the Algorithm 2 Single-step coupling algorithm

Input: ψ n-1 h and h n-1 h hn h ←Kinematic wave(h n-1 h , n ′ , v n-1 r , 0) Set p = 0 and h n,1 h = hn h , repeat p ← p + 1 Partition of I: I d,n,p h = {e i ∈ F I h , ∀k ∈ {1 • • • p}, h n,k i < 0} and I w,n,p h = I\I d,n,p h ω n,p v ← -hn h /δt on I d,n,p h ω n,p ψ ← hn h on I w,n,p h ψ n,p h ← Richards BDF1(I d,n,p h , I w,n,p h , ω n,p v , ω n,p ψ , ψ n-1 h ) v ⋆,n,p h ← Normal Velocity(I d,n,p h , I w,n,p h , ω n,p v , ω n,p ψ , ψ n,p h ) ∀i ∈ {1 • • • N I }, h n,p i = hn i + δt/l i e i v ⋆,n,p h until ∀ i ∈ {1 • • • N I }, h n,p i ≥ 0 
Output:

ψ n h = ψ n,p h and h n h = h n,p h determination of ω n,p v is irrelevant.
Then, Richards' equation is solved and a first estimate of the normal velocity v ⋆,n,p h is used to evaluate the surface water depth h n,p h . The sign of h n,p h is subsequently checked on the faces of I. If h n,p i is nonnegative on all faces, the evaluation of the hydraulic head and of the surface water depth can be accepted as the solution to the coupled system at time nδt. Otherwise, a new partition of I is determined and a Neumann condition is enforced on those faces where the surface water depth is negative. This Neumann condition is evaluated in such a way that at the corresponding interface cells, the surface water is completely infiltrated into the soil since ω n,p v = -hn h /δt. A new hydraulic head and a new surface water depth are then calculated and the loop is repeated until convergence. Note that convergence occurs since the set I d,n,p h increases with p while the set I w,n,p h decreases.

Admissibility of (ψ, h)

An important point is that Algorithm 2 delivers nonnegative surface water depths. Moreover, on the wet part of the interface, there holds

∀n ∈ {1 • • • N T }, ∀F ∈ I w,n h , ψ n h | F = hn h | F ,
since the value of the Dirichlet data ω n,p ψ on I w,n,p h is fixed during the loop. This is not the condition ψ = h enforced by the admissible set A but an O(δt) approximation of it. Furthermore, on the dry part of the interface, the surface water depth is equal to zero and there holds

∀n ∈ {1 • • • N T }, ∀F ∈ I d,n h , ψ n h | F ≤ hn h | F .
Again, this is an O(δt) approximation of the condition ψ ≤ 0 enforced by the admissible set. Furthermore, we observe that, if on a given face e i , the surface water depth h n-1 i is zero as well as the upwind fluxes over the time step [(n -1)δt, nδt], the Neumann condition on Richards' equation is equal to the rainfall intensity. Moreover, we observe that in contrast to front tracking schemes, Algorithm 2 does not use any information from the previous time step to determine the wet portion of the interface. This offers the advantage of robustness and ease of extension to 3D/2D settings, but can entail higher computational costs than those incurred by front tracking schemes in the absence of exfiltration (see for instance [START_REF] Beaugendre | A seepage face model for the interaction of shallow water tables with the ground water surface: Application of the obstacle-type method[END_REF]).

Overall mass conservation

The total volume of water in the domain Ω at time nδt is obtained by integrating the volumetric water content in Ω

V n grnd def = Ω θ(ψ n h ).
Taking the test function φ equal to 1 in the SIPG scheme [START_REF] Manzini | Mass-conservative finite volume methods on 2-d unstructured grids for the Richards equation[END_REF], summing over the mesh elements and using the first-order BDF to approximate the non stationary term yields

V n grnd -V n-1 grnd = F n I + F n WB δt + ǫ n , (27) 
where F n I (resp. F n WB ) is the flux over the time step [(n -1)δt, nδt] across the interface I (resp. across the bottom and lateral walls),

F n I def = - I v ⋆,n h and F n WB def = - W∪B v n N , (28) 
and ǫ n represents the numerical error in the resolution of the nonlinear system. Recall that |ǫ n | ≤ Cǫ alg1 , where ǫ alg1 is the convergence tolerance of Algorithm 1 and C a constant due to the fact that the convergence criterion in Algorithm 1 limits the norm of the variation of the hydraulic head ψ rather than the one of the volumetric water content θ(ψ). The total volume of water in the overland flow at time nδt is obtained by integrating the surface water depth over I

