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Abstract

We present a method for deforming piecewise linear 3D

curves with constant length constraint. We show how this

constraint can be integrated into a multiresolution editing

tool allowing an intuitive control of the deformation’s extent

and aspect. The constraint is enforced following two steps.

A first step consists in approximating the initial length by

modifying the multiresolution decomposition at some spe-

cified scale. In a second step the constraint is exactly en-

forced by constrained minimization of a smoothness crite-

rion. This process then provides the core of an integrated

wrinkling tool for soft tissues modelling. A curve on the

mesh is deformed, providing a deformation profile which is

propagated in a user-defined neighbourhood on the surface.

1 Introduction

Multiresolution (MR) analysis has received considerable

attention in recent years in many fields of geometric

modeling, computer graphics and visualization. It provides

an efficient representation of complex functions at multiple

levels of detail. Thus convenient handling of geometrical

objects is possible. General multiresolution editing or

deformation techniques for parametric curves have been

explored in detail by Finkelstein and Salesin [13], Gortler

and Cohen [15], Elber and Gotsman [11] using B-splines.

In contrast, constrained multiresolution editing techniques

have not been explored so much in the past. However,

there are many application areas, including CAD/CAM,

computer graphics and computer animation, where de-

formations under constraints are needed. Constraint

enforcement offers additional control of a shape during the

modeling process. Constraining linear geometric proper-

ties, like position, normal and point tangent combined with

minimizing curve or surface energy [14, 6, 34] proves to be

an effective tool both for sculpting models and for animat-

ing real behaviours of objects. Some other works deal with

non-linear constraints, e.g. length preserving deformation

of Bézier curves [27], prescribing the length of rational

Bézier curves [29], and volume preserving deformation

of solids [28] and implicit surfaces [8]. None of these

works integrate constraints into multiresolution editing.

Only recently, MR editing of closed planar curves, coupled

with the constraint of enclosed area preservation has been

developed [10, 19]. In [5] a specific MR representation is

proposed for volume preserving surfaces. It is based on the

encoding volume elements between levels instead of basis

function coefficients. While area and volume are bi-linear

and tri-linear functionals, the length constraint in contrary

is non-linear. This is the reason why for example the MR

area preserving methods [10, 19] can’t be directly adapted

to the length. One of the purposes of the present paper is

therefore to show how the non-linear constraint of length

preservation can be incorporated into an MR editing tool.

Furthermore, the length constraint as well as constant

area or constant volume belongs to the traditional princi-

ples of animation [22]. For example in computer animation

of soft objects, where realistic deformations are required,

realism can be achieved thanks to physical-based models

[33, 7]. However, when low computation time has priority,

typically for real-time animations, it is quite advantageous

to mimic physical laws by some appropriated geometric

properties. Area or volume preserving deformations can

simulate inelastic material [28]. Length preserving defor-

mation can mimic nearly non-compressible or non-stretch

material like cloth [1, 9] or soft tissues. A characteristic

behaviour of soft tissues is to form wrinkles. Wrinkles ap-

pear and disappear in order to compensate length changes.

Therefore the second goal of the present paper is to handle

length preserving curves specifically in order to control the

generation of wrinkles through the MR representation when

two curve points get closer.

Several models dedicated to wrinkle generation have

been developped in the domain of computer graphics and

computer animation. The first work [2] introduced bump

mapping, that have often been used later on. The main



drawback of bump mapping is that it doesn’t modify the

geometry of the object. Later works [37, 3] deal with static

wrinkles for skin modelling which is significantly different

from the the problem of dynamic wrinkles this paper fo-

cuses on. Static wrinkles are present on the skin and they

don’t change when the skin is moving. In contrast, dynamic

wrinkles are the product of deformation of the tissues. They

typically appear and disappear to absorb the length changes.

Modelling dynamic wrinkles with geometric deformations

has been handled in [35, 37, 38] but all these methods re-

quire the ridges to be drawn by the user.

In [17] Hadap et al developped a method for simulat-

ing dynamic wrinkles on meshes. A displacement map is

built in order to preserve the surface area: the underlying

deformation of a coarse mesh is used for modulating pre-

defined wrinkle patterns. Though it is convincing for cloth

rendering it suffers drawbacks for a general use: the patterns

have to be drawn by the user, and the geometry is modified

through the displacement mapping extra layer.

