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Abstract

The recent ability to measure quickly and inexpensively
dense sets of points on physical objects has deeply influ-
enced the way engineers represent shapes in CAD sys-
tems, animation software or in the game industry. Many
researchers advocated to completely bypass smooth sur-
face representations, and to stick to a dense mesh model
throughout the design process. Yet smooth analytic repre-
sentations are still required in standard CAD systems and
animation software, for reasons of compactness, control,
appearance and manufacturability. In this paper we present
a new method for fitting a smooth adaptively refinable tri-
angular spline surface of arbitrary topology to an arbi-
trary dense triangular mesh. The key ingredient in our so-
lution is that adaptive fitting is achieved by 4-splitting tri-
angular surface patches locally therefore no particular at-
tention has to be paid the validity of an underlying subdi-
vided mesh. Furthermore, the final surface is composed of
low-degree polynomial patches that always join with G1-
continuity. The ability to adaptively refine the model allows
to achieve a given approximation error with a minimal num-
ber of patches.

1. Introduction

3D laser scanning systems are capable of producing de-
tailed and densely sampled triangular meshes. On one hand
triangle meshes are an adequate representation for many
applications, for example in entertainment industries with
computer animations for movies and publicity, or display of
rapidly changing scenes in video games. Recent advances
in mesh processing algorithms including editing, simplifi-
cation, denoising, compression have made possible the use
of large and highly detailed models.

On the other hand smooth surface representations may
be required for reasons of compactness, control, appearance
and manufacturability. The creation of a complex object of
arbitrary topology with a lot of details is still a laborious

process despite the use of advanced Computer Aided De-
sign (CAD) and Computer Graphics modeling systems.

3D scanning of existing objects or clay models is thus of-
fering an utile alternative for model acquisition. The whole
process of converting point clouds as output of 3D scan-
ners into a geometric model is called surface reconstruction.
It is generally preceded (or combined with) a registration
step where range images are merged into a consistent large
set of unorganized points. The geometric model can either
be a polygonal mesh [3, 38, 19, 37, 6, 1], a physical based
model [35, 24, 9], or a smooth surface. Reconstruction of a
smooth surface is often referred to assurface fitting, i.e. in-
terpolation or approximation of unorganized points or orga-
nized (gridded or triangulated) data. The resulting surface
can be represented as NURBS [30, 31, 33], or implicit sur-
faces [32, 28, 5, 36]. The problem of fitting (or reconstruct-
ing) smooth surfaces of arbitrary topological type has been
addressed in some recent work using surface splines [11],
B-splines combined with displacement maps [21], subdivi-
sion surfaces [18, 25], algebraic surfaces [27, 2], and hier-
archical B-splines [13], see also Section 2.

In this paper we present a method for fitting a smooth
adaptively refinable triangular spline surface of arbitrary
topology to an arbitrary dense triangle mesh.

The main features and contributions of this method are:

Surface representation.The surface is represented explic-
itly in piecewise polynomial or spline form. It consists of
triangular patches, each of them parameterized over the unit
triangle. An advantage of triangle based methods is that
most available dense meshes are triangle meshes. No con-
version of triangle meshes into quadrilateral meshes is nec-
essary.

Adaptive fitting. The fitting process is adaptive and capa-
ble to satisfy a user specified error tolerance. A coarse base
mesh is interpolated by an initial G1-continuous surface.
This initial surface is then adaptively refined. The affine im-
age of the base mesh serves as parameter domain for the
initial surface and for all subsequent refined surfaces. In
order to locally refine the surface, pairs of adjacent trian-
gles in the base mesh are 4-splitted, correpondingly new



smooth patches are computed. Note that this adaptive re-
finement procedure does not require a valid triangulation as
parameter domain (i.e. a 2-complex manifold). In particu-
lar there may be T-junctions in the parameter domain and
there may be coarse smooth patches being adjacent to sev-
eral finer smooth patches, as illustrated in Figure 1. This
distinguishes our work from previous papers that perform
adaptive fitting by successively refining a coarse mesh such
that it always remains a valid mesh followed by global or lo-
cal re-fitting.

Figure 1. Left: Locally refined G 1 continuous
surface. T-junctions of the parameter domain
may occur. Thus coarse patches may be adja-
cent to several finer patches. Right: Degrees
of freedom of the refined patches serve to fit
finer details.