V n over def = I h n h .
The total variation of water volume in the kinematic wave equation over the time step [(n-1)δt, nδt] is obtained by summing the elementary contributions in equation ( 24), yielding

V n over -V n-1 over = -F n I + F n ABr δt, (29) 
where F n I is already defined above and where F n ABr represents the water flux over the time step [(n -1)δt, nδt] due to the rain and the discharge at points A and B, with

F n ABr def = F n A + F n B + F n r , and 
F n A def = δt ′ δt n ′ k=1 ϕ(h n-1,k A ), F n B def = - δt ′ δt n ′ k=1 ϕ(h n-1,k N I ), F n r def = - δt ′ δt n ′ k=1 I v n-1,k r •n Ω .
The total volume of water contained in the coupled system is the sum of the volume of each system, V n def = V n grnd + V n over . When [START_REF] Quarteroni | Numerical Mathematics[END_REF] and ( 29) are summed, the interface flux cancels, yielding

V n -V n-1 = F n WB + F n ABr δt + ǫ n . ( 30 
)
This relation readily implies the following overall water volume conservation result for the single-step algorithm.

Property 1 Let δV n be the overall water volume defect over the time step

[(n -1)δt, nδt] defined as δV n def = V n -V n-1 -(F n WB + F n ABr )δt.
Let △V n be the overall water volume defect over the time interval [0, nδt] defined as △V n def = n i=1 δV i . Then,

|△V n | ≤ nCǫ alg1 , ( 31 
)
where C is a constant and ǫ alg1 is the tolerance in Algorithm 1.

Two-step coupling algorithm

We consider in this section the case where Richards' equation is discretized in time using a second-order BDF for which

∂χ ∂t n ≃ 1 δt 3 2 χ n -2χ n-1 + 1 2 χ n-2 . ( 32 
)
The single-step coupling algorithm is not conservative when the non-stationary term of Richards' equation is approximated by the second-order BDF owing to the fact that the Euler explicit scheme used to solve the kinematic wave equation spans only a single time step. Consequently, to obtain a mass conservative scheme, the interface flux F n I used in the kinematic wave equation needs to be transformed into a new interface flux Φ n I , so that (29) becomes

V n over -V n-1 over = -Φ n I + F n ABr δt. (33) 
To identify the expression for Φ n I , observe that using a second-order BDF modifies (27) into

3 2 V n grnd -2V n-1 grnd + 1 2 V n-2 grnd = F n I + F n WB δt + ǫ n ,
which can be rewritten as

3 2 V n grnd -V n-1 grnd - 1 2 V n-1 grnd -V n-2 grnd -F n WB δt = F n I δt + ǫ n , (34) 
where the fluxes F n I and F n WB are still defined by [START_REF] Richards | Capillary conduction of liquids through porous mediums[END_REF]. Moreover it results from (33) that

3 2 V n over -V n-1 over - 1 2 V n-1 over -V n-2 over + - 3 2 F n ABr + 1 2 F n-1 ABr δt = - 3 2 Φ n I + 1 2 Φ n-1 I δt. ( 35 
)
The new interface flux Φ n I is determined so that the mass flux F n I is exactly counter-balanced by the interface flux in (35), whence

F n I = 3 2 Φ n I - 1 2 Φ n-1 I =⇒ Φ n I = 2 3 F n I + 1 3 Φ n-1 I .
At the first time step where a one-step implicit scheme is used, water volume conservation is directly enforced by setting Φ 1

I def = F 1 I . Algorithm 3 Two-step coupling algorithm Input: ψ n-1 h , ψ n-2 h and h n-1 h . . . repeat . . . ω n,p v ← -(3 hn h /δt + v ⋆,n-1 h )/2 on I d,n,p h ψ n,p h ← Richards BDF2(I d,n,p h , I w,n,p h , ω n,p v , ω n,p ψ , ψ n-1 h , ψ n-2 h ) . . . ∀i ∈ {1 • • • N I }, h n,p i = hn i + δt/l i e i (2v ⋆,n,p h + v ⋆,n-1 h )/3 . . . until ∀ i ∈ {1 • • • N I }, h n,p i ≥ 0 . . . Output: ψ n h , h n h and v ⋆,n h = v ⋆,n,p h
The resulting algorithm, referred to as two-step coupling algorithm, is outlined in Algorithm 3. Only the differences with Algorithm 2 are indicated. The key modification concerns the evaluation of the interface normal velocity in the calculation of h n,p i . The Neumann data ω n,p v is also modified to ensure that the Neumann condition indeed leads to a dry state in the corresponding cell. Also, the discrete approximation ψ n-2 h at time (n -2)δt is added to the input and the interface normal velocity v ⋆,n h is added to the output at each time step since it is used in the subsequent time step.