Jing et al [20] presented a wrinkling tool for footwear

design. It is based on the propagation of a wrinkling profile

defined on the border of nurbs patches. The main drawback,

relatively to our aims, is a tesselation step that prevents this

method from being used for dynamic wrinkles. Moreover,

only one single deformation is possible because the initial

geometry is lost.

Larboulette and Cani [21] propose to create wrinkles at

different scales on a mesh by normal displacement. The

mesh is first projected on some mean-tangent plane. An

height-function is build on this plane by the propagation of

a 2-dimensional profile curve. Then this function weights

the normal displacement of the vertices. But the profile

is independant of the mesh’s geometry, leading to very

regular deformations. Moreover the projection on a plane

hinders the use on high-curvature regions.

The contribution of this paper is to provide a mul-

tiresolution editing tool for 3D piecewise linear curves

which allows to satisfy the non-linear constraint of length

preservation. Beside general deformations through select-

and-drag control points, the present paper focuses on a

particular type of deformation: the generation of dynamic

wrinkles in case of compressing the curve or part of it in

order to absorb the length changes. The approach is purely

geometric in the sense that the scale and frequency of the

generated wrinkles are not controlled by some physical

law, but by modifying curve coefficients at different

multiresolution levels. Then we show how it can be used

for general surface deformation through the extraction of a

profile curve on the surface. Our algorithm is then applied

to this curve. Eventually surface wrinkles are created by

propagating and by attenuating smoothly the wrinkles on

both sides of the curve.

The paper is organized as follows. Section 2 sets the

basic tools and details the length preserving deformation

method for 3D curves. In Section 3 the application to

surface wrinkling is presented. Eventually, Section 4

concludes and gives possible future works.

2 3D curves

In a classical MR editing environment the user chooses a

resolution level at which the curve is modified by displacing

one coarse control point. The shape of the curve changes

more or less locally depending on whether a low or a high

resolution level has been chosen.

The same procedure can be applied when integrating the

additional constraint of keeping the curve length constant

during deformation. The contribution of the present section

is a method for solving the length constraint in a MR editing

environment. It is in particular used for creating wrinkles

whose frequency can be controlled by the user through the

MR representation of the curve. This method is a general-

ization of the 2D method presented in [30], with a specific

solution of the 3D orientation problems.

In a first time we present the length measure and con-

straints in Section 2.1. It is followed in Section 2.2 by an

overview of the method whose two main steps are detailed

in Sections 2.3 and 2.4.

2.1 Curve length

Let c(t) = (x(t), y(t), z(t)) be a parametric curve ly-

ing in a space having a multiresolution analysis (see Ap-

pendix A for details). The length of c(t) is given by L =
∫

√

x′(t)2 + y′(t)2 + z′(t)2dt. The curves the present pa-

per is dealing with are continuous and piecewise linear. In

that case the length simplifies to

L =
N−2
∑

i=0

||cn
i+1 − cn

i ||2 ,

where (cn
i )i=0···N−1 = (xn

i , yn
i , zn

i )i denote the control

points at the finest level n following the notations of

Appendix A.

For the multiresolution representation of piecewise lin-

ear curves the scheme based on the Lazy wavelets [32] (see

Fig. 2) is used:

{

c
j
i = c

j+1

2i

d
j
i = c

j+1

2i+1
− 1

2
(cj+1

2i + c
j+1

2i+2
) .

(1)

where c
j
i and d

j
i are the coefficient of the MR curve at level

j (see Eq. 8).



The reasons for the particular choice of working only

with piecewise linear curves are threefold. First, the length

preserving deformation method presented here is intended

to work dynamically. Linear curves in contrast to higher

order polynomial curves simplify and accelerate the length

computations. Second, the particular effect of wrinkle

creation in response to the motion of control points is a

purely visual effect. Therefore, on a computer screen no

visual difference can be observed between displaying a

dense polygonal curve or a rasterized polynomial curve.

Third, the algorithm will be used in Section 3 to create

dynamic surface wrinkles, the surface being represented as

a fine triangular mesh. Thus all curves on the surface are

piecewise linear.

In the case of piecewise linear curves one can choose

either to keep the total length constant or to preserve the

length of each segment. We choose the second way because

of two main reasons:

• It ensures the balance between segment’s length that is

to say the control points don’t gather in a small part of

the curve.

• It allows the length constraints to be expressed in such

a way that computationally inefficient square roots

evaluations can be avoided.