G1 continuity. The resulting surface is overall G1 continu-
ous. The adaptive refinement process ensures automatically
that the new refined surface patches join with G1 continu-
ity the remaining surface patches around. As a consequence,
fitting the surface to the data is performed by a sparse least
squares minimization without any constraint.
Correspondence problem.The correspondence problem is
solved in several steps. First a base mesh is constructed via
topology preserving mesh simplification. It serves as para-
metric domain. The fine mesh is then partitioned by com-
puting boundary curves corresponding to the edges of the
base mesh. We use a Dijkstra algorithm to find an initial tri-
angle strip together with a curve smoothing algorithm [4] in
order to stretch the resulting curves. Each triangular domain
of the fine mesh is then parameterized over the base mesh
following Desbrun et al. [8] and using [10] for smoothing.
Arbitrary topology. The method works for manifold
meshes of arbitrary topological type.

2. Related Work

Fitting smooth surface of arbitrary topology has been
proposed for different surface representations. We will dis-
cuss them in this Section by emphasizing the difference to

our method. Furthermore let us state that technical smooth-
ness in form of G1-continuity as well as visual pleasant
smoothness is an essential requirement for obtaining high
quality and manufacturable surfaces. Our fitting method has
to be placed into that context.
Most recent work is related to three types of smooth sur-
faces, all capable to deal with arbitrary topologies: subdivi-
sion surfaces, algebraic surfaces and parametric piecewise
polynomial surfaces.

Hoppe et al. [18] adapted Loop’s subdivision scheme
to fit an unorganized set of points by a piecewise smooth
surface, thus able to model sharp features. Later Lee et
al. [22] used subdivision surfaces with displacement maps.
Halstead et al. [16] described interpolation with Catmull-
Clark surfaces. Fitting Catmull-Clark surfaces using quasi-
interpolation has been introduced by Lee et al. [25]. All
methods support surfaces of arbitrary topological type by
nature. They work either with arbitrary quad meshes or
with triangle meshes. Whereas subdivision surfaces are well
suited for animation and display purposes, they are not com-
monly supported within current CAD modeling systems.

Fitting G1 piecewise algebraic surfaces of arbitrary
topology from an unorganized set of points was described
by Bajaj et al. [2] and Moore and Warren [27]. A sur-
face patch is obtained by fitting an algebraic patch to
the data within a tetrahedron. The methods are adap-
tive. The resulting surface is piecewise implicit.

The most popular smooth surface representations are
tensor product NURBS. Many previous works exist for
gridded data as well as for irregular data. let us focus only
on techniques that are related to fitting G1 surfaces of ar-
bitrary topological type. Eck and Hoppe [11] described a
method to fit irregular meshes (constructed from unorga-
nized data using [19, 20] with automatically placed bicu-
bic Bézier patches. G1 continuity is achieved by using Pe-
ters’ surface splines [29] which are a suitable representation
to model surface of arbitrary topology. An extra step is nec-
essary to transform a triangular mesh into a quad mesh. The
method is adaptive in the sense that any quad mesh can be
locally subdivided.
Our method in contrast works directly with triangle meshes,
since the surface is defined by piecewise polynomial trian-
gular B́ezier patches. By nature triangular patches are par-
ticularly well adapted to represent arbitrary topologies. Fur-
thermore we don’t require the mesh to be valid after local
refinement (see Section 3.5).

Krishnamurthy and Levoy [21] fit B-spline surfaces of
arbitrary topological type. The method uses displacement
maps for capturing fine details. Thus it is more intended
to display purposes. Furthermore it needs user interaction
to delineate the patch boundaries. Very little discussion
is given on how to join the B-spline patches with G1-
continuity in a non-tensor product configuration. Stitching



together B-spline patches using geometric continuity con-
ditions [12] is not a trivial problem, in particular at vertices
of valence6= 4. Shi et al. [34] bypass that problem by us-
ing approximate G1 conditions.
Our approach guarantees automatically a G1 surface con-
struction through all levels of local refinement. No extra lin-
ear or non-linear constraints need to be fulfilled during the
adaptive fitting process.