The main result concerning the overall water volume conservation for Algorithm 3 is the following.

Property 2 Let δV n be the overall water volume defect over the time step [(n -1)δt, nδt] defined as

δV n def = V n -V n-1 -( F n WB + F n ABr )δt, ( 36 
)
where

F n WB def = 2 3 F n WB + 1 3 F n-1 WB .
Let △V n be the overall water volume defect over the time interval [0, nδt] defined as before. Then

|△V n | ≤ 1 2 |δV 1 | + nCǫ alg1 ,
where C is a constant and ǫ alg1 is the tolerance in Algorithm 1.

Proof : Owing to (35), the coupling terms are eliminated when (33) et (34) are summed, leading to

3 2 V n -V n-1 - 1 2 V n-1 -V n-2 -F n WB δt + 3 2 F n ABr δt - 1 2 F n-1 ABr δt = ǫ n .
Using the definition of δV n yields the recurrence relation δV n = 1 3 δV n-1 + 2 3 ǫ n , so that

δV n = 1 3 n δV 1 + 2 3 n i=1 3 i-n × ǫ i .
Owing to the triangle inequality, it is inferred that

|△V n | ≤ 3 2 1 3 - 1 3 n+1 |δV 1 | + n i=1 1 - 1 3 i+1 |ǫ i |, whence |△V n | ≤ 1 2 |δV 1 | + n i=1 |ǫ i | ≤ 1 2 |δV 1 | + nCǫ alg1 . 2 
Finally, we observe that similar developments can be considered for arbitrary order BDFs with additional technicalities and longer recursion formulas.

Results

Algorithm 3 is assessed on three test cases: the first one concerns overland flow over a variable topography, the second one infiltration due to rainfall and the third one exfiltration resulting from injected water at the bottom of the aquifer. The soil consists of sand and is parameterized by the Haverkamp's constitutive relations [START_REF] Haverkamp | A comparison of numerical simulation models for one-dimensionnal infiltration[END_REF] 

θ(ψ) = θ s -θ r 1 + | αψ| β + θ r and K(ψ) = K s 1 + | Ãψ| γ , with parameters θ s = 0.5, α = 0.028cm -1 , K s = 10 -2 cm.s -1 , γ = 4, θ r = 0.05, β = 4, Ã = 0.030cm -1 .
Figure 5 presents the volumetric water content and the hydraulic conductivity as a function of the hydraulic head. Furthermore, the Strickler coefficient K is set to 60m 1/3 s -1 . For all test cases, the bottom boundary B is located at z = 0. Piecewise affine finite elements are used (p = 1 in ( 15)) along with the usual local Lagrangian basis functions. For the first time step, the Crank-Nicolson scheme is used. A direct solver based on the LU decomposition is employed to solve the linear systems. The convergence tolerance ǫ alg1 in Algorithm 1 is set to 10 -6 and the parameter η is set to 10. Moreover, we focus on the use of the second-order coupling algorithm. This choice is motivated by the fact that it yields second-order discretization errors in time along with secondorder discretization errors in space in the L 2 -norm since p = 1. In addition, a second-order initialization of Algorithm 1 is chosen in the form

∀n ≥ 3, ψ n,0 h = 3ψ n-1 h -3ψ n-2 h + ψ n-3 h , (37) 
except for the second time step where the first-order initialization ψ 2,0 h = 2ψ 1 h -ψ 0 h is used. The second-order initialization (37) can decrease significantly the CPU time in comparison with the initialization ψ n,0 h = ψ n-1 h .