The length constraints on a deformed curve defined by

Cn = (cn
i )T

i can now be reformulated as follows:

fi(C
n) = ∆x2

i +∆y2
i +∆z2

i −l2i = 0; i = 0, . . . , N−2 ,
(2)

where li is the reference length of segment [ci; ci+1] before

deformation, ∆xi = xi+1−xi, ∆yi = yi+1−yi and ∆zi =
zi+1 − zi.

2.2 Overview of the deformation method

We present here how to deform a 3D curve while en-

forcing the previous length constraints. The multiresolution

representation of the curve is at the center of this process.

It provides a friendly manipulating tool for the user: the

curve can be deformed globally through a few coarse con-

trol points while preserving the details. Moreover the use of

several decomposition levels allows to precisely control the

deformation scale at each step of the process.

Three levels of decomposition (corresponding to the

three columns in figure 1) are involved: the finest level

n, the editing level e and an intermediate level w corre-

sponding to the wrinkling scale if required by the length

constraint. Hence Cj denote the gathering of the MR co-

efficients cj ,dj ,dj+1, · · · ,dn−1 (see Appendix A). The

deformation process follows the loop of figure 1. It can be

iterated several times, basically at each time step in a select-

and-drag editing process. During the deformation process

the curve undergoes several transitions and thus admits dif-

ferent geometric stages i.e. different values of the MR co-

efficients. Four different stages of C are involved, labelized

by a different index:

• CR is the initial curve and also the reference curve for

the length;

• CD is the deformed curve, i.e. after it has been edited

and before any length preservation action;

• CA is the attracting curve that originates from the ex-

plicit length preservation step;

• CF is the final curve. It will replace CR for the next

deformation.
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optimization
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Figure 1. Editing loop: each box is a state

of the curve; each horizontal transition is a

change in the decomposition level; each ver-

tical transition is a modification of the curve.

Let us describe the role of each transition in figure 1:

• Decomposition: The curve is decomposed into Ce
R at

the level e, chosen by the user, following equation 1.

• Edition: The coarse control polygon Ce
R a level e

is modified by the user. The corresponding deformed

curve CD has not the same length as the reference

curve CR. Notice that the choice of level e determines

the extent of the deformation.

• Reconstruction: The deformed curve is then partially

reconstructed at level w (e ≤ w < n), chosen by the

user to be the wrinkling scale.

• Explicit length preserving: An attracting curve CA

is constructed. This curve is obtained by modifying

Cw
D at level w using the details in order to obtain a con-

trol polygon Cw+1

A whose edges have the same length

as the control polygon segments of CR at level w + 1.

This step is detailed in Section 2.4. Modifying details

at level w is equivalent to modifying corresponding

control points at level w+1. The choice of an interme-

diate level w different from e for length approximation

increases the number of coarse control points defining

the same portion of the curve. The closer to the high-

est level n is w, the higher is the number of control



points for length approximation, and the higher is the

frequency of the wrinkles in case of need. If the curve

is stretched w acts as a kind of stiffness parameter.

• Reconstruction: The attractive curve is then com-

pletely reconstructed by re-inserting the details of CR

at the levels w + 1, . . . , n. After reconstruction, the

length of CA is close to satisfy the length constraint.

Note that the use of a lazy wavelet scheme may lead to

some sharp features in the reconstructed curve. Hence

a smoothing is useful.

• Length preserving by smoothing: An optimization

method applied to CA leads to the final curve CF . It

precisely satisfies the length constraints, has a smooth

shape, and it is close to the attracting curve CA. This

step is described in Section 2.3.

2.3 Optimization step

We detail here the step of exact length enforcing via op-

timization. After presenting the basic ideas and the calculus

we explain why it is useful to combine it with the explicit

length preserving step.

Starting from CA, the problem to solve consists in length

enforcing, i.e. finding a final curve CF :
1. whose length is LR;

2. that is close to CA;

3. that is smoother than CA.

The length is a strong constraint while the closeness and

the smoothness are soft constraints. Hence let us choose

a minimization method constrained by the length. The

objective function contains a smoothness term preventing

the curve to have unwanted wriggles and a distance term

minimizing the distance to the attracting curve CA.

In variational design a physical model is used for the de-

scription of a ”smooth” or a ”fair” curve or surface [25, 36].

The most widely used fairness criteria originate from the

observation that the shape of a thin elastic beam or a thin

plate under deformation which minimizes the bending en-

ergy is always smooth, i.e. has a visual pleasing shape.

Since the bending energy for a parametric curve, EB =
∫

κ2(t)dt, is a non-linear functional, it is common to use

instead the linearized version [12, 4]:

EB =

∫

|c”(t)|2dt =

∫

x”(t)2 + y”(t)2 + z”(t)2dt .