3. Surface Fitting

The input of the fitting algorithm consists of a dense ir-
regular triangular meshMD = (KD, V ) of arbitrary topol-
ogy (D stands for dense).KD is a simplical complex de-
termining the topological type of the mesh. It specifies the
connectivity of the vertices, edges and faces of the mesh.
V = {v1, . . . , vnD

} ⊂ IR3 are the vertex positions deter-
mining the shape of the mesh in space. The output is a tri-
angular smooth G1 continuous piecewise polynomial sur-
faceS of degree 5 fitting the fine mesh. The fitting pipeline
consists of 5 successive steps which will be described in de-
tail in this Section.

When fitting a parametric surface the correspondence
problem has to be solved. It consists in parameterizing the
dense polygonal mesh over a parameter domain by associ-
ating a domain point to each data point. For surfaces of arbi-
trary topology several strategies are possible. Eck et al. [10]
propose a fully automatic one-stage process. A coarse do-
main mesh together with an initial parameterization is con-
structed using Voronoı̈ tiles obtained by region growing and
the use of harmonic maps. A multiresolution parameteri-
zation of polygon meshes is described by Lee et al. [23]
thus constructing a hierarchy of meshes and a parameter-
ization via mesh simplification. Krishnamurthy and Levoy
[21] first compute boundary curves delineating surface re-
gions, and then parameterize these regions over a gridded
domain. This method is not automatic; it requires the user
to paint manually these boundary curves. In order to make
profit from some recent advances in mesh parameterization
[8] we proceed in two stages. First we compute a coarse
mesh which serves as the parameter domain (Sect. 3.1) then
we map the edges of the coarse mesh and smooth them on
the coarse mesh (Sect. 3.2). A further advantage is that the
process is automatic but allows for user interaction if it’s de-
sired.

The fitting process itself is adaptive. It starts by com-
puting an initial fitting spline surface over the coarse mesh
using [15]. A piecewise triangular G1 continuous polyno-
mial surface is thus constructed that interpolates the vertices
of the coarse mesh. To each triangular region of the fine
mesh corresponds a triangular patch interpolating the three
corner vertices, and approximating the interior by means
of least squares. Details are then added locally by refin-

ing the smooth surface iteratively and by recomputing the
degrees of freedom. This adaptive refinement and approx-
imation process stops when the data is fitted up to a user-
defined precision. The surface property of being locally
refinable while always guaranteeing G1-continuity every-
where makes it particularly appropriate to be used for adap-
tively surface fitting of models with many details.

3.1. Compute coarse meshMC

We need a coarse mesh, also calledbase mesh, for two
reasons. First,MC will serve as parametric domain for the
dense meshMD. Second,MC serves to construct the ini-
tial smooth surfaceS0 that will then be successively refined.
MC = (KC , VC), whereVC ⊂ V andKC is of same topo-
logical type asK.

In order to construct the coarse mesh, we make use of
a mesh decimation algorithm based on edge collapse. For
each edge we estimate an error induced by its collapse fol-
lowing [14]. Other cost (error) functions can be found in
[20, 17]. A priority queue implemented as a heap is used
to select iteratively the candidates for an edge collapse with
lowest cost. After each mesh transformation by edge col-
lapse the priority of edges in the neighbourhood are up-
dated. Any other mesh simplification technique can be used
(suppression of vertices or faces) but it is important to pre-
serve the topological type of the dense meshMD. The mesh
decimation stops when a user-defined number of faces is
reached. The right number of faces depends mainly on the
geometric complexity of the model. The trade-off we ob-
served with our fitting algorithm is the following. Remem-
ber that the coarse meshMC will be interpolated by a ini-
tial smooth surface. That surface will then be refined lo-
cally in order to reproduce all fine details of the input data.
If MC is too fine, the initial smooth surfaceS0 already fits
well and no local refinements are necessary. This means that
there would probably be some regions where less triangles
would be sufficient for the same precision. If in the oppo-
site the coarse mesh is too coarse, too much global refine-
ments of the smooth surface would be necessary, thus slow-
ing down the convergence rate of the fitting process. For the
examples shown in Section 4 we took as coarse mesh for
the bunny one with 110 faces, and one with 70 faces for the
Max Planck head, see Figures 7 and 8.