Test case 1 (TC1)

In this first test case, the runoff flow and the drainage of the subsurface domain is induced by the presence of the outlet, located below the initial height of the water table. The geometry is presented in Figure 6. The interface I is divided into three parts,

I 1 = {(x, z) ∈ I, x ∈ [0, 1.4]} (slope J 1 = 0.1%), I 2 = {(x, z) ∈ I, x ∈ [1.4, 1 .6] 
} (slope J 2 = 0.3%), and

I 3 = {(x, z) ∈ I, x ∈ [1.6, 3]} (slope J 3 = 0.1%).
The final simulation time is T = 300s. The initial condition is an horizontal water table located at 0.3025m with an hydrostatic pressure profile and the boundary condition on walls and bottom is a zero flux,

ψ 0 = -z + 0.3025m in Ω, v N = 0 on (W ∪ B) × [0, T ].
For the overland flow, the initial condition is a horizontal free surface and the boundary condition is a zero water depth A mesh with 2063 triangles (corresponding to a typical mesh-size of 3.5cm) along with time steps δt = 2.5s and δt ′ = 0.25s have been used. We have verified that the interface normal velocity obtained with δt = δt ′ = 0.25s can be superimposed to that reported below. In this case, the use of δt = 2.5s instead of δt = δt ′ = 0.25s leads to a gain of 89% in the computational time (i.e. the computation effort required for performing one time-step in the solution of Richards' equation is eighty times more expensive than the one of the kinematic wave).

h 0 = -z + 0.3025m on I, h A = 0 at A × [0, T]. 3m 0.3m 0.3025m v N = 0 ▽ J 1 = 0.1% J 2 = 0.3% J 3 = 0.1% z = 0
Figure 7 presents the free surface of the overland flow (h n h + topography) and the interface normal velocity v ⋆,n h along the interface at three characteristic times of the simulation (10s, 100s and 300s). The free surface being piecewise constant, it is depicted on each interface cell by a solid line. The interface normal velocity v ⋆,n h is plotted with circles if the interface is wet (that is, on I w,n h ) and with crosses if the interface is dry (that is, on I d,n h ).

Figure 8 provides a closer insight at the issue of staying on the admissible set A. For the same times as in Figure 7 and for each face of F I h , each couple (ψ n h , h n h ) is represented by a cross (the mean-value of ψ n h is considered on each face). The admissible set A is also plotted with a solid line.

The hydraulic jump in the overland flow is visible at the beginning of the simulation on Figure 7 at 10s. Moreover, exfiltration appears on some faces located on I 2 and I 3 . During the simulation, a Neumann boundary condition is imposed on the faces where the water becomes equal to zero. It is confirmed by Figure 8 where the number of couple (ψ n h , h n h ) situated on the branch {h = 0} increases.

Test case 2 (TC2)

The principle of this test case is inspired by the work of Abdul and Gilham [START_REF] Abdul | Laboratory studies of the effects of the capillary fringe on streamflow generation[END_REF]: a constant rainfall intensity is imposed on the upper part of the domain for a fixed period of time, whereas the lateral and lower boundaries are impermeable. In our case, the geometry is shown in Figure 9 and the final simulation time is T = 360s. The initial condition is an horizontal water table located at 0.85m with an hydrostatic pressure profile and the boundary condition on walls and bottom is a zero flux,

ψ 0 = -z + 0.85m in Ω, v N = 0 on (W ∪ B) × [0, T ].
For the overland flow, the initial condition and the boundary condition are

h 0 = 0 on I, h A = 0 at A × [0, T].
A constant rainfall intensity equal to 10% of the hydraulic conductivity at saturation is imposed during 180s and is stopped afterwards,

v r • n Ω = -0.1K s on I × [0, 180], v r • n Ω = 0 on I × [180, T ].
A mesh with 2049 triangles (corresponding to a typical mesh-size of 10cm) and time step δt = δt ′ = 1s have been used. We have verified that the interface normal velocity obtained with a finer mesh (8763 elements) and a smaller time step (δt = δt ′ = 0.5s) can be superimposed to that reported below. Also, observe that δt ′ = 1s roughly corresponds to the CFL condition, so that, for the present test case, the accuracy limit on the time step for Richards' equation is comparable to the CFL restriction.

