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Inverse problem for a parabolic system with two components by measurements of one component

We consider a 2×2 system of parabolic equations with first and zeroth coupling and establish a Carleman estimate by extra data of only one component without data of initial values. Then we apply the Carleman estimate to inverse problems of determining some or all of the coefficients by observations in an arbitrary subdomain over a time interval of only one component and data of two components at a fixed positive time θ over the whole spatial domain. The main results are Lipschitz stability estimates for the inverse problems. For the Lipschitz stability, we have to assume some non-degeneracy condition at θ for the two components and for it, we can approximately control the two components of the 2 × 2 system by inputs to only one component. Such approximate controllability is proved also by our new Carleman estimate.

Finally we establish a Carleman estimate for a 3×3 system for parabolic equations with coupling of zeroth-order terms by one component to show the corresponding approximate controllability with a control to one component.

Introduction and notations

This article is devoted to the question of the identification of coefficients for a reaction diffusion convection system of two equations in a bounded domain, with the main particularity that we observe only one component of the system. Let Ω ⊂ R n be a bounded connected open set with C 2 -boundary ∂Ω, and we set x = (x 1 , ...,

x n ) ∈ R n , ∂ j = ∂ ∂x j , 1 ≤ j ≤ n, ∂ t = ∂ ∂t , ∇ = (∂ 1 , ..., ∂ n ), ∆ = n j=1 ∂ 2 j .
For any fixed T > 0, we set Ω T = Ω × (0, T ), Σ T = ∂Ω × (0, T ) and we consider the following 2 × 2 reaction-diffusion-convection system :

                           ∂ t U = ∆U + aU + bV + A • ∇U + B • ∇V + f in Ω T , ∂ t V = ∆V + cU + dV + C • ∇U + D • ∇V + g in Ω T , U = h 1 , V = h 2 on Σ T , U (•, 0) = U 0 , V (•, 0) = V 0 in Ω, (1.1) 
where a, b, c, d are scalar functions and A, B, C, D vectorial fields both defined on Ω. The boundary condition h i as well as f, g shall be kept fixed. If we change the reaction coefficients b, c into b, c, we let ( U , V ) be the solution of (1.1) associated to b, c and ( U 0 , V 0 ) for the initial condition. Let ω ⊂ Ω be a non-empty subdomain and T > 0. We assume that we can measure both U | ω×(0,T ) and (U, V )| Ω×{θ} .

at a time θ ∈ (0, T ).

We set ω T = ω × (0, T ). For m ∈ N, 1 ≤ p ≤ ∞, by W m,p (Ω) and L p (0, T ; X) we denote the classical Sobolev space with the norm • W m,p (Ω) , and the space of X-valued p-Bochner integrable functions respectively (e.g., [START_REF] Adams | Sobolev Spaces[END_REF]). As usual we write W 0,p (Ω) = L p (Ω) and H m (Ω) = W m,2 (Ω) for m ∈ N. We define a Banach space

W m, m 2 2 (Ω T ) = {u : Ω × (0, T ) → R; ∂ α x ∂ α n+1 t u ∈ L 2 (Ω T ), for |α| + 2α n+1 ≤ m}, with the norm u W m, m 2 2 (Ω T ) = |α|+2α n+1 ≤m ∂ α x ∂ α n+1 t u L 2 (Ω T ) .
Here α = (α 1 , . . . , α n ) is a multi-index,

|α| = α 1 + • • • + α n , ∂ α x = ∂ α 1 1 • • • ∂ αn n
, and the differentiation is to be understood in the weak sense. Let M be an arbitrary positive constant. We denote by ν the outward unit normal to Ω and by B X (0, r) the closed ball of a metric space X centered on 0 of radius r.

We pose the following assumptions. 

(f ) | U (•, θ)|, | V (•, θ)| > δ 0 on Ω T with some constant δ 0 > 0, (g) U C(Ω T ) , V C(Ω T ) ≤ M , (h) U C 3 (ω T ) , V C 3 (ω T ) ≤ M .
If the functions and the coefficients appearing in (1.1) satisfy sufficient smoothness and compatibility conditions, then Assumption 1.1 (g) and (h) are satisfied. By Ladyzenskaja, Solonnikov and Ural'ceva [START_REF] Ladyzenskaja | Linear and Quasilinear Equations of Parabolic Type[END_REF] for example, we can describe such conditions, but we are interested mainly in the inverse problem and we will not exploit these conditions.

Our first main result is the stability in determining the reaction coefficients b, c : Theorem 1.2 Let θ ∈ (0, T ) be fixed. We suppose that Assumption 1.1 is satisfied and that

(U, V )(•, θ) = ( U , V )(•, θ) in Ω.
Then there exists a constant κ > 0 such that

b -b L 2 (Ω) + c -c L 2 (Ω) ≤ κ ∂ t (U -U ) W 2,1 2 (ω T ) + U -U W 2,1
The key ingredient to these stability results is a global Carleman estimate for system (1.1).

Since the pioneer work of Bukhgeim-Klibanov [START_REF] Bukhgeim | Uniqueness in the large of a class of multidimensional inverse problems[END_REF], Carleman estimates have been successfully used for the following problems:

(i) the uniqueness and the stability in determining coefficients: Especially for parabolic equations, see Benabdallah, Dermenjian and Le Rousseau [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability[END_REF], Benabdallah, Gaitan and Le Rousseau [START_REF] Benabdallah | Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation[END_REF],

Imanuvilov and Yamamoto [START_REF] Yu | Lipschitz stability in inverse parabolic problems by the Carleman estimate[END_REF], [START_REF] Yu | Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations[END_REF], Imanuvilov, Puel and Yamamoto [START_REF] Yu | Carleman estimates for parabolic equations with nonhomogeneous boundary conditions[END_REF], Isakov [START_REF] Isakov | Inverse Problems for Partial Differential Equations[END_REF], Klibanov [START_REF] Klibanov | Inverse problems and Carleman estimates Inverse Problems[END_REF], [START_REF] Klibanov | Global uniqueness of a multidimensionnal inverse problem for a non linear parabolic equation by a Carleman estimate[END_REF] Klibanov and Timonov [START_REF] Klibanov | Carleman Estimates for Coefficient Inverse Problems and Numerical Applications[END_REF], Yuan and Yamamoto [START_REF] Yuan | Lipshitz stability in the determination of the principal parts of a parabolic equation by boundary measurements[END_REF] and the references therein. For hyperbolic problems, among many works, we restrict ourselves to a few works such as Imanuvilov and Yamamoto [START_REF] Yu | Global Lipschitz stability in an inverse hyperbolic problem by interior observations[END_REF], Isakov [START_REF] Isakov | A nonhyperbolic Cauchy problem for 2 b 2 c and its applications to elasticity theory[END_REF], [START_REF] Isakov | Inverse Problems for Partial Differential Equations[END_REF], Klibanov [START_REF] Klibanov | Inverse problems and Carleman estimates Inverse Problems[END_REF], Klibanov and Timonov [START_REF] Klibanov | Carleman Estimates for Coefficient Inverse Problems and Numerical Applications[END_REF] and see the references also in Isakov [START_REF] Isakov | Inverse Problems for Partial Differential Equations[END_REF] and Klibanov and Timonov [START_REF] Klibanov | Carleman Estimates for Coefficient Inverse Problems and Numerical Applications[END_REF].

(ii) observability inequalities and related estimates: see Fursikov and Imanuvilov [START_REF] Fursikov | Controllability of Evolution Equations[END_REF], Imanuvilov [START_REF] Yu | Controllability of parabolic equations[END_REF], Isakov [START_REF] Isakov | A nonhyperbolic Cauchy problem for 2 b 2 c and its applications to elasticity theory[END_REF], [START_REF] Isakov | Inverse Problems for Partial Differential Equations[END_REF], Kazemi and Klibanov [START_REF] Kazemi | Stability estimates for ill-posed Cauchy problem involving hyperbolic equations and inequalities[END_REF], Klibanov and Malinsky [START_REF] Klibanov | Newton-Kantorovich method for 3-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time dependent data[END_REF]. Furthermore the exact controllability of linear systems is equivalent to the observability of the corresponding adjoint system and we can refer to [START_REF] Fursikov | Controllability of Evolution Equations[END_REF], [START_REF] Yu | Controllability of parabolic equations[END_REF]. Imanuvilov and Yamamoto [START_REF] Yu | Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations[END_REF] discuss the global exact zero controllability for a semilinear parabolic equation. Also see Ammar-Khodja, Benabdallah and Dupaix [START_REF] Ammar-Khodja | Null controllability of some reaction-diffusion systems with one control force[END_REF], and Ammar-Khodja, Benabdallah, Dupaix and Kostine [START_REF] Ammar-Khodja | Controllability to the trajectories of phase-field models by one control force[END_REF], [START_REF] Ammar-Khodja | Null controllability of some systems of parabolic type by one control force[END_REF], González-Burgos and Pérez-Garc ía [START_REF] González-Burgos | Controllability results for some nonlinear coupled parabolic systems by one control force[END_REF] for semilinear parabolic systems.