3.2. Compute boundary curves

In order to parameterize the input data one needs to par-
tition the dense mesh into regions corresponding to the tri-
angular faces of the parameter domain (the coarse mesh).
When fitting these data by a smooth surface each region
is initially approximated by a triangular polynomial patch.
To delineate these triangular regions a network of bound-



ary curves is computed. These curves lie on the dense mesh,
thus they are polygonal curves. Since the coarse mesh ver-
tices are a subset of the dense mesh vertices, the end points
of each boundary curve are already known. The curves are
then computed to link these extremities by carrying out the
following two steps:
• First rough boundary curves are computed as shortest
paths in a weighted graph. This graph is defined by the input
mesh. Its nodes are the mesh faces, its unoriented weighted
edges correspond to the edges in the mesh that have two
neighbouring faces. The weight corresponds to the sum of
distances from the barycenter of each face to the mid point
of the common edge. The result of Dijkstra is therefore a
strip of triangles from which we derive a rough boundary
curve by joining the edge mid-points of these faces, see Fig-
ure 2(b).
• The second step consists in straightening these rough
curves iteratively [4], see Figure 2(c).

3.3. Compute parameterization

First the boundary curves computed in the previous sec-
tion are parameterized over the edges of the coarse mesh
using chordal parameterization. Then aninitial global pa-
rameterization is obtained by parameterizing each trian-
gular region of the dense mesh over a unit triangle with
discrete conformal mapping following Desbrun et al. [8].
These individual region parameterizations match the bound-
ary curve’s parameterization. To each vertex of the dense
mesh corresponds now a pair of parameters, i.e. by affine
transformation of the parameter domain.

A uniform sampling is then achieved by computing the
pre-image of a set of uniformly distributed points in the pa-
rameter domain. Note that this step is not absolutely neces-
sary since the fitting can be performed as well on the non-
uniform sample resulting from the initial parameterization.
However this step is important in order to speed up the fit-
ting computations. The reason is that the fitting involves a
least squares approximation of type‖Ax − b‖2, wherex is
the vector of unknown spline control points,b is the vec-
tor containing the input data. The matrixA depends on the
parameterization. In the case of non-uniform sampling the
matrix has to be recomputed for each patch, while with uni-
form samplingA needs to be computed only once.

However, parameterizing each region individually leads
to distortions of the iso-parametric lines across the bound-
ary curves, see Figure 2(d). We thereforeimprove the
global quality of the parameterization by first smoothing
the initial parameterization iteratively across all boundary
curves similar to [10] and then sampling it uniformly. In
fact a new boundary curve is computed by parameterizing
two adjacent regions onto the unit square and by taking the
image of the square diagonal as new boundary curve. This

(a) Base meshMC (b) Minimal Path curves

(c) Straightened curves (d) Uniform sample

(e) Smoothed curves (f) Uniform sample MR with
boundary curves

Figure 2. Parameterization of the Stanford
bunny.

smoothing step is applied to all boundary curves in an ar-
bitrary order. The resulting uniform resampled dense mesh
is denotedMR = (KR, P ), whereP = {p1, . . . , pnR

} are
the mesh vertices, andKR of same topological type asKD.

3.4. Fitting the initial surface S0

Once the correspondence problem is solved an initial
smooth surfaceS0 is constructed over the coarse meshMC

fitting the input data.S0 is composed of triangular patches
which are computed in one-to-one correspondence to the
faces ofMC and which interpolate the verticesVC . At
this stage one can imagine to use any method of smooth
interpolation of triangulated data of arbitrary topological
type using parametric surface patches, see Lounsbery et al.



[26]. However, all these schemes are designed to interpolate
sparse data. They are not locally refinable and they don’t
have sufficient degrees of freedom in order to fit dense data
without increasing unreasonably the number of patches.

We use instead the previous work of Hahmann and Bon-
neau [15] for fitting the initial smooth surfaceS0. This
method interpolates the coarse meshMC with G1 conti-
nuity. It is based on a one-to-four split of the domain tri-
angles thus producing four quintic Bézier patches in corre-
spondence to each face ofMC . Hence several degrees of
freedom allow to fit dense data with a minimum of patches.
Furthermore it is local. But the main property that is distin-
guishing it from all previous Clough-Tocher split methods
described in [26] islocal refinement. Once the initial fitting
surface computed overMC details can be added by local re-
finement and local fitting.

Su

Sv

Sw

u

v

w

Figure 3. Left: parameter domain; right:
macro-patches with tangent directions.

