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Superconducting fluctuations near the FFLO state

François Konschelle, Jérôme Cayssol and Alexandre I. Buzdin*

Abstract. The Fulde, Ferrell, Larkin & Ovchinnikov (FFLO) state consists in a modulation
of the superconducting order parameter due to Zeeman effect. In a Ginzburg-Landau approach,
higher order terms than usual in the gradient expansion, i.e. quartic terms, are needed to take
into account the FFLO modulation. The role of this quartic term in addition to the quadratic
usual term in a Gaussian fluctuation spectrum have been investigated for heat capacity C
and paraconductivity σ near a FFLO state for both isotropic and anisotropic cases. In the
isotropic (resp. anisotropic) case, the power laws are drastically different (resp. similar) in
comparison with the homogeneous superconductivity case. Nevertheless, for the anisotropic case
the anisotropic ratio σxx/σyy is quite different for a FFLO phase than for a BCS one. In addition,
we predict anomalous power laws near the tricritical point where the normal phase and the two
superconducting (uniform and FFLO) phases are merging. The multiple crossovers associated
with the phase transitions between homogeneous, tricritical and inhomogenous fluctuation
regimes thus may serve as a powerful tool to identify the FFLO phases.

Université Bordeaux I ; CNRS ; CPMOH, F-33405 Talence, France. *Also at Institut
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Despite of an important number of possible candidates suggested for about 40 years, the
quest for the mysterious FFLO phase (for Fulde, Ferrell, Larkin and Ovchinnikov [1, 2]) has been
subjected to a total renewal with the discovery of an intriguing phase in CeCoIn5 compound
(for a recent review, see [3]). The key ingredient of such phases is the Zeeman effect. Owing
to the Zeeman effect, the singlet Cooper pair acquires a finite global momentum, inducing a
spatial modulation over the whole superconducting state [4]. More recently, cold atom gases
with unbalanced population of fermions have also attracted a lot of interest (for a review, see
[5]).

We focus ourselves on the Gaussian fluctuation properties of the normal phase, in the vicinity
of a second order phase transition towards the FFLO phase (see Fig.1.a). Near a modulated
phase, the coefficient of the gradient term in a Ginzburg-Landau (GL) functional disappears
at a certain ratio between the temperature T and the magnetic exchange field h [6]. This
tricritical point (T ∗, h∗) separates the normal phase to the both homogeneous and inhomogenous
superconducting states. It follows from the disappearance of the condensate stiffness that a finite
wave vector appears, inducing several new physical properties associated with modulated phases
[3, 4, 5]. In the isotropic case, the corresponding modulation is degenerate and lies within a sphere
or a ring, depending on the dimensionality. In the anisotropic case, the wave vector is located
along the high symmetry lines of the crystal lattice (or of the gap symmetry).

Previously, we have identified three regimes characterized by different fluctuation properties
[8]. The regime I (see Fig.1.a) corresponds to the usual BCS transition (with uniform condensate)
[9, 10], while the regimes II and III exhibit different properties due to the vicinity of the
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Figure 1. a) Schematic (h, T ) phase diagram for FFLO superconductors, where h is the
magnetic field and T is the temperature. The solid lines represent the transition between the
normal metal, the spatially uniform BCS superconductor, and the non uniform FFLO state. The
fluctuation regimes I, II and III correspond respectively to the uniform BCS state (g > 0), to
the FFLO state (g < 0) and to the tricritical regime (g → 0) [8]. Gray hatched regions represent
the crossover regimes between the various fluctuation cases. b) Mean-field treatment of the
rectangular anisotropy model with respect to γ1 and γ2. The gray area represents the diagonal
location of the modulation wave vector q0 whereas the white areas represent the locations of q0

on the axis. The corresponding q0 are also explicitely given in each case.

inhomogeneous superconducting state. More precisely, the regime II corresponds to a well
established modulation over the superconducting condensate, whereas the regime III corresponds
to the region near the tricritical point, where homogeneous and inhomogeneous phases compete.
In the present communication, we first briefly outline the results of [8] for an isotropic fluctuation
spectrum. Then, we provide additional results in the case of anisotropic systems which is the
most relevant for real compounds. Finally, we show that the critical region is rather small for
superconductors, hence justifying the use of a Gaussian model.

The Gaussian functional

H [Ψ] =
∑

k

[

a
(

T − T̃c

)

+ gik
2

i + γijk
2

i k
2

j

]

|Ψk|2 =
∑

k

εk |Ψk|2 (1)

will be used in the following, where T̃c is the critical temperature associated with the normal
to homogeneous superconducting phase transition, and the tensors gi and γij characterize the
stiffness of the condensate. As the gi → 0 near the tricritical point, and become negative for
high magnetic fields and low temperatures, higher order terms (like the γij ones) are required
in the GL functional [6, 7]. In the standard GL approach, where γij = 0, there are just
the gi components that characterize the anisotropy, and the isotropy of the GL functional
can be restored by simply rescalling the axis in momentum space. In contrast, near a FFLO
phase, the presence of the γij terms change the behavior of the fluctuation specific heat and
paraconductivity. Moreover, this γij tensor is very sensitive to the detailed form of the Fermi
surface.