Apart from the last previous works quoted, the existing Carleman estimates require observations of all the components when we will discuss inverse problems for a system such as (1.1). It is very desirable to establish the stability for inverse problems for a 2×2 parabolic system by means of only one component, because for a reaction-diffusion system it may be frequently difficult to observe the both components. There are not many papers devoted to such inverse problems for 2 × 2 parabolic systems, and we can refer, for instance, to Cristofol, Gaitan and Ramoul [START_REF] Cristofol | Inverse problems for a 2X2 reaction-diffusion system using a Carleman estimate with one observation[END_REF].

The article is organized as follows. In Section 2 we derive a new Carleman estimate for system (1.1).

In Section 3 we prove the stability result. In Section 4 we will remove Assumption 1.1 (f) on positivity of Ũ , Ṽ at a time θ > 0. Section 5 is devoted to some comments and open problems. The appendices provide technical proofs of lemmata stated in Sections 2 and 4. We want to point that the Carleman estimate proved in Section 2 implies a new approximate controllability result for a 2 × 2 reaction-diffusion-convection system with one localized control. As it will be seen in Section 5, this result can be extended to a 3 × 3 reaction-diffusion system.

2 Carleman estimate 2.1 A Carleman estimate for a 2 × 2 system by extra data of one compoment

Let (a ij ) 1≤i,j≤2 ∈ L ∞ (Ω T ) and (A ij ) 1≤i,j≤2 ∈ L ∞ (Ω T ) n . Let u 0 , v 0 ∈ L 2 (Ω) and f, g ∈ L 2 (Ω T ).
Consider the following reaction-diffusion system with convection terms :

                           ∂ t u = ∆u + a 11 u + a 12 v + A 11 • ∇u + A 12 • ∇v + f in Ω T , ∂ t v = ∆v + a 21 u + a 22 v + A 21 • ∇u + A 22 • ∇v + g in Ω T , u = v = 0 on Σ T , u(•, 0) = u 0 , v(•, 0) = v 0 in Ω. (2.3) 
Uniqueness existence and stability results in solving an initial value-boundary value problem (2.3) can be proved by the semigroup theory for example (e.g., [START_REF] Ladyzenskaja | Linear and Quasilinear Equations of Parabolic Type[END_REF], Pazy [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF], Tanabe [START_REF] Tanabe | Equations of Evolution[END_REF]). In particular it admits a unique solution (u,

v) ∈ C([0, T ]; L 2 (Ω)) 2 ∩ L 2 (0, T ; H 1 0 (Ω)) 2 .
Our main interest is to derive a Carleman estimate of (u, v) solution of (2.3) by solely observing u in ω × (0, T ). We make the following main assumptions :

Assumption 2.1 (a) Let ω ⊂ Ω with ∂ω ∩ ∂Ω = γ and |γ| = 0. (b) |A 12 (x, t) • ν(x)| = 0, (x, t) ∈ γ T , with γ T = γ × (0, T ), (c) A 12 C 2 (ω T ) n , a 12 C 2 (ω T ) , A 11 C 1 (ω T ) n ≤ M
, where M > 0 is an arbitrarily fixed constant.

In the sequel κ will denote a generic constant and their values may change from a line to others.

The dependence of κ on s will be specified.

In this section, we prove: 

Theorem 2.
≤ κ 1 (s, τ )( u 2 W 2,1 2 (ω T ) + f 2 L 2 (ω T ) ) + κ Ω T (sρ) τ e -2sηω (|f | 2 + |g| 2 )
for all s ≥ s 0 and any solution (u, v) to (2.3). Here we set

η ω (x, t) = α ω (x) t(T -t) , ρ(t) = 1 t(T -t) . (2.4)
This is a Carleman estimate for a 2 × 2 system with extra data in ω T of only one component. In [START_REF] Ammar-Khodja | Null controllability of some reaction-diffusion systems with one control force[END_REF] and [START_REF] Cristofol | Inverse problems for a 2X2 reaction-diffusion system using a Carleman estimate with one observation[END_REF], it is assumed that A 11 = A 12 = 0. In that case, the proof can be completed by directly substituting v by means of u in ω T . By the first-order coupling, we extra need Assumption 2.1 (a)

and (b).

Proof of Theorem 2.2 First we prove Lemma 2.3 Let ω ⊂ Ω be a subdomain and ∂ω ∩ ∂Ω = γ. We consider n j=1 p j (x, t)∂ j u(x, t) + q(x, t)u(x, t) = f (x, t), x ∈ ω ⊂ Ω, 0 < t < T.

(2.5)

Here p j , q ∈ L ∞ (0, T ; C 1 (Ω)) for 1 ≤ j ≤ n. We set p = (p 1 , ..., p n ) and let ν(x) = (ν 1 (x), ..., ν n (x))

be the unit outward normal vector to ∂ω at x. We assume that

|p(x, t) • ν(x)| = 0, x ∈ γ, 0 ≤ t ≤ T. (2.6) 
Let u = u(x, t) satisfy (2.5) and u| γ×(0,T ) = 0. Then there exist a subdomain ω ′ ⊂ ω and a constant κ > 0, which is dependent on p and q and independent of f , such that

u L 2 (ω ′ T ) ≤ κ f L 2 (ω ′ T ) .
Proof of Lemma 2.3. We set x = (x 1 , ..., x n ) = (x ′ , x n ) and y = (y 1 , ..., y n ) = (y ′ , y n ). Without loss of generality, we can assume that

ω = {(x ′ , x n ); h(x ′ ) < x n < h 1 (x ′ ), |x ′ | < ρ} and γ = {(x ′ , x n ); x n = h 1 (x ′ ), |x ′ | < ρ}.
Here ρ > 0 is sufficiently small and h, h

1 ∈ C 2 ({|x ′ | ≤ ρ}) satisfy h = h 1 on {|x ′ | = ρ}. We change independent variables y ′ = x ′ and y n = x n -h(x ′ ). Then ω is transformed to ω = {(y ′ , y n ); 0 < y n < (h 1 -h)(x ′ ), |y ′ | < ρ}.
Set ũ(y, t) = u(x, t), p(y, t) = p(x, t), q(y, t) = q(x, t), f (y, t) = f (x, t), Γ1 = {(y ′ , 0); |y ′ | < ρ} and 

Γ2 = {(y ′ , y n ); y n = (h 1 -h)(y ′ ), |y ′ | < ρ}. Then ∂ ω = Γ1 ∪ Γ2 , ( P ũ)(y, t) = n-
y n = (h 1 -h)(y ′ ), |y ′ | < ρ, 0 < t < T. (2.8) Moerover ν(x) is parallel to (∂ 1 h(x ′ ), ...., ∂ n-1 h(x ′ ), -1) on {(x ′ , x n ); x n = h(x ′ ), |x ′ | < ρ}.
Therefore, in terms of (2.6), without loss of generality, we can assume that there exists a constant δ > 0 such that r(y ′ , 0, t) > 2δ for |y ′ | < ρ and 0 < t < T . We choose ρ > 0 sufficiently small, so that r(y, t) > δ, y ∈ ω, 0 < t < T.

(2.9)

Let ν(y) = (ν 1 (y), ..., νn (y)) be the unit outward normal vector to ∂ ω at y. Then ν(y) is parallel to (0, ..., 0, -1) for y ∈ Γ1 and to

-∂(h 1 -h) ∂y 1 (y ′ ), ..., -∂(h 1 -h) ∂y n-1 (y ′ ), 1 for y ∈ Γ2 .
Hence, by choosing h 1 , h such that h 1h C 1 ({|y ′ |≤ρ}) is sufficiently small if necessary, by (2.9) we have

Γ 1 ⊂ y ∈ ∂ ω; n-1 j=1 pj (y, t)ν j (y) + r(y, t)ν n (y) ≤ 0 (2.10) and ũ(•, t) = 0 on Γ2 , Γ2 ⊂    y ∈ ∂ ω; n-1 j=1 pj (y, t)ν j (y) + r(y, t)ν n (y) > 0    . (2.11)
For the proof of the lemma, it suffices to prove a Carleman estimate for (2.5), whose proof is similar for example to Lemma 3.2 in [START_REF] Yu | Carleman estimates for the non-stationary Lamé system and the application to an inverse problem[END_REF]. We set

P0 ũ = P u -qũ = n-1 j=1 pj (y, t) ∂ ũ ∂y j (y, t) + r(y, t) ∂ ũ ∂y n (y, t), w = w(•, t) = ũ(•, t)e syn and Qw = e syn
P0 (e -syn w). Then Qw = P0 wsr(y, t)w.