3.4.1. Review of the triangular spline methodLet us
briefly recall the main issues of that scheme by emphasiz-
ing on the free parameters. All computational details of that
scheme can be found in [15]. From a coarse meshMC a
smooth piecewise triangular spline is constructed interpo-
lating the mesh verticesVC . It is parameterized over the
coarse mesh. Each triangle is mapped to a group of four
Bézier patches of degree five. This group is referred to as
a macro-patchReferring to the notations of Figure 3, the
tangent plane continuity constraint between the two macro
patches is written:

Φ(u)
∂S

∂u
= µ(u)

∂S

∂v
+ ν(u)

∂S

∂w
. (1)

Equation (1) states that the three partial derivatives along
and across the common curve between two macro patches
are coplanar, thus defining a continuous tangent plane.Φ, µ

andν are scalar functions. They are chosen to be linear, that
is the lowest possible degree. (1) has to be fulfilled along
all edges of the input mesh. At a mesh vertex this leads to
the so-called vertex consistency problem, which states in
essence that the derivatives of the surface must be consis-
tently chosen [7]. The control points of a macro patch are

illustrated in Figure 4. Different color coding correspond to
different steps in the algorithm. The surface is built in four
consecutive steps. We briefly elaborate these four steps fo-
cusing on the salient features, in particular the description
of the free parameters.

Figure 4. Control points of a macro-patch
which is composed of four quintic B ézier
triangles. The control points symbolized by
circles are dealt with by step (S1). Squared
control points are computed by steps (S2)
and (S3). Step (S4)involves the control points
symbolized by triangles.

(S1) Vertex consistency.For a vertex of orderN , the free
parameters are theN first derivatives at the vertex in the di-
rection of each edge, and theN twists (mixed second partial
derivatives) of the patches joining at that vertex. From these
free parameters, the remaining second derivatives along the
edges are computed, and the scalar functionsΦ, µ andν

are fixed. Changing these parameters affects theN macro-
patches joining at the vertex. In Figure 4, the free param-
eters correspond to the control-points symbolized by solid
discs, while the circles symbolize the control-points corre-
sponding to the second derivatives.
(S2) Boundary curves.The boundary curves are therefore
piecewise quintic curves, this is the lowest possible degree
fulfilling the continuity constraints. It turns out that once the
derivatives at the vertices are consistently chosen by (S1)
the boundary curves are completely determined, hence no
free parameters in step (S2).
(S3) Cross derivatives.In order to ensure the tangent
plane continuity between the macro-patches, the cross par-
tial derivatives∂S

∂v
and ∂S

∂w
have to be computed. In terms

of the B́ezier patches, these amounts to compute the first in-
ner row of B́ezier control points on each side of the bound-
ary curves. There are no free parameters in step (S3). In Fig-
ure 4, the control-points computed by step (S2) and (S3) are
shown as squares.
(S4) Continuity inside a macro-patch.In this step, for
each macro-patch, there remain 15 unknown Bézier con-
trol points, symbolized as triangles in Figure 4. Six of these



free parameters influence
N first derivatives and affect all macro-patches
N twists at each around that vertex
interpolated vertex
of degreeN
6 control points inside affect a single
each macro-patch macro-patch

Table 1. The free parameters controlling the
interpolating surface, and their influence on
the surface. These parameters are the un-
knowns in the fitting process.

points can be freely chosen (the solid triangles), the 9 oth-
ers are computed such as to ensure C1-continuity between
the 4 B́ezier patches of the macro-patch. Changing one of
these 6 free parameters affects a single macro-patch. Table
1 summarizes the free parameters and their region of influ-
ence on the surface.

3.4.2. Fitting S0 A coarse meshMC and a uniform sam-
pleMR of target points{pi} of the dataset have been com-
puted. Based on this mesh, an initial surfaceS0 is now con-
structed with the previously exposed method. Since several
free parameters (see Table 1) are available, their optimal
values for fitting the samples are found such that the sum of
the squared distances ofS0 to the target pointspi are min-
imized. Since the boundary curves of the macro patches of
S0 depend non-linearly on some of the free parameters (see
[15], p. 102) a global minimization would lead to a time-
consuming non-linear optimization. Instead we split the op-
timization into two linear problems which are successively
solved.
(a) the first derivatives of the patch boundary curves are
estimated by computing quintic curvesc(t) approximating
the polygonal boundary curves ofMR (see Sect. 3.2, 3.3,
and Fig. 3(f)). Remember that these curves delineate the tri-
angular regions of the re-sampled input dataMR that have
to be approximated by the macro-patches. We will call the
vertices of these regionstarget points. The unknown con-
trol points ofc(t) are obtained by solving