Figure 10 presents the free surface and the normal velocity v ⋆,n h along the interface at four characteristic times of the simulation (10s, 60s, 180s and 360s). The same notation is used as in Figure 7. The hydrological response of the 0.85m 6m 1m Figure 11 provides a closer insight at the issue of staying on the admissible set A. For the same times as in Figure 10 and for each face of F I h , each couple (ψ n h , h n h ) is represented as in Figure 8. Note that different scales are used, so that the branch {h = ψ} is almost vertical. The four phases described above are clearly illustrated by the position of the cloud of points. At 10s, the hydraulic head is negative and the water depth is equal to zero. The cloud of points is only on the branch {h = 0} corresponding to a dry soil. At 60s, the hydraulic head is equal to the water depth for some faces. The cloud of points is located on the two branches because the soil contains both saturated and unsaturated zones. At 180s, the hydraulic head is equal to the water depth for all the faces. The cloud of points is only on the branch {h = ψ} corresponding to a wet soil. At 360s, the hydraulic head becomes again negative where the surface water depth is equal to zero. The cloud of points is again located on the two branches. 

v N = 0 J = 0.5% |v r • n Ω | = 0.1K s = 3.6mmh -1 ▽ z = 0
ρ(V n grnd -V 0 grnd ) ∆M n grnd + ρ(V n over -V 0 over ) ∆M n over = n i=1 ρδt F i A + F i r M i in + n i=1 ρδtF i B M i out + ρ∆V n E n .
∆M n is defined as the total mass variation over the time interval [0, nδt] and is the sum of the total groundwater mass variation ∆M n grnd and the total overland mass variation ∆M n over . The quantities n i=1 M i in , n i=1 M i out and E n are respectively the total inflow of water, the total outflow of water and the total mass balance defect cumulated at time nδt. The five quantities ∆M n , ∆M n grnd , ∆M n over , n i=1 M i in and n i=1 M n out are presented in the left part of Figure 12. In particular, this figure confirms the four phases of the simulation. The rainfall is totally absorbed by the soil at the beginning of the simulation until 50s since ∆M n = ∆M n grnd . Then, the increase of ∆M n grnd diminishes and ∆M n over becomes positive as a result of soil saturation. From 90s to the end of the simulation, the variations of ∆M n and ∆M n over are the same, corresponding to a complete saturation of the soil. Moreover, during the last phase, the total water inflow is constant because the rainfall stops, so that the total water outflow is the same as the total mass variation.

Both total mass balance defects obtained with the single-step and two-step coupling algorithms are compared in the right part of Figure 12. While Algorithm 3 yields a sizable improvement over Algorithm 2, it can still be noticed that the mass balance defect produced by Algorithm 2 is only of the order of a few percent of the global quantities such as ∆M n . 

Test case 3 (TC3)

In this third test case, an exfiltration is produced on the upper part of the domain by injecting water at the bottom-left part. The geometry is presented in Figure 14 and the final simulation time is T = 360s. The initial condition is an horizontal water table located at 0.1m with an hydrostatic pressure profile and the boundary condition on the walls corresponds to a zero flux,

ψ 0 = -z + 0.1m in Ω, v N = 0 on W × [0, T ].
The rainfall intensity is set to zero. An infiltration flux with a parabolic profile and a mean-value vN equal to 5% of hydraulic conductivity at saturation is imposed during 2 minutes on the left half B l of the bottom (

B l = {(x, z) ∈ B, x ∈ [0, 1]} and B r = {(x, z) ∈ B, x ∈ [1, 2]})
. This infiltration flux is linear during the first 10s, constant on [START_REF] Cockburn | The local discontinuous Galerkin method for timedependent convection-diffusion systems[END_REF]120], and equal to zero for t > 120s:

v N (x, t) =              x(x -1) 0.003K s t, if (x, t) ∈ B l × [0, 10], x(x -1) 0.03K s , if (x, t) ∈ B l × [10, 120],
0, otherwise.

For the overland flow, the initial condition and the boundary condition are

h 0 = 0 on I, h A = 0 at A × [0, T].
A mesh with 1874 triangles (corresponding to a typical mesh-size of 2.5cm) and time step δt = δt ′ = 1s have been used. We have verified that the interface normal velocity obtained with a finer mesh (7310 elements) and a smaller time step (δt = δt ′ = 0.5s) can be superimposed to that reported below. Figure 15 presents the free surface and the normal velocity v ⋆,n h along the interface at six characteristic times of the simulation (5s, 35s, 50s, 100s, 150s and 360s) and Figure 16 presents the surface water depth h n h at these different times. The same notation is used as in Figure 7. The hydrological response of the system can be divided into six phases.