We arbitrarily fix t ∈ [0, T ]. Hence by integration by parts and (2.8) -(2.11) we obtain

ω | P0 ũ| 2 e 2syn dy = ω |Qw| 2 dy = P0 w 2 L 2 (ω) + s 2 r(•, t)w 2 L 2 (ω) -2s ω   n-1 j=1 pj ∂w ∂y j (y, t) + r ∂w ∂y n   rwdy ≥ s 2 ω r2 w 2 dy -s ω   n-1 j=1 pj r ∂w 2 ∂y j + r2 ∂w 2 ∂y n   dy ≥ s 2 δ ω w 2 dy + s ω   n-1 j=1 ∂(p j r) ∂y j + ∂r 2 ∂y n   w 2 dy -s Γ1 + Γ2 r   n-1 j=1 pj νj + rν n   w 2 dS ≥ s 2 ω δ - κ 1 s w 2 dy.
Henceforth κ j > 0 depends on max 1≤j≤n p j C 1 (Ω T ) and ω. Hence we have

s 2 ω |ũ| 2 e 2syn dy ≤ κ 2 ω | P0 ũ| 2 e 2syn dy
for all large s > 0. Since

ω | P0 ũ| 2 e 2syn dy ≤ 2 ω | P ũ| 2 e 2syn dy + 2 ω |q ũ| 2 e 2syn dy ≤ 2 ω | f | 2 e 2syn dy + 2 q 2 C(Ω T ) ω |ũ| 2 e 2syn dy, by choosing s large such that s 2 κ 2 -2 q 2 C(Ω T ) ≥ s 2 2 , we have s 2 ω |ũ| 2 e 2syn dy ≤ κ 3 ω | f | 2 e 2syn dy
for all large s > 0. Since 1 ≤ e 2syn ≤ e 2sκ 4 for y ∈ ω where

κ 4 = h 1 -h C({|y ′ |≤ρ})
, for all large s > 0, we fix s > 0 large and we have ũ(

•, t) L 2 (ω) ≤ κ 5 f (•, t) L 2 (ω)
. By integrating over t ∈ (0, T ), the proof of Lemma 2.3 is completed.

By (2.3), we have

A 14 • ∇v + a 12 v = ∂ t u -∆u + a 11 u + A 13 .∇u + f in ω T and v = 0 on ∂Ω × (0, T ).
In terms of Assumption 2.1 (b), we apply Lemma 2.3 so that we can choose a subdomain

ω ′ ⊂ Ω such that v L 2 (ω ′ T ) ≤ κ u W 2,1 2 (ω ′ T ) + f L 2 (ω ′ T ) .
(2.12)

By [START_REF] Fursikov | Controllability of Evolution Equations[END_REF] and [START_REF] Yu | Controllability of parabolic equations[END_REF], for ω ′ , there exist β ω ′ ∈ C 2 (Ω) with β ω ′ > 0 on Ω and two positive constants s 0 and κ, which depend on T, Ω, ω ′ , τ and L ∞ norms of a ij , A ij , such that for all s ≥ s 0 , there exist positive constants κ 1 (s, τ ) and κ such that

Ω T (sρ) τ -1 e -2s η ω ′ (|∂ t u| 2 + |∆u| 2 + (sρ) 2 |∇u| 2 + (sρ) 4 |u| 2 ) ≤ κ Ω T (sρ) τ e -2s η ω ′ |a 12 v + A 12 • ∇v + f | 2 + κ ω ′ T (sρ) τ +3 e -2s η ω ′ |u| 2
and

Ω T (sρ) τ -1 e -2s η ω ′ (|∂ t v| 2 + |∆v| 2 + (sρ) 2 |∇v| 2 + (sρ) 4 |v| 2 ) ≤ κ Ω T (sρ) τ e -2s η ω ′ |a 21 u + A 21 • ∇u + g| 2 + κ ω ′ T (sρ) τ +3 e -2s η ω ′ |v| 2
for all large s > 0. Here and henceforth we set

η ω ′ (x, t) = β ω ′ (x) t(T -t) .
Adding them and choosing s > 0 sufficiently large to absorb the terms of u, v, ∇u, ∇v on the right hand side into the left hand side.

Hence

Ω T (sρ) τ -1 e -2s η ω ′ (|∂ t u| 2 + |∂ t v| 2 + |∆u| 2 + |∆v| 2 + (sρ) 2 |∇u| 2 + (sρ) 2 |∇v| 2 + (sρ) 4 |u| 2 + (sρ) 4 |v| 2 ) ≤ κ Ω T (sρ) τ e -2s η ω ′ (|f | 2 + |g| 2 ) + κ ω ′ T (sρ) τ +3 e -2s η ω ′ (|u| 2 + |v| 2 )
for all large s > 0. Moreover we have |(sρ

) τ +3 e -2s η ω ′ | ≤ κ 2 (s, τ ) on Ω T by β ω ′ > 0 on Ω. Hence ω ′ T (sρ) τ +3 e -2s η ω ′ (|u| 2 + |v| 2 ) ≤ κ 2 (s, τ )( u 2 L 2 (ω ′ T ) + v 2 L 2 (ω ′ T ) ). Apply Lemma 2.3, set α ω = β ω ′ and note by ω ′ ⊂ ω that u 2 W 2,1 2 (ω ′ T ) ≤ u 2 W 2,1
2 (ω T ) . Then the proof of Theorem 2.2 is completed.

Proof of Theorem 1.2

Let us recall that (U, V ) satisfie (1.1) and ( Ũ , Ṽ ) system (1.1) with b, c, U 0 , V 0 replaced by b, c, Ũ0 , Ṽ0 respectively.

We set

u = U -U , v = V -V .
Then (u, v) satisfies

∂ t u = ∆u + au + bv + A • ∇u + B • ∇v + (b -b) Ṽ , ∂ t v = ∆v + cu + dv + C • ∇u + D • ∇v + (c -c) Ũ in Ω T , u = v = 0 on Σ T and u(•, θ) = v(•, θ) = 0 in Ω.
By Assumption 1.1, we can assume that | U (x, t)|, | V (x, t)| = 0 for all (x, t) ∈ Ω T by taking T > 0 sufficiently small if necessary. Moreover we can assume that θ = T 2 . Because we take small δ > 0 such that 0 ≤ θδ < θ < θ + δ ≤ T and we can replace ω × (0, T ) by ω × (θδ, θ + δ). Shifting t by t -(θδ), we can set θ = δ and T = 2δ.

Setting

u = u V , v = v U , f = b -b, g = c -c,
we have

∂ t u = ∆ u + a 11 u + a 12 v + A 13 • ∇ u + A 14 • ∇ v + f in Ω T , (3.13) 
∂ t v = ∆ v + a 21 u + a 22 v + A 23 • ∇ u + A 24 • ∇ v + g in Ω T , (3.14) 
where

a 11 = a - ∂ t V V + ∆ V V + A • ∇ V V , a 12 = b U V + B • ∇ U V , A 13 = A + 2∇ V V , A 14 (x, t) = B U V (x, t) ≡ B(x)W (x, t), a 21 = c V U + C ∇ V U , a 22 = d - ∂ t U U + ∆ U U + D • ∇ U U and A 23 = C V U , A 24 = D + 2∇ U U . Let y = ∂ t u, z = ∂ t v.
Since b, c, b, c are independent of t, we obtain

∂ t y = ∆y + a 11 y + a 12 z + A 13 • ∇y + A 14 • ∇z +(∂ t a 11 ) u + (∂ t a 12 ) v + (∂ t A 13 ) • ∇ u + (∂ t A 14 ) • ∇ v, (3.15) 
∂ t z = ∆z + a 21 y + a 22 z + A 23 • ∇y + A 24 • ∇z +(∂ t a 21 ) u + (∂ t a 22 ) v + (∂ t A 23 ) • ∇ u + (∂ t A 24 ) • ∇ v (3.16) y = z = 0 on Σ T .

First

Step. In terms of y, we estimate an L 2 -norm of z in a subdomain of Ω. Since ũ(x, t) = t θ y(x, ξ)dξ and ṽ(x, t) = t θ z(x, ξ)dξ by ũ(•, θ) = ṽ(•, θ) = 0, we rewrite (3.15) as

B(x) • ∇z(x, t) + b 1 (x)z(x, t) + W 1 (x, t)B(x) • t θ ∇z(x, ξ)dξ + b 2 (x, t) t θ z(x, ξ)dξ = 1 W (x, t) ∂ t y(x, t) -∆y(x, t) -a 11 y(x, t) -A 13 • ∇y -(∂ t a 11 ) t θ y(x, ξ)dξ -(∂ t A 13 ) • t θ ∇y(x, ξ)dξ ≡ Q(y)(x, t) x ∈ ω, 0 < t < T. (3.17)
Here we set

b 1 (x, t) = a 12 (x, t) W (x, t) , b 2 (x, t) = ∂ t a 12 (x, t) W (x, t) , W 1 (x, t) = ∂ t W (x, t) W (x, t) .
We will estimate z in a subdomain ω ′ of ω by means of (3.17), and the argument is similar to Lemma 2.3 but we need a special weight function for treating the integral terms t θ ∇z(x, ξ)dξ and t θ z(x, ξ)dξ. First we show Lemma 3.1 Let T = 2θ and let φ ∈ C 1 [0, T 2 ] and let us assume that there exists a constant κ 0 > 0

such that d φ dt (t) ≤ -κ 0 for t ∈ [0, T 2 ]. Then T 0 t θ g(ξ)dξ 2 e 2s φ((t-θ) 2 ) dt ≤ 1 4sκ 0 T 0 |g(t)| 2 e 2s φ((t-θ) 2 ) dt.
The proof is given by Klibanov and Timonov p.78, [START_REF] Klibanov | Carleman Estimates for Coefficient Inverse Problems and Numerical Applications[END_REF].