min
∑

i

λi‖pi − c(ti)‖
2 (2)

wherepi denote the target point lying on the correspond-
ing boundary curve ofMR with parameter valueti. The
weightsλi > 0 are chosen to be more important near the
end points, since the middle of these curves will be met ex-
actly later on when locally refining the surface. It is clear
that these curves can’t be taken as boundary curves ofS0

since they don’t satisfy the G1 conditions, but they provide
good estimates for the first derivatives (free parameters) of

the boundary curve ofS0 at the patch vertices. Furthermore,
the curvesc(t) have been computed individually, there is no
reason for the derivatives at a common vertex to be copla-
nar. Thus the projection onto a mean plane is finally taken
as optimal input forS0.
(b) Since the surfaceS0 depends linearly on the free twists
and inner control points (table 1) and sinceS0 is G1 contin-
uous by construction, the optimal values are thus obtained
by a simple unconstrained least squares fitting minimizing

E = λEdist + (1 − λ)Efair, λ ∈ [0, 1], (3)

whereEfair is a linearized fairness functional, and

Edist =
∑

i

‖pi − S0(ui, vi)‖
2.

pi denote the target points interior to all triangualr regions
of MR wit (ui, vi) as parameter value.

The unknowns of (3) are the free control points of the
macro patches ofS0 corresponding to the free parameters
(3 twists and 6 inner control points).

3.5. Adding details

The initial fitting surfaceS0 interpolating the coarse
mesh does generally not present all the details of the sample.
The precision of the fitting surface can be measured by com-
puting the maximum error (distance) between the sample
points and the surface patch. To reduce the error one needs
to increase the number of degrees of freedom by increasing
the number of surface patches. One can either globally sub-
divide the coarse meshMC , fit again and re-iterate. But this
would globally increase the number of patches even where
the error tolerance is already reached. Or better, one can
adaptively refine the mesh locally where the error is high,
fit again and re-iterate, see Figures 7(c), (f) and (i). In sev-
eral previous works, like [11, 2], adaptive fitting has been
performed by subdividing locally the coarse mesh followed
by some local re-fitting. But the sudivided mesh must re-
main a valid mesh (i.e. a 2-complex manifold).

We instead introduce an adaptive fitting scheme which is
based on local surface refinements. The surface is refined lo-
cally by 4-splitting a pair of adjacent triangles in the coarse
mesh, and correspondingly compute new surface patches.
These new surface patches join with G1-continuity the re-
maining coarser surface patches. The additional degrees of
freedom are used to better fit the input data. Note that in
the present approach no particular attention has to be paid
to the validity of an underlying mesh. T-junctions may oc-
cur in the parameter domain, so that coarse surface patches
are adjacent to several finer patches along a common bound-
ary curve, see Figure 1.

The main reason for using [15] as basic surface repre-
sentation (Section 3.4) is that this triangular interpolant al-
lows for such local surface refinement: It has been shown



in [39] that one local surface refinement is obtained by per-
forming the following steps, illustrated in Figure 5:

Figure 5. Local surface refinement.

• Two neighbouring patches are subdivided by four-
splitting their domain triangles. The highlighted area
in Figure 5(a) maps to a region that is originally com-
posed of six triangular B́ezier patches. These Bézier
patches are replaced by six macro patches computed
by applying locally the same triangular interpolant.

• The construction of the triangular surface ensures that
the new macro patches join the remaining surface with
G1 continuity.

• The degrees of freedom which are no longer available
from the original surface are the 6 inner control points
of the two original macro patches.

• The newly created degrees of freedom comprise 6
inner control points for each of the six new macro
patches, 6 first derivatives and 6 twists related to the
newly inserted vertex of valence 6, and the position of
that vertex. These new degrees of freedom are illus-
trated in Figure 6. The other first derivatives and twists
corresponding to the 6 outer vertices of the new macro
patches are fixed such as to ensure G1 continuity with
the unchanged surface around. Figure 5(c) illustrates
the modification of the position of the central vertex.

• The newly inserted vertex is set to interpolate the cor-
responding sample point. All other new degrees of
freedom are computed by minimizing (2) and (3) lo-
cally in order to decrease the error.