Near a FFLO isotropic phase, where gi = g and γij = γδij, the following fluctuation heat
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capacity C and paraconductivity σxx have been obtained [8]:

C =
πAdkB

4

√

aTc

γ

( |g|
2γ

)

d−2

2
[

T − Tc

Tc

]

−3/2

; σxx =
(πe)2 AdkB

4ℏd

√

γ

aTc

( |g|
2γ

)d [

T − Tc

Tc

]

−3/2

(2)
where Ad = 1/π, 1/2π, 1/2π2 for d = 1, 2, 3 respectively. In strong contrast with the GL
case [9, 10], the phase transition to a modulated phase exhibits a −3/2 Gaussian exponent
independent on the dimensionality d. Although the above results are somewhat academic for
superconductors, they may be relevant for cold fermionic gases which have spherical, or elliptical
Fermi surface.

For real superconductors, the isotropic model is not sufficient. We now consider two-
dimensional compounds with tetragonal anisotropy, taking in mind that orbital effects is reduced
in two-dimensional layered compounds with in-plane magnetic field. In tetragonal anisotropy,

the fluctuation spectrum is given by εk = a
(

T − T̃c

)

+ gk2 + γ1k
4
x + γ2k

4
y + 2γk2

xk2
y. The mean-

field diagram associated with this spectrum with respect to γ1 and γ2 is given in Fig.1.b. It
exhibits either four minima on the diagonal (gray region in Fig.1.b), or only two on the axis
(white regions in Fig.1.b). In the on-Ox axis case, the fluctuation spectrum is expanded as
εk ≈ a (T − Tc) − 2gκ2

x − g (γ − γ1) κ2
y/γ1 with Tc = T̃c + g2/4aγ1.

The fluctuation heat capacity and paraconductivity are finally obtained as:

C =
kB

4π

aTc
√

2g2

√

γ1

γ − γ1

[

T − Tc

Tc

]

−1

and σxx =
e2akB

8ℏ

√

2γ1

γ − γ1

[

T − Tc

Tc

]

−1

(3)

where the Gaussian exponent −1 is exactly the same as for the homogeneous case [10]. The
particular behavior of the FFLO transition is thus lost when switching from the ideally isotropic
model to the more realistic anisotropic case: the universal exponents of the homogeneous case
are recovered. As the low-energy fluctuations are located within small islands centered at several
isolated points, it is natural to find the BCS exponents. Indeed, in the usual BCS case, there is
just one pocket of low-energy fluctuation modes centered at the origin of the momentum space.

Nevertheless, the anisotropic ratio σxx/σyy = 2γ1/ (γη − γ1) is very different near a FFLO
phase than near a uniform one. In fact, for the latter case, and for a fluctuation spectrum taking
into account non-local effects proportional to k4, there would be no anisotropy (σxx/σyy = 1),
whereas σxx/σyy 6= 1 in the former case.

Moreover, the most peculiar properties of the MGL functional is the fact that gi → 0 inducing
FFLO phase at (T < T ∗, h > h∗). When gi → 0, the fluctuation spectrum (1) becomes purely
quartic (regime III on Fig.1.a). Note that this quartic regime separates regimes I and II, inducing
crossovers in the (h, T ) phase diagram, represented in Fig.1.a by hatched gray regions. Using
the spectrum: εk = a (T − T ∗) + γijk

2

i k
2

j yields

C∗ ≈ kB

det γ
(aT ∗)d/4

[

T − T ∗

T ∗

]

d−8

4

and σαβ ≈ πe2kB

ℏ

(aT ∗)
d−2

4

4
√

det γ

[

T − T ∗

T ∗

]

d−6

4

(4)

for fluctuation heat capacity and paraconductivity. Gaussian divergencies of modulated systems
are thus characterized by a transitive regime between the FFLO and the BCS ones wherein the
stiffness gi disappears. This regime is characterized by very soft (quartic) fluctuating modes
which reveal the change of the sign of g, and hence the presence of the tricritical point.

Let us now note that a complete treatment of the Ginzburg-Levanyuk parameter [9, 10] will
be given in [11]. It follows from this study that the Gaussian approach is valid in temperature
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regions given by

T − Tc

Tc
≫ g̃2/3

(

Tc

EF

)2/3

and
T − T ∗

T ∗
≫ T ∗

EF
(5)

for the two-dimensional isotropic case in regime II and for the two-dimensional tricritical regime
III, respectively. In Eq.(5), g̃ is a dimensionless quantity which vanishes at the tricritical point,
and EF is the Fermi energy. Note that the anisotropic case exhibits the same Ginzburg-Levanyuk
parameter than for BCS superconductors [9, 10]. Thus, the critical region, even though modified
by the fluctuation spectrum discussed in this communication, remains quasi-inobservable for
typical superconducting compounds. This finally justify the use of Gaussian approximation in
studying fluctuation properties of FFLO states.

In conclusion, we have derived the fluctuation properties of the normal state in the vicinity
of modulated phases. We have found two other regimes in addition to the conventional BCS one
(see Fig.1.a). These two regimes are characterized by a quartic term in the fluctuation spectrum
in addition to the usual quadratic one [9, 10]. This quartic term is required by the disappearance
of the stiffness condensate g at the tricritical point. Moreover, as g = 0 near a constant h/T ratio
in the phase diagram [6], a characteristic regime (which is universal of all systems with vanishing
stiffness) of purely quartic expansion of the fluctuation spectrum has been pointed out [8, 11].
The crossovers between these three regimes may be observed by measuring the specific heat and
the anisotropy of paraconductivity along the normal to superconducting phase transition line
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