Henceforth we choose φ(t) = -t and we set ϕ 1 (t) = φ((tθ) 2 ) = -(tθ) 2 . Then the conclusion of Lemma 3.1 holds true. We set

w(x, t) = z(x, t) + W 1 (x, t) t θ z(x, ξ)dξ, x ∈ Ω, 0 < t < T. (3.18)
Then direct calculations yield

B(x) • ∇w(x, t) = Q(y)(x, t) -b 1 z -b 2 t θ z(x, ξ)dξ + (B • ∇W 1 ) t θ z(x, ξ)dξ in ω T . (3.19) 
Henceforth κ j > 0 denote generic constants which are dependent on M, δ 0 in Assumption 1.1 and independent of s > 0. In terms of Assumption 1.1 (d), we can apply Lemma 2.3 to obtain x) dx for all large s > 0. Here and henceforth we set ϕ 0 (x) = x nγ(x ′ ).

s 2 ω ′ |w(x, t)| 2 e 2sϕ 0 (x) dx ≤ κ 1 ω ′ |Q(y)(x, t)| 2 e 2sϕ 0 (x) dx + κ 1 ω ′ |z(x, t)| 2 e 2sϕ 0 (x) dx + κ 1 ω ′ t θ z(x, ξ)dξ 2 e 2sϕ 0 (
Hence by Lemma 3.1, we have

s 2 T 0 ω ′ |w(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt ≤ κ 1 T 0 ω ′ |Q(y)(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt + κ 1 T 0 ω ′ |z(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt + κ 1 ω ′ T 0 t θ z(x, ξ)dξ 2 e 2sϕ 1 (t) dt e 2sϕ 0 (x) dx ≤ κ 1 ω ′ T |Q(y)(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt + κ 1 ω ′ T |z(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt + κ 1 s ω ′ T |z(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt.
Consequently

s 2 ω ′ T |w(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt ≤ κ 2 e 2sκ 3 y 2 W 2,1 2 (ω ′ T ) +κ 2 ω ′ T |z(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt (3.20)
for all large s > 0. On the other hand, (3.18) and Lemma 3.1 yield

ω ′ T |z(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt = ω ′ T w(x, t) -W 1 (x, t) t θ z(x, t)dξ 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt ≤ κ 4 ω ′ T |w(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt + κ 4 ω ′ T t θ z(x, t)dξ 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt ≤ κ 5 ω ′ T |w(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt + κ 5 s ω ′ T |z(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t))
dxdt for all large s > 0. Hence choosing s > 0 sufficiently large, we have

ω ′ T |z(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt ≤ κ 6 ω ′ T |w(x, t)| 2 e 2s(ϕ 0 (x)+ϕ 1 (t)) dxdt (3.21)
for all large s > 0. Substituting (3.21) into (3.20) and fixing s > 0 sufficiently large, we obtain

w L 2 (ω ′ T ) ≤ κ 7 e κ 7 s y W 2,1 2 (ω ′ T ) .
Hence by (3.21) we have

z L 2 (ω ′ T ) ≤ κ 8 e κ 7 s y W 2,1 2 (ω ′ T ) .
(3.22)

Second

Step. We will estimate ∇z L 2 (ω 1 ×(δ,T -δ)) where ω 1 ⊂ ω and δ > 0. For it, we use the interior regularity estimate for a heat equation (3.16) in z. Let us recall that ρ(t) = 1 t(T -t) . Setting z(x, t) = e -ρ(t) z(x, t), we rewrite (3.16) as

∂ t z(x, t) = ∆z(x, t) -ρ ′ (t)z(x, t) + a 22 z + A 24 • ∇z +(∂ t a 22 ) t θ e ρ(ξ)-ρ(t) z(x, ξ)dξ + (∂ t A 24 ) • t θ e ρ(ξ)-ρ(t) ∇z(x, ξ)dξ +e -ρ(t) a 21 y + A 23 • ∇y + (∂ t a 21 ) t θ y(x, ξ)dξ + (∂ t A 23 ) • t θ ∇y(x, ξ)dξ . (3.23) We choose subdomains ω 1 , ω 2 of C ∞ class such that ω 1 ⊂ ω 1 ⊂ ω 2 ⊂ ω 2 ⊂ ω ′ and choose χ ∈ C 1 (ω ′ ), ≥ 0 such that χ(x) =          1, x ∈ ω 1 , 0, x ∈ ω ′ \ ω 2 .
Moreover we can take χ satisfying

|∇χ(x)| 2 χ(x) ≤ κ 9 x ∈ ω ′ (3.24) 
(e.g., p.414 in Lions [START_REF] Lions | Contrôlabilité Exacte Perturbations et Stabilisation de Systèmes Distribués[END_REF]). Multiplying (3.23) with χz and integrating over ω ′ × (0, T ), we have

1 2 T 0 ω ′ χ(x)∂ t (z 2 )dxdt = - T 0 ω ′ χ|∇z| 2 dxdt - T 0 ω ′ ∇χ • z∇zdxdt - T 0 ω ′ χρ ′ (t)e -2ρ(t) |z| 2 dxdt + T 0 ω ′ (a 22 |z| 2 χ + A 24 • ∇zχz)dxdt + T 0 ω ′ (∂ t a 22 )χz t θ e ρ(ξ)-ρ(t) z(x, ξ)dξ dxdt + T 0 ω ′ (∂ t A 24 ) • χz t θ e ρ(ξ)-ρ(t) ∇z(x, ξ)dξ dxdt + T 0 ω ′ e -ρ(t) χz a 21 y + A 23 ∇y + (∂ t a 21 ) t θ y(x, ξ)dξ + (∂ t A 23 ) • t θ ∇y(x, ξ)dξ dxdt.
By the Cauchy-Schwarz inequality and (3.24), we have

|∇χ • z∇z| = ∇χ √ χ z • √ χ∇z ≤ 1 8 χ|∇z| 2 + 2|∇χ| 2 χ |z| 2
and

|A 24 • χz∇z| = | √ χ∇z • A 24 √ χz| ≤ 1 8 χ|∇z| 2 + 2|A 24 | 2 χ|z| 2 . Hence, since z(•, 0) = z(•, T ) = 0, sup 0≤t≤T |ρ ′ (t)e -2ρ(t) | < ∞
and ρ(ξ)ρ(t) ≤ 0 if ξ is between θ and t, we have

T 0 ω ′ χ|∇z| 2 dxdt ≤ 1 4 T 0 ω ′ χ|∇z| 2 dxdt + κ 10 T 0 ω ′ (|z| 2 + |z| 2 )dxdt + κ 10 T 0 ω ′ |z| t θ z(x, ξ)dξ dxdt + κ 10 T 0 ω ′ χ|z| t θ ∇z(x, ξ)dξ dxdt + κ 10 T 0 ω ′ |z|(|y| + |∇y|) + |z| t θ y(x, ξ)dξ + t θ ∇y(x, ξ)dξ dxdt.
Moreover the Cauchy-Schwarz inequality yields

T 0 ω ′ χ|z(x, t)| t θ ∇z(x, ξ)dξ dxdt ≤ T 0 ω ′ √ χ|z(x, t)| T 0 χ(x)|∇z(x, ξ)|dξ dxdt ≤ T 0 ω ′   1 8T 2 T 0 √ χ|∇z(x, ξ)|dξ 2 + 2T 2 χ|z(x, ξ)| 2   dxdt ≤ 2T 2 T 0 ω ′ |z(x, t)| 2 dxdt + T 0 ω ′ 1 8T T 0 χ|∇z(x, ξ)| 2 dξdxdt ≤ 2T 2 T 0 ω ′ |z(x, t)| 2 dxdt + 1 8 T 0 ω ′ χ|∇z(x, t)| 2 dxdt. Hence 5 8 T 0 ω ′ χ|∇z(x, t)| 2 dxdt ≤ κ 11 T 0 ω ′ (|z| 2 + |z| 2 )dxdt + κ 11 T 0 ω ′ (|y| 2 + |∇y| 2 )dxdt.
Let δ > 0 be fixed sufficiently small. Then |∇z(x,

t)| ≥ κ 12 (δ)|∇z(x, t)| for δ ≤ t ≤ T -δ. Since χ = 1 in ω 1 , we have T -δ δ ω 1 |∇z| 2 dxdt ≤ κ 13 (δ)( z 2 L 2 (ω ′ T ) + y 2 L 2 (0,T ;H 1 (ω ′ )) ).
By means of (3.22), we obtain

z L 2 (δ,T -δ;H 1 (ω 1 )) ≤ κ 14 (δ) y W 2,1 2 (ω ′ T ) .
(3.25)

Third

Step. We apply Theorem 2.2 to (3.15) and (3.16) for ω ′ ⊂ Ω and (δ, Tδ). We set

η(x, t) = α ω ′ (x) (t -δ)(T -δ -t) .
Using also (3.25), we obtain that there exist two positive constants s 0 and κ such that for all s ≥ s 0 , one has