The adaptive fitting process therefore works as follows:
Given the initial fitting surfaceS0 a locally refined fitting
surfaceS1 is computed by refining all faces that don’t meet
the given error threshold. Only the newly inserted surface
patches ofS1 are candidates for further refinement, since
all other already meet the threshold. When the patches of a
current level are done, all patches of the finer level are con-
sidered, an so on. Figure 9 shows the result of adaptive sur-
face fitting for the Stanford bunny and Max Planck head.

Figure 6. Additional free parameters are in-
troduced by one surface refinement step.
Left: first derivatives, twist, and position of
new vertex. Right: 6 inner control points per
macro patch.

4. Results

Two different models are used to illustrate the hierarchi-
cal surface fitting, the Stanford Bunny and the Max Planck
Head datasets1. Several reconstructions with different lev-
els of detail are computed based on these models, see Fig-
ure 7 and 8. The corresponding error measures are put in Ta-
ble 2. It can be noticed that even the base surfaces with 110
and 71 faces give quite good rough approximations since
the max error is less than 5%, see Fig. 7(b,c), 8(b.c). Global
features are well captured at the coarse level, but the initial
surface is not able to represent all the fine details. Therefore
several refinements are necessary. Two successive levels are
shown in Figure 7(e) and 7(h). The mean errors are divided
at least by two for each new level of refinement. Details are
clearly added from global to local: in Figure 7(e) bumps of
the fur appear that are more precise in Figure 7(h). In Fig-
ure 7(k), the approximation error is shown. Maximum er-
rors appear to be localized around high gradient areas of the
surface. The histograms in Figure 10 and 11 underline this
observation. It is therefore necessary to fit adaptively.

In Figure 9 the results of adaptive fitting are presented.
The same base meshes as in Fig. 7(a) and 8(a) have been
used. Starting with the initial surface (level 1) only two lev-
els of local surface refinements are necessary to fit the mod-
els with approximately the same max error as in the case
of global refinements, see Table 2. The max error is lower
than 1.5% in both cases. The number of faces can be notice-
ably reduced, it is respectively 653 and 446 for the bunny
and the Max Planck head instead of110 · 42 = 1760 and
71 · 42 = 1136. The Max Planck head particularly benefits
from this local refinement with large patches on the fore-
head but fine patches around high detail areas like the eyes.
The ability of the present method to 4-split surface patches
locally, that allows coarse surface patches to join several
finer surface patches along a common boundary (see Fig-

1 Thanks to the Stanford Computer Graphics Laboratory and the Max-
Planck-Institut f̈ur Informatik for providing the datasets.



Model Bunny Head
#faces 69473 47082
#faces of Coarse Mesh 110 71
Max Error at level 1 4.25 % 3.19 %
Max Error at level 2 2.86 % 2.11 %
Max Error at level 3 2.10 % 1.12 %
Mean Error at level 1 0.39 % 0.44 %
Mean Error at level 2 0.17 % 0.21 %
Mean Error at level 3 0.07 % 0.09 %

Table 2. Error measures for reconstructed
models.

ure 9), is clearly an advantage. All surfaces are overall G1

continuous, even along the T-junction boundary curves and
vertices. It allows to refine the surface precisely only where
it’s needed for better fitting and thus minimizes the num-
ber of patches for a fixed error threshold.

Acknowledgements

The work was partially supported by the European Commu-
nity 6-th framework programm, with the Network of Excel-
lenceAim@Shape(http://www.aimatshape.net).

References

[1] M. Attene and M. Spagnuolo. Automatic surface reconstruc-
tion from point sets in space.Computer Graphics Forum,
19(3):457–465, 2000.

[2] C. L. Bajaj, F. Bernardini, and G. Xu. Automatic recon-
struction of surfaces and scalar fields from 3d scans. InPro-
ceedings of the 22nd annual conference on Computer graph-
ics and interactive techniques, pages 109–118. ACM Press,
1995.

[3] J.-D. Boissonnat. Geometric structures for three-dimensional
shape representation.ACM Trans. Graph., 3(4):266–286,
1984.

[4] G.-P. Bonneau and S. Hahmann. Smooth polylines on poly-
gon meshes. In G. Brunnett, B. Hamann, H. Müller, and
L. Linsen, editors,Geometric Modeling for Scientific Vi-
sualization, Mathematics and Visualization, pages 69–84.
Springer, 2003.