J = 0.2% 1m 1m 0.2m 0.1m vN = 0.05K s v N = 0 ▽ z = 0
1 -Soil saturation [0, 15s]. This phase results from the initial water table position. At the beginning of the simulation, the soil is partially saturated and the injection at the bottom of the domain increases the hydraulic head. The interface is totally dry and a zero Neumann boundary condition is enforced everywhere on I (Figure 15 Figure 17 shows that each couple (ψ n h , h n h ) stays on the admissible set A. As in the previous test case, the phases described above are clearly illustrated by the position of the cloud of points. It is located on the branch {h = 0} when the soil is unsatured, on the branch {h = ψ} when the soil is saturated and on the two branches when there are both saturated and unsaturated zones at the interface.

Results on Figure 18 and Figure 19 are similar to the ones of the previous test case, in particular the comparison of the mass balance defects for the one-step and the two-step algorithms. 

Conclusion

In this work we have presented a robust and accurate numerical method to simulate coupled subsurface and overland flows governed by Richards' equation and the kinematic wave equation. Special care was taken to design coupling algorithms that preserve the overall mass in the system and that also satisfy the various equality and inequality constraints imposed at the interface. Extensions of this work include the use of more complex models, such as the shallow-water equations, to describe the overland flow and the possibility to account for drainage pipes in the soil. Extension to two-dimensional surface flows and three-dimensional subsurface variably saturated flows can also be considered. The present algorithms are currently being tested in more complex and realistic test cases related to field studies.

Figure 2 .

 2 Figure 2. The admissible set A.

Figure 3 .

 3 Figure 3. Multiple time-stepping for subsurface and overland flows.

Figure 4 .

 4 Figure 4. Space discretization at the ground surface. t = 0 (initial condition) and to the left of the first face on a fictitious cell (boundary condition) at all discrete times, ∀i ∈ {1 • • •N I }, h 0 i = h 0 (x i ) and ∀n ∈ {1 • • • N T }, ∀k ∈ {0 • • • n ′ -1}, h n,k -1 = h n,k A .
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 5 Figure 5. Hydraulic properties of the soil used in the test cases.
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Figure 7 .Figure 8 .

 78 Figure 7. TC1 -Free surface (solid line) and interface normal velocity (cm/12min) plotted with circles if interface is wet and with crosses if interface is dry.
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 9 Figure 9. TC2 -Geometry, initial water table position and constant rainfall intensity.
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 10 Figure 10. TC2 -Free surface (solid line) and interface normal velocity (cm/15min) plotted with circles if interface is wet and with crosses if interface is dry.
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 11 Figure 11. TC2 -Cloud of points (ψ nh , h n h ) on the admissible set A at different times.
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 12 Figure 12 presents results on mass conservation issues. Multiplying equation (36) by the water density ρ, summing over the time intervals in [0, nδt], knowing that FWB n = 0 and the definition of V n , F n ABr and ∆V n yields
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 12 Figure 12. TC2 -Left: Mass repartition in the coupled system; Right: Mass balance defect E n for Algorithm 2 (dashed) and Algorithm 3 (solid).
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 1313 Figure 13. TC2 -Mass fluxes in the kinematic wave equation.
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 14 Figure 14. TC3 -Geometry, initial water table position and flux infiltration in groundwater.

  at 5s). 2 -Partial exfiltration [15s, 45s]. The soil becomes saturated in the left part of the domain and the interface normal velocity positive, so that water begins to exfiltrate from the faces situated in this saturated zone. A Dirichlet condition is enforced on those faces (Figure 15 at 35s). 3 -Full exfiltration [45, 100s]. When the soil is totally saturated, the amount of exfiltrated water is equal to the amount of injected water. We observe that overland flow occurs over the whole interface I and that a Dirichlet condition is being enforced everywhere. However, most of the overland flow still remains concentrated near the upper part of the interface (Figure 15 at 50s). 4 -Propagation of the runon wave [100, 120s]. In this phase, the runon wave propagates downstream. It is worthwhile to notice that a slight part of the surface water infiltrates back into the soil as indicated by the sign of the normal velocity near the heading part of the runon wave (Figure 15 at 100s).
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 1516 Figure 15. TC3 -Free surface (solid line) and interface normal velocity (cm/6min) plotted with circles if interface is wet and with crosses if interface is dry.
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 17 Figure 17. TC3 -Cloud of points (ψ nh , h n h ) on the admissible set A at different times.
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 18 Figure 18. TC3 -Left: Mass repartition in the coupled system; Right: Mass balance defect E n for Algorithm 2 (dashed) and Algorithm 3 (solid).
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 19 Figure 19. TC3 -Mass fluxes in the kinematic wave equation.