T -δ δ Ω (sρ) -1 e -2sη (|∂ t y| 2 +|∂ t z| 2 +|∆y| 2 +|∆z| 2 +(sρ) 2 |∇y| 2 +(sρ) 2 |∇z| 2 +(sρ) 4 |y| 2 +(sρ) 4 |z| 2 )dxdt ≤ κ 15 T -δ δ Ω |(∂ t a 11 ) u + (∂ t a 12 ) v + (∂ t A 13 ) • ∇ u + (∂ t A 14 ) • ∇ v| 2 e -2sη dxdt +κ 15 T -δ δ Ω |(∂ t a 21 ) u + (∂ t a 22 ) v + (∂ t A 23 ) • ∇ u + (∂ t A 24 ) • ∇ v| 2 )e -2sη dxdt +κ 16 (s) y 2 W 2,1 2 (ω ′ ×(δ,T -δ)) +κ 16 (s) (∂ t a 11 ) t θ y(x, ξ)dξ + (∂ t a 12 ) t θ z(x, ξ)dξ + (∂ t A 13 ) • t θ ∇y(x, ξ)dξ +(∂ t A 14 ) • t θ ∇z(x, ξ)dξ 2 L 2 (ω ′ ×(δ,T -δ)) +κ 16 (s) (∂ t a 21 ) t θ y(x, ξ)dξ + (∂ t a 22 ) t θ z(x, ξ)dξ + (∂ t A 23 ) • t θ ∇y(x, ξ)dξ +(∂ t A 24 ) • t θ ∇z(x, ξ)dξ 2 L 2 (ω ′ ×(δ,T -δ)) ≤ κ 15 T -δ δ Ω |(∂ t a 11 ) u + (∂ t a 12 ) v + (∂ t A 13 ) • ∇ u + (∂ t A 14 ) • ∇ v| 2 e -2sη dxdt +κ 15 T -δ δ Ω |(∂ t a 21 ) u + (∂ t a 22 ) v + (∂ t A 23 ) • ∇ u + (∂ t A 24 ) • ∇ v| 2 )e -2sη dxdt +κ 16 (s) y 2 W 2,1 2 (ω T ) . (3.26) 
for all large s > 0. In order to improve inequality (3.26), we use the following lemma. ( [START_REF] Klibanov | Global uniqueness of a multidimensionnal inverse problem for a non linear parabolic equation by a Carleman estimate[END_REF] , Lemma 3.1.1 in [START_REF] Klibanov | Carleman Estimates for Coefficient Inverse Problems and Numerical Applications[END_REF]).

Lemma 3.2 Let θ = T

2 . There exists a positive constant κ 17 such that

T -δ δ Ω t θ q(x, ξ)dξ 2 e -2sη dxdt ≤ κ 17 s T -δ δ Ω |q(x, t)| 2 e -2sη dxdt
Since u(x, t) = t θ y(x, ξ)dξ and v(x, t) = t θ z(x, ξ)dξ, by a direct application of this lemma, the first integral on the right hand side of (3.26) can be absorbed into the left hand side. Hence

T -δ δ Ω 1 sρ (|∂ t y| 2 + |∂ t z| 2 + |∆y| 2 + |∆z| 2 ) + sρ(|∇y| 2 + |∇z| 2 ) + s 3 ρ 3 (|y| 2 + |z| 2 ) e -2sη dxdt ≤ κ 16 (s)( ∂ t (U -U ) 2 W 2,1 2 (ω T ) + U -U 2 W 2,1 2 (ω T ) )
for all large s > 0. We choose t 0 > 0 sufficiently small such that

δ < t 0 < θ < T -t 0 < T -δ, so that T -t 0 t 0 Ω 1 sρ (|∂ t y| 2 + |∂ t z| 2 + |∆y| 2 + |∆z| 2 ) + sρ(|∇y| 2 + |∇z| 2 ) + s 3 ρ 3 (|y| 2 + |z| 2 ) e -2sη dxdt ≤ κ 16 (s)( ∂ t (U -U ) 2 W 2,1 2 (ω T ) + U -U 2 W 2,1 2 (ω T ) ). Since 1 ρ e -2sη , ρe -2sη ≥ κ 0 (t 0 , s) on Ω × [t 0 , T -t 0 ],
we fix s > 0 sufficiently large, so that

u 2 H 1 (t 0 ,T -t 0 ;H 2 (Ω)) + u 2 H 2 (t 0 ,T -t 0 ;L 2 (Ω)) + v 2 H 1 (t 0 ,T -t 0 ;H 2 (Ω)) + v 2 H 2 (t 0 ,T -t 0 ;L 2 (Ω)) ≤ κ 16 (s)( ∂ t (U -U ) 2 W 2,1 2 (ω T ) + U -U 2 W 2,1 2 (ω T ) ).
By the trace theorem, we have

∂ t u(•, θ) 2 L 2 (Ω) + ∂ t v(•, θ) 2 L 2 (Ω) + u(•, θ) 2 H 2 (Ω) + v(•, θ) 2 H 2 (Ω) ≤ κ 16 (s)( ∂ t (U -U ) 2 W 2,1 2 (ω T ) + U -U 2 W 2,1 2 (ω T ) ).
Since f and g satisfy (3.13) and (3.14

) at t = θ, we see that b -b 2 L 2 (Ω) + c -c 2 L 2 (Ω) ≤ κ( ∂ t (U -U ) 2 W 2,1 2 (ω T ) + U -U 2 W 2,1 2 (ω T ) ).
Thus the proof of Theorem 1.2 is completed.

Removing the positivity assumption

For the stability in our inverse problem, the non-vanishing condition Assumption 1.1 (f) is crucial and does not hold automatically. We are going to prove that one can realize this assumption by a suitable control.

Let m ∈ N be fixed such that

m 4 > n. (4.27)
We assume that

a, b, c, d, A, B, C, D ∈ W 2m-2,∞ (Ω). (4.28)
We set

L(u, v) = L(a, b, c, d, A, B, C, D)(u, v) =      L 1 (u, v) L 2 (u, v)      = -      ∆u + au + bv + A • ∇u + B • ∇v ∆v + cu + dv + C • ∇v + D • ∇v      (4.29)
and 

D(L) = H 2 (Ω) ∩ H 1 0 (Ω) 2 . For h ∈ L 2 (ω T ), let ( U , V ) := ( U ( Ũ0 , Ṽ0 , h)(•, •), V ( Ũ0 , Ṽ0 , h)(•, •)) satisfy ∂ t ( U , V ) = -L(a, b, c, d, A, B, C, D)( U , V ) + (χ ω h, 0) in Ω T , ( U , V ) = (0, 0) on Σ T , ( Ũ , Ṽ )(•, 0) = ( Ũ0 , Ṽ0 ) in Ω. ( 4 
= c in ω 1 . Let (U, V )(•, θ) = ( U , V )(•, θ). Then there exists h ∈ L 2 (ω T )
depending on a, b, c, d, A, B, C, D, U 0 , V 0 and ω, such that there exists a constant κ > 0 such that

b -b L 2 (Ω) + c -c L 2 (Ω) ≤ κ( ∂ t (U -U ) W 2,1 2 (ω T ) + U -U W 2,1 2 (ω T ) ) (4.31)
for arbitrary b, c, U, V satisfying Assumption 1.1 (a), (e), (h).

The rest of this section is devoted to the proof of Theorem 4.1.

First

Step. First we prove 

h ∈ L 2 (ω T ) such that | Ũ (•, θ)|, | Ṽ (•, θ)| = 0 on Ω \ ω 1 . (4.32) 
In this step, we will give the proof of Lemma 4.2, which is based on the approximate controllability and our Carleman estimate Theorem 2.2.

Taking M > 0 for a, b, c, d, A, B, C, D, and setting U 1 = e -M t U and V 1 = e -M t V , we have

∂ t U 1 = ∆U 1 + (a -M )U 1 + bV 1 + A • ∇U 1 + B • ∇V 1 + e -M t χ ω h and ∂ t V 1 = ∆V 1 + cU 1 + (d -M )V 1 + C • ∇U 1 + D • ∇V 1 .
Consequently, by choosing M > 0 sufficiently large, the integration by parts yields

((L + M I)(u, v), (u, v)) (L 2 (Ω)) 2 ≥ κ 1 (u, v) 2 (H 1 (Ω)) 2 , (u, v) ∈ D(L).
Again the elliptic regularity yields

(u, v) (H 3 (Ω)) 2 ≤ κ 1 (∆u, ∆v) (H 1 (Ω)) 2 + κ 1 (u, v) (L 2 (Ω)) 2 ≤ κ 1 (-L -Q)(u, v) (H 1 (Ω)) 2 + κ 1 (u, v) (L 2 (Ω)) 2 ≤ κ 1 L(u, v) (H 1 (Ω)) 2 + κ 1 (u, v) (H 2 (Ω)) 2 . (4.35)
On the other hand, we have L(u, v) ∈ D(L) and apply (4.33) to L(u, v) to have

L(u, v) (H 1 (Ω)) 2 ≤ κ 1 L 2 (u, v) (L 2 (Ω)) 2 .
Applying this and (4.34) to (4.35), we obtain

(u, v) (H 3 (Ω)) 2 ≤ κ 4 L 2 (u, v) (L 2 (Ω)) 2 .
Repeating these arguments, we can complete the proof of Lemma 4.3.

Moreover by [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] and [START_REF] Tanabe | Equations of Evolution[END_REF] for example, we see:

Lemma 4.4
The operator -L generates an analytic semigroup in (L 2 (Ω)) 2 .