[5] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell,
W. R. Fright, B. C. McCallum, and T. R. Evans. Recon-
struction and representation of 3d objects with radial basis
functions. InProceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 67–76.
ACM Press, 2001.

[6] B. Curless and M. Levoy. A volumetric method for build-
ing complex models from range images.Computer Graph-
ics, 30(Annual Conference Series):303–312, 1996.

(a) Base mesh (b) Initial surface (c) Init. surface patches

(d) Level 2 mesh (e) Level 2 surface (f) Level 2 patches

(g) Level 3 mesh (h) Level 3 surface (i) Level 3 patches

(j) Level 1 Er-
ror

(k) from behind(l) Level 2 Er-
ror

(m) from be-
hind

Figure 7. Stanford Bunny Reconstruction.

[7] T. D. DeRose. Necessary and sufficient conditions for tan-
gent plane continuity of b́ezier surfaces. Comput. Aided
Geom. Des., 7(1-4):165–179, 1990.

[8] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameteri-
zations of surface meshes, 2002.

[9] Y. Duan, L. Yang, H. Qin, and D. Samaras. Shape reconstruc-
tion from 3d and 2d data using pde-based deformable sur-
faces. InEuropean Conference on Computer Vision, pages
238–251, 2004.

[10] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Louns-
bery, and W. Stuetzle. Multiresolution analysis of arbi-
trary meshes.Computer Graphics, 29(Annual Conference
Series):173–182, 1995.

[11] M. Eck and H. Hoppe. Automatic reconstruction of b-spline
surfaces of arbitrary topological type. InProceedings of the
23rd annual conference on Computer graphics and interac-
tive techniques, pages 325–334. ACM Press, 1996.

[12] G. Farin.Curves and surfaces for CAGD: a practical guide.
Morgan Kaufmann Publishers Inc., 2002.



(a) Base mesh (b) Initial surface (c) Init. surface patches

(d) Level 2 mesh (e) Level 2 surface (f) Level 2 patches

(g) Level 3 mesh (h) Level 3 surface (i) Level 3 patches

(j) Level 1 Error (k) Level 2 Error (l) Level 3 Error

Figure 8. MaxPlanck Reconstruction.

[13] D. R. Forsey and R. H. Bartels. Surface fitting with hierarchi-
cal splines.ACM Transactions on Graphics, 14(2):134–161,
1995.

[14] M. Garland and P. Heckbert. Surface simplification us-
ing quadric error metrics.Computer Graphics Proceedings
(SIGGRAPH 97), 1997.

[15] S. Hahmann and G.-P. Bonneau. Polynomial surfaces inter-
polating arbitrary triangulations.IEEE Transactions on Vi-
sualization and Computer Graphics, 9(1):99–109, 2003.

[16] M. Halstead, M. Kass, and T. DeRose. Efficient, fair inter-
polation using catmull-clark surfaces. InProceedings of the
20th annual conference on Computer graphics and interac-
tive techniques, pages 35–44. ACM Press, 1993.

[17] P. Heckbert and M. Garland. Survey on polygonal surface
simplification algorithms. InCourse notes of Siggraph 97.
ACM SIGGRAPH., 1997.

[18] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin,
J. McDonald, J. Schweitzer, and W. Stuetzle. Piecewise

(a) Bunny with an error< 1.5% (b) 653 surface patches

(c) Max Planck with an error<
1.5%

(d) 446 surface patches

Figure 9. Adaptive fitting.

smooth surface reconstruction.Computer Graphics, 28(An-
nual Conference Series):295–302, 1994.

[19] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized points.
Computer Graphics, 26(2):71–78, 1992.

[20] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimization. InProceedings of the
20th annual conference on Computer graphics and interac-
tive techniques, pages 19–26. ACM Press, 1993.

[21] V. Krishnamurthy and M. Levoy. Fitting smooth surfaces
to dense polygon meshes.Computer Graphics, 30(Annual
Conference Series):313–324, 1996.

[22] A. Lee, H. Moreton, and H. Hoppe. Displaced subdivision
surfaces. In K. Akeley, editor,Siggraph 2000, Computer
Graphics Proceedings, pages 85–94. ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, 2000.

[23] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and
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