There are no general result on the approximate controllabilty for parabolic systems with controls of a restricted number of components and see e.g., [START_REF] Ammar-Khodja | Null controllability of some reaction-diffusion systems with one control force[END_REF] and [START_REF] Leiva | Controllability of a system of parabolic equations with non-diagonal diffusion matrix[END_REF] as related works. For controllability for systems, see [START_REF] Ammar-Khodja | Null controllability of some reaction-diffusion systems with one control force[END_REF] - [START_REF] Ammar-Khodja | Null controllability of some systems of parabolic type by one control force[END_REF], [START_REF] González-Burgos | Controllability of some coupled parabolic systems by one control force[END_REF] - [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF]. Next we will prove the approximate controllability with control χ ω h to only one component.

Lemma 4.5 For any ε > 0, ( Ũ0 , Ṽ0 ) ∈ (L 2 (Ω)) 2 , ( Ũ1 , Ṽ1 ) ∈ (L 2 (Ω)) 2 , and any t 0 ∈ (0, δ), there

exists h ε ∈ L 2 (ω T ) such that Ũ ( Ũ0 , Ṽ0 , h)(•, t 0 ) -Ũ1 L 2 (Ω) + Ṽ ( Ũ0 , Ṽ0 , h)(•, t 0 ) -Ṽ1 L 2 (Ω) < ε.
Proof. Consider the following reaction-diffusion-convection system :

∂ t u = ∆u + au + bv -∇ • (Au) -∇ • (Bv) in Ω T , ∂ t v = ∆v + cu + dv -∇ • (Cu) -∇ • (Dv) in Ω T , u = v = 0 on Σ T . (4.36) 
The approximate controllability is equivalent to the uniqueness: Let u, v satisfy (4.36). Then u = 0 in ω T implies u = v = 0 in Ω T (e.g., Zabczyk [START_REF] Zabczyk | Mathematical Control Theory: An Introduction[END_REF]). This uniqueness follows from Theorem 2.2 by replacing the coefficients in (2.3) suitably and verifying Assumption 1.1 (d).

Now we will complete

Proof of Lemma 4.2 The proof is be done in three steps. Henceforth for fixed ( U 0 , V 0 ), by

( U , V )(h) we denote ( U , V )( Ũ0 , Ṽ0 , h).
Existence of a control in L 2 (ω T )

Let us arbitrarily fix ( Ũ1 , Ṽ1 )

∈ (H 2m+2 0 (Ω)) 2 satisfying | Ũ1 |, | Ṽ1 | = 0 on Ω \ ω 1 .
Then for any ε > 0 and any T 1 ∈ (0, θ), there exists

h ε ∈ L 2 (ω T 1 ) such that ( U , V )(h ε )(•, T 1 ) -( Ũ1 , Ṽ1 ) (L 2 (Ω)) 2 ≤ ε. (4.37) 
A more regular control

By the density of C ∞ (ω T 1 ) in L 2 (ω T 1 ), for any δ > 0, there exists h ε,δ ∈ C ∞ (ω T 1 ) such that h ε -h ε,δ L 2 (ω T 1 ) ≤ δ. (4.38) Therefore ( U , V )(h ε )(•, T 1 ) -( U , V )(h ε,δ )(•, T 1 ) (L 2 (Ω)) 2 = T 1 0 e -(T 1 -s)L χ ω (h ε -h ε,δ )(s)ds (L 2 (Ω)) 2 ≤ κ 5 δ.

Use of the time regularizing effect

By (4.37) and (4.38), we obtain

( U , V )(h ε,δ )(•, T 1 ) -( U 1 , V 1 ) (L 2 (Ω)) 2 ≤ ε + κ 5 δ. (4.39) 
Since -L generates an analytic semigroup in (L 2 (Ω)) 2 , by e.g., [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF], [START_REF] Tanabe | Equations of Evolution[END_REF], we see that

e -(θ-T 1 )L ( U , V )(h ε,δ )(•, T 1 ) ∈ D(L m )
and

L m [e -(θ-T 1 )L ( U , V )(h ε,δ )(•, T 1 ) -e -(θ-T 1 )L ( Ũ1 , Ṽ1 )] (L 2 (Ω)) 2 ≤ κ 6 (θ -T 1 ) -m ( U , V )(h ε,δ )(•, T 1 ) -( Ũ1 , Ṽ1 ) (L 2 (Ω)) 2 ≤ κ 6 (θ -T 1 ) -m (ε + κ 5 δ).
Extending h ε,δ (•, t) = 0 for t > T 1 , we have

e -(θ-T 1 )L ( U , V )(h ε,δ )(•, T 1 ) = ( U , V )(h ε,δ )(•, θ),
and so

L m [( Ũ , Ṽ )(h ε,δ )(•, θ) -e -(θ-T 1 )L ( Ũ1 , Ṽ1 )] (L 2 (Ω)) 2 ≤ κ 6 (θ -T 1 ) -m (ε + κ 5 δ). (4.40) 
Moreover as ( Ũ1 , Ṽ1 ) ∈ D(L m+1 ), we have

L m [e -(θ-T 1 )L ( Ũ1 , Ṽ1 ) -( Ũ1 , Ṽ1 )] (L 2 (Ω)) 2 ≤ κ 6 (e -(θ-T 1 )L -I)L m ( Ũ1 , Ṽ1 ) (L 2 (Ω)) 2 ≤ κ 6 θ-T 1 0 d dη (e -ηL )L m ( Ũ1 , Ṽ1 )dη (L 2 (Ω)) 2 ≤ κ 6 θ-T 1 0 e -ηL L m+1 ( Ũ1 , Ṽ1 )dη (L 2 (Ω)) 2 ≤ κ 6 (θ -T 1 ) L m+1 ( Ũ1 , Ṽ1 ) (L 2 (Ω)) 2 .
In terms of (4.40), we obtain

L m [( Ũ , Ṽ )(h ε,δ )(•, θ) -( Ũ1 , Ṽ1 )] (L 2 (Ω)) 2 ≤ κ 6 (θ -T 1 ) -m (ε + κ 5 δ) +κ 6 (θ -T 1 ) L m+1 ( Ũ1 , Ṽ1 ) (L 2 (Ω)) 2 . (4.41) 
For any ε 1 > 0 and ( Ũ1 , Ṽ1 ) ∈ D(L m+1 ), we choose T 1 ∈ (0, θ) such that

κ 6 (θ -T 1 ) L m+1 ( Ũ1 , Ṽ1 ) (L 2 (Ω)) 2 < ε 1 3 .
Then, with this T 1 , we choose ε > 0 such that

κ 6 (θ -T 1 ) -m ε < ε 1 3 .
Finally with this h ε , we choose δ > 0 sufficiently small such that

κ 6 δ ≤ ε 1 3 .
Therefore (4.41) yields Second Step We will complete the proof of Theorem 4.1. Let h ∈ L 2 (ω T ) be chosen in Lemma 4.2. We set

L m [( Ũ , Ṽ )(h ε,δ )(•, θ) -( Ũ1 , Ṽ1 )] L 2 (Ω) 2 ≤ ε 1 . ( 4 
u = U -U , v = V -V .
Then (u, v) satisfies

∂ t u = ∆u + au + bv + A • ∇u + B • ∇v + f Ṽ , ∂ t v = ∆v + cu + dv + C • ∇u + D • ∇v + g Ũ in Ω T , u = v = 0 on Σ T , (4.43) 
where

f = b -b, g = c -c.
We consider the time derivative of system (4.43). Setting y = ∂ t u and z = ∂ t v, we obtain

∂ t y = ∆y + a(x)y + b(x)z + A • ∇y + B • ∇z + f ∂ t V in Ω T , ∂ t z = ∆z + c(x)y + d(x)z + C • ∇y + D • ∇z + g∂ t U in Ω T , y = z = 0 on Σ T . (4.44)
Applying the Carleman estimate Theorem 2.2 to system (4.43) and using f = 0 in ω 1 , we have Furthermore, for large s > 0, we can prove that

Ω T (sρ) -1 e -2sηω
Ω T |f (x)| 2 e -2sηω (x,t) dxdt ≤ o(1) Ω |f (x)| 2 e -2sηω(x,θ) dx as s → ∞. (4.46) 
In fact, we can prove similarly to [START_REF] Yu | Lipschitz stability in inverse parabolic problems by the Carleman estimate[END_REF]. Recall that T = 2θ. Setting ℓ(t) = t(Tt), by (2.4) we have ∂(-ηω) ∂t (x, θ) = 0, x ∈ Ω and

∂ 2 (-η ω ) ∂t 2 (x, t) = -α ω (x) 2ℓ ′ (t) 2 -ℓ(t)ℓ ′′ (t) ℓ(t) 3 and ∂ 3 (-η ω ) ∂t 3 (x, t) = -α ω (x) 6ℓ ′ (t)(ℓ(t)ℓ ′′ (t) -ℓ ′ (t) 2 ) ℓ(t) 4 , (x, t) ∈ Ω T . ∂ 2 (-η ω ) ∂t 2 (x, t) ≤ - κ 8 ℓ(t) 3 , (x, t) ∈ Ω T
with a positive constant κ 8 and

∂ 3 (-η ω ) ∂t 3 (x, t) ≥ 0, 0 ≤ t ≤ θ, x ∈ Ω, ∂ 3 (-η ω ) ∂t 3 (x, t) ≤ 0, θ ≤ t ≤ T, x ∈ Ω.
Consequently by the mean value theorem, we can take t 1 such that t 1 is between t and θ and

-η ω (x, t) = -η ω (x, θ) + 1 2 ∂ 2 (-η ω ) ∂t 2 (x, t)(t -θ) 2 + 1 6 ∂ 3 (-η ω ) ∂t 3 (x, t 1 )(t -θ) 3 ≤ -η ω (x, θ) - κ 8 2t 3 (T -t) 3 (t -θ) 2 , (x, t) ∈ Ω T .
Hence, noting that κ 8 > 0 and -1 t(T -t) ≤ -4 T 2 , we obtain T 0 e -2sηω(x,t) dt ≤ e -2sηω (x,θ)

T 0 exp - sκ 8 t 3 (T -t) 3 (t -θ) 2 dt ≤ e -2sηω(x,θ) T 0 exp - sκ 9 T 2 (t -θ) 2 dt.
The Lebesgue theorem yields .

We have

Ω (|y(x, θ)| 2 + |z(x, θ)| 2 )e -2sηω(x,θ) dx = Ω ∂ ∂t θ 0 (|y(x, t)| 2 + |z(x, t)| 2 )e -2sηω (x,t) dtdx = Ω θ 0 {2sα ω (x)ρ(t) 2 (T -2t)(|y(x, t)| 2 + |z(x, t)| 2 ) + 2(y∂ t y + z∂ t z)}e -2sηω (x,t) dtdx ≤ κ 10 Ω T {(sρ) 3 (|y(x, t)| 2 + |z(x, t)| 2 ) + (sρ) -1 (|∂ t y(x, t)| 2 + |∂ t z(x, t)| 2 )}e -2sηω (x,t) dtdx.
At the last inequality, we used

|y∂ t y| = |(sρ) -1 2 ∂ t y(sρ) 1 2 y| ≤ 1 2 (sρ) -1 |∂ t y| 2 + 1 2 (sρ)|y| 2 ≤ 1 2 (sρ) -1 |∂ t y| 2 + κ ′ 10 (sρ) 3 |y| 2 .
Hence, by (4.45) and (4.46), noting that f = g = 0 in ω 1 , we have

Ω (|y(x, θ)| 2 + |z(x, θ)| 2 )e -2sηω (x,θ) dx ≤ κ 7 (s) y 2 W 2,1 2 (ω T ) + o(1) Ω\ω 1 (|f (x)| 2 + |g(x)| 2 )e -2sηω (x,θ) dx (4.47)
for all large s > 0.

On the other hand, since u(•, θ) = v(•, θ) = 0, we have y(x, θ) = f (x) Ṽ (x, θ) and z(x, θ) = g(x) Ũ (x, θ) for x ∈ Ω. Therefore, by (4.32) and (4.47) we obtain

κ 11 Ω (|f (x)| 2 + |g(x)| 2 )e -2sηω (x,θ) dx ≤ κ 7 (s) y 2 W 2,1 2 (ω T ) + o(1) Ω\ω 1 (|f (x)| 2 + |g(x)| 2 )e -2sηω (x,θ) dx as s -→ ∞.
Taking s > 0 large and fixing, we absorb the second term on the right hand side into the left hand side and the proof of Theorem 4.1 is completed.

5 Some generalization and comments

Identification of all the coefficients

Indeed we can determine all the coefficients of (1.1). For it, we need repeats of measurements by choosing suitable interior controls. We choose m ∈ N such that (Ω)) 2 , there exists 

m > n 4 + 1 2 . We recall that ( Ũ , Ṽ ) = ( Ũ (h)(•, •), Ṽ (h)(•, •)) satisfies (4.29) and that (U, V ) = (U (h)(•, •), V (h)(•, •)) satisfies (4.
h ∈ L 2 (ω T ) such that ( Ũ (h), Ṽ (h))(•, θ) -( Ũ1 , Ṽ1 ) (C 1 (Ω)) 2 ≤ ε. ( 5 
., h 2n+2 ∈ L 2 (ω T ) such that det                            U (h 1 ) V (h 1 ) 0 0 ∇ U (h 1 ) ∇ V (h 1 ) 0 0 0 0 U (h 1 ) V (h 1 ) 0 0 ∇ U (h 1 ) ∇ V (h 1 ) U (h 2 ) V (h 2 ) 0 0 ∇ U (h 2 ) ∇ V (h 2 ) 0 0 0 0 U (h 2 ) V (h 2 ) 0 0 ∇ U (h 2 ) ∇ V (h 2 ) . . . . . . . . . . . . . . . . . . . . . . . . U (h 2n+2 ) V (h 2n+2 ) 0 0 ∇ U (h 2n+2 ) ∇ V (h 2n+2 ) 0 0 0 0 U (h 2n+2 ) V (h 2n+2 ) 0 0 ∇ U(h 2n+2 ) ∇ V (h 2n+2 )                            = 0 x ∈ Ω \ ω 1 , t = θ (5.49)
and we choose a constant κ > 0 depending on M, m, γ, s, Ω, ω, T and h 1 , ..., h 2n+2 such that

a -a L 2 (Ω) + b -b L 2 (Ω) + c -c L 2 (Ω) + d -d L 2 (Ω) + A -A (L 2 (Ω)) n + B -B (L 2 (Ω)) n + C -C (L 2 (Ω)) n + D -D (L 2 (Ω)) n ≤ κ 2n+2 j=1 ( ∂ t (U (h j ) -Ũ (h j )) W 2,1 2 (ω T ) + U (h j ) -Ũ (h j ) W 2,1 2 (ω T ) )
for all (a, b, c, d, A, B, C, D) satisfying Assumption 1.1.

Example for Theorem 5.1:

Let n = 1 and let p 1 , p 2 , q 1 , q 2 , q 3 be constants such that p 1 q 2p 2 q 1 = 0 and p 3 (x 1 ), q 4 (x 1 ) satisfy (∂ 1 p 3 )(x 1 ) = 0 and ∂ 1 q 4 (x 1 ) = 0 for x 1 ∈ Ω \ ω 1 , and let q 3 be an arbitrarily smooth function.

Then for x = x 1 ∈ Ω \ ω 1 , we can verify that det

                           p 1 q 1 0 0 ∂ 1 p 1 ∂ 1 q 1 0 0 0 0 p 1 q 1 0 0 ∂ 1 p 1 ∂ 1 q 1 p 2 q 2 0 0 ∂ 1 p 2 ∂ 1 q 2 0 0 0 0 p 2 q 2 0 0 ∂ 1 p 2 ∂ 1 q 2 . . . . . . . . . . . . . . . . . . . . . . . . p 4 q 4 0 0 ∂ 1 p 4 ∂ 1 q 4 0 0 (a) (a ij ) i,j=1,3 ∈ W 2,∞ (Ω T ), a ij W 2,∞ (Ω T ) ≤ M . (b) ω of class C 2 , ∂ω ∩ ∂Ω = γ and |γ| = 0. (c) (∇a 12 -a 12 a 13 ∇a 13 ) • ν = 0 on γ × (0, T ). (d) a 12 , a 13 ∈ W 3,∞ (ω T ), a 12 W 3,∞ (ω T ) , a 13 W 3,∞ (ω T ) ≤ M .
(e) a 13 = 0 on Ω T .

We show a Carleman estimate with extra data of one component.

Theorem 5.3 Under Assumption 5.2, there exist α ω ∈ C 2 (Ω) with α ω > 0 on Ω and a constant s 0 > 0 which depends on T, M, Ω, ω, τ and the L ∞ (Ω)-norms of a ij , 1 ≤ i, j ≤ 3 such that we can choose positive constants κ 1 (s) and κ satisfying: and G = a 12 g + a 13 h.

Ω T (sρ) -1 e -2sηω
By [START_REF] Fursikov | Controllability of Evolution Equations[END_REF], [START_REF] Yu | Controllability of parabolic equations[END_REF] and the proof of Theorem 2.2, we see that there exist a subdomain ω ′ ⊂ ω and for all s ≥ s 0 , where we set ηω ′ (x, t) =

β ω ′ ∈ C 2 (
β ω ′ (x)
t(T -t) . Here (5.52) is obtained by applying the Carleman estimate in [START_REF] Fursikov | Controllability of Evolution Equations[END_REF] or [START_REF] Yu | Controllability of parabolic equations[END_REF] to the first and the second equations in (5.51), while (5.53) is seen by applying Theorem 2.2 to the second and the third equations in (5.51) and noting Assumption 5.2 (c). We further notice that the weight function ηω ′ can be taken the same, which can be seen from the proof of Theorem 2. 

≤ κ 2 Ω T (z 2 + u 2 + v 2 + |∇v| 2 )e -2sη ω ′ dxdt + κ 2 Ω T (f 2 + g 2 + h 2 )e -2sη ω ′ dxdt +κ 3 (s)( z 2 W 2,1 2 (ω ′ T ) + u 2 L 2 (ω ′ T ) + g 2 L 2 (ω ′ T ) + h 2

Assumption 1 . 1

 11 (a) a, b, b, c, c, d ∈ B L ∞ (Ω) (0, M ), (b) A, B, C, D ∈ B L ∞ (Ω) n (0, M ), (c) ω ⊂ Ω satisfies ∂ω ∩ ∂Ω = γ and |γ| = 0, and ω is of class C 2 , (d) |B(x) • ν(x)| = 0, x ∈ γ, (e) B ∈ C 2 (ω) n , A ∈ C 1 (ω) n and b ∈ C 2 (ω),

. 30 )Theorem 4 . 1

 3041 By (U, V ) we denote the solution to (4.30) with b, c replacing b, c. Our main result in this section is the following : Suppose Assumption 1.1 except for (f ). Let ω 1 be a neighbourhood of ∂Ω such that ω ⊂ ω 1 and let b = b and c

Lemma 4 . 2

 42 Let Assumption 1.1 except for (f ) hold and let b = b, c = c in ω 1 . Then there exists

  .42) In terms of Lemma 4.3 and (4.27), by choosing ε > 0 sufficiently small for inf x∈Ω\ω 1 | Ũ1 (x)| and inf x∈Ω\ω 1 | Ṽ1 (x)|, the proof of Lemma 4.2 is completed.

  29) where ã, b, c, d, Ã, B, C, D are replaced by a, b, c, d, A, B, C, D respectively. Then, with m >

Theorem 5 . 1

 51 Let ω, a, a, b, b, c, c, d, d, A, A, B, B, C, C, D, D satisfy Assumption 1.1 and a, b, c, d, A, B, C, D ∈ W 2m,∞ (Ω). Let ω 1 be a neighbourhood of ∂Ω such that ω ⊂ ω 1 and let the coefficients (a, b, c, d, A, B, C, D)and ( a, b, c, d, A, B, C, D) coincide in ω 1 . Then there exist h 1 , h 2 , ..

L 2

 2 s > 0. We can absorb the first terms on the right hand side into the left hand side by choosing s > 0 large, and we use z = ∂ t u -∆ua 11 uf by the first equation in (5.51), so that the proof of Theorem 5.3 is completed.The approximate controllability is a direct consequence of Theorem 5.3. That is, we consider∂ t u = ∆u + a 11 (x)u + a 21 (x)v + a 31 (x)w + χ ω f in Ω T , ∂ t v = ∆v + a 12 (x)u + a 22 (x)v + a 32 (x)w in Ω T , ∂ t w = ∆w + a 13 (x)u + a 23 (x)v + a 33 (x)w in Ω T , u = v = w = 0 on Σ T , u(•, 0) = u 0 , v(•, 0) = v 0 , w(•, 0) = w 0 in Ω.(5.55)

2

  Let τ ≥ 1 and ω ⊂ Ω be a subdomain such that ω ⊂ Ω. Under Assumption 2.1, there exist α ω ∈ C 2 (Ω) with α ω > 0 on Ω and two positive constants s 0 and κ which depend on T, M, Ω, ω, τ and the L ∞ -norms of a ij , A ij , such that there exist positive constants κ 1 (s, τ ) and κ -2sηω (|∂ t u| 2 + |∂ t v| 2 + |∆u| 2 + |∆v| 2 + (sρ) 2 |∇u| 2 + (sρ) 2 |∇v| 2 + (sρ) 4 |u| 2 + (sρ) 4 |v| 2 )

	such that the following Carleman estimate holds
	(sρ) τ -1 e
	Ω T

  (|∂ t y| 2 + |∂ t z| 2 + |∆y| 2 + |∆z| 2 +(sρ) 2 |∇y| 2 + (sρ) 2 |∇z| 2 + (sρ) 4 |y| 2 + (sρ) 4 |z| 2 )dxdt

	≤ κ 7 (s) y 2 W 2,1 2 (ω T ) + κ	Ω T	e -2sηω (|f ∂ t V | 2 + |g∂ t U | 2 )dxdt.	(4.45)

  (|∂ t u| 2 + |∂ t v| 2 + |∂ t w| 2 + |∆u| 2 + |∆v| 2 + |∆w| 2 +(sρ) 2 |∇u| 2 + (sρ) 2 |∇v| 2 + (sρ) 2 |∇w| 2 + (sρ) 4 u 2 + (sρ) 4 v 2 + (sρ) 4 w 2 )dxdtProof Setting z = a 12 v + a 13 w, we rewrite (5.50) as∂ t u = ∆u + a 11 u + z + f in Ω T , ∂ t z = ∆z + A • ∇z + az + eu + B • ∇v + bv + G in Ω T , ∂ t v = ∆v + a 21 u + dv + cz + g in Ω T ,33 + a 12 a 23 + ∂ t a 13 -∆a 13 a 13 , b = a 12 a 22 + a 13 a 32 + ∂ t a 12 -∆a 12 + 2∇a 13 • ∇ a 12 a 13 -a 12 a 13 (a 12 a 23 + a 13 a 33 + ∂ t a 13 -∆a 13 ), c = a 23 a 13 , d = a 22 -a 12 a 23 a 13 , e = a 21 a 12 + a 31 a 13

	where	≤ κ 1 (s)( u 2 W 4,2 2 (ω T ) + f 2 W 2,1 A = -2 ∇a 13 a 13 , B = -2∇a 12 + 2 on Σ T , a 12 a 13 2 (ω u = v = z = 0 a = 2 |∇a 13 | 2 13 a 2 + a	∇a 13 ,	(5.51)

T ) + g 2 L 2 (ω T ) + h 2 L 2 (ω T ) )

+κ

Ω T (|f 2 | + |g| 2 + |h| 2 )e -2sηω dxdt

for all s ≥ s 0 and (u, v, w) satisfying (5.50). Here we set

η ω (x, t) = α ω (x) t(Tt)

.

  Ω) with β ω ′ > 0 on Ω such thatΩ T (sρ) -1 e -2sη ω ′ (|∂ t u| 2 + |∂ t z| 2 + |∆u| 2 + |∆z| 2 +(sρ) 2 |∇u| 2 + (sρ) 2 |∇z| 2 + (sρ) 4 u 2 + (sρ) 4 z 2 )dxdt + |eu| 2 )e -2sη ω ′ dxdt + κ 2 Ω T (f 2 + G 2 )e -2sη ω ′ dxdt |B • ∇b + bv| 2 e -2sη ω ′ dxdt + κ 2 -1 e -2sη ω ′ (|∂ t z| 2 + |∂ t v| 2 + |∆z| 2 + |∆v| 2 +(sρ) 2 |∇z| 2 + (sρ) 2 |∇v| 2 + (sρ) 4 z 2 + (sρ) 4 v 2 )dxdt ≤ κ 3 (s)( z 2 G| 2 + |a 21 u + g| 2 )e -2sη ω ′ dxdt(5.53)

	and	≤ κ 2 (z 2 +κ 2 Ω T Ω T (sρ) W 2,1 2 (ω ′ T ) + eu + G 2 L 2 (ω ′ T ) ) + κ 2	Ω T	ω ′ T (|eu + (sρ) -1 (u 2 + z 2 )e -2sη ω ′ dxdt	(5.52)
		Ω T			

  [START_REF] Ammar-Khodja | Null controllability of some reaction-diffusion systems with one control force[END_REF]. By(5.52) and(5.53), in terms of Assumption 5.2 (a), (d) and (e), we haveΩ T (sρ) -1 e -2sη ω ′ (|∂ t u| 2 + |∂ t z| 2 + |∂ t v| 2 + |∆u| 2 + |∆z| 2 + |∆v| 2 +(sρ) 2 |∇u| 2 + (sρ) 2 |∇z| 2 + (sρ) 2 |∇v| 2 + (sρ) 4 u 2 + (sρ) 4 z 2 + (sρ) 4 v 2 )dxdt

(ω T ) (1.2)
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Therefore with fear of confusion, we may denote a -M and d -M by a and d respectively. Then (u, v) (H 1 (Ω)) 2 ≤ κ 1 L(u, v) (L 2 (Ω)) 2 , (u, v) ∈ D(L).

(4.33)

Here and henceforth κ j > 0 denote generic constants which depend on Ω, M ,

We can prove Lemma 4.3 Under assumption (4.28), there exists a constant κ 2 > 0 such that

Proof of Lemma 4.3 The proof is done by the classical regularity property for the Dirichlet problem for the Poisson equation (e.g., Theorem 8.13 in Gilbarg and Trudinger [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) and given here for completeness.

We recall (4.29) and we set

. By the elliptic regularity (e.g., Theorem 8.13 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) in the Dirichlet problem for ∆u = f , we have

and

Hence by (4.33), we have

Therefore in (5.48), we can choose ( Ũ1 , Ṽ1 ) = (p j , q j ), 1 ≤ j ≤ 4 to construct h 1 , h 2 , h 3 , h 4 satisfying (5.49).

Carleman estimate for a 3×3 reaction-diffusion system with one observation

We consider now a 3 × 3 reaction-diffusion system

(5.50)

We will assume Assumption 5.2

Here we assume that all the coefficients are independent of t.

Then

Theorem 5.4 Under Assumption 5.2, for all ε > 0, T > 0, (u 0 , v 0 , w 0 ) ∈ (L 2 (Ω)) 3 and (u 1 , v 1 , w 1 ) ∈ (L 2 (Ω)) 3 , there exists f ∈ L 2 (ω T ) such that the corresponding solution of (5.55) satisfies

Similarly to section 4, we can apply the Carleman estimate of Theorem 5.3 for determining the nine coefficients a ij , 1 ≤ i, j ≤ 3 by suitably repeated observations of only one component u and we will here omit further details.