Both expressions are identical if |c′(t)| ≡ 1.

In the case of a piecewise linear curve, a discrete ver-

sion is derived from a finite difference approximation of the

derivatives:

E(X,Y, Z) =
∑N−2

i=1
‖ 1

4
(ci−1 − 2ci + ci+1)‖

2

= 1

2
(XT HX + Y T HY + ZT HZ),

where H is a banded matrix and X, Y, Z are the coordinate

vectors of C.

Besides we want the distance to CA to be minimal.

Hence we introduce a second term in the objective function,

defined as the quadratic distance between C and CA:

D(X, Y, Z) = ‖X − XA‖
2 + ‖Y − YA‖

2 + ‖Z − ZA‖
2 .

The problem we aim to solve is now the following optimiza-

tion problem:

arg min { (1 − β)E(X, Y, Z) + βD(X, Y, Z) }

subject to fi(X, Y, Z) = 0 , i = 0, . . . , N − 2 ,
(3)

where the constraints fi are defined in Eq. 2 (Section 2.1).

0 ≤ β ≤ 1 is a scalar value which balances between a

smoother curve and a curve closer to CA. Similar energy

functional have been used in [18].

With the technique of Lagrange multipliers [16], the

minimization problem is restated to finding a stationary

point of the following function:

g(X, Y, Z,Λ) = (1 − β)E + βD +

N−2
∑

i=0

λifi

where Λ = (λ0, . . . , λN−2)
T is the vector of Lagrange mul-

tipliers.

The length constraints are quadratic expressions. Since

minimizing a quadratic cost function subject to quadratic

constraints is costly and since one of our objectives is to

provide a fast algorithm, let us approach the length con-

straints fi by using linearized constraints f̃i instead. f̃i is

the Taylor expansion of fi with respect to ∆xi, ∆yi and

∆zi in the neighbourhood of ∆xA
i , ∆yA

i and ∆zA
i . Hence

one gets

f̃i = 2∆xA
i ∆xi − (∆xA

i )2 + 2∆yA
i ∆yi − (∆yA

i )2

+2∆zA
i ∆zi − (∆zA

i )2 − l2i .

Assuming that the approximation of fi by f̃i holds, the

problem can be restated as solving:

−→
∇ g̃ = 0 , where

g̃(X, Y, Z,Λ) = (1 − β)E + βD +
∑

λif̃i .
(4)

A symmetric square sparse system of linear equations has

to be solved:















(1 − β)HX + 2βX + 2∆XΛ = 2βXA

(1 − β)HY + 2βY + 2∆Y Λ = 2βYA

(1 − β)HZ + 2βZ + 2∆ZΛ = 2βZA

2∆T
XX + 2∆T

Y Y + 2∆T
ZZ = b

(5)



where bi = l2i + (∆xA
i )2 + (∆yA

i )2 + (∆zA
i )2 for i =

0 . . . N − 2,

and where ∆X , ∆Y and ∆Z are 2-banded matrices of size

N × (N − 1) containing ∆xA
i , ∆yA

i and ∆zA
i (see [30] for

details).

Let us note that the result is not exact for the length con-

straints due to the linearization of the length constraints. In

order to increase the precision, the solving is encapsulated

in a loop which iterates the system solving and replaces

(XA, YA, ZA) by (X,Y, Z) at each loop. Since the system

is very sparse iterative methods are efficient.

In order to validate the approximation of fi by the lin-

earized expression f̃i we have to ensure that ∆xi, ∆yi, ∆zi

are close to ∆xA
i , ∆yA

i , ∆zA
i . In other words the curve CA

must nearly satisfy the length constraints. Hence the choice

of CA is crucial. We explain in the next section how to find

a curve satisfying these conditions.

2.4 Expicit length preservation step for
3D curves

In this section we present a method computing in linear

time an attracting curve suitable for the optimization step

since it sufficiently approximates the length constraints.

Though based on the same idea as the 2D curve [30] we

will see that the 3D solution is more complex, involving the

intersection of two spheres and a plane instead of two cir-

cles.

There are three different curves involved in this section:

CR, the reference curve, CD, the curve deformed by the

user, and CA, the resulting curve that nearly satisfies the

length constraint and that therefore is a good starting curve

for the optimization of Section 2.3.

Suppose the user has modified the initial multiresolution

curve CR by displacing one control point at resolution level

e, 0 ≤ e < n, leading to CD which differs from CR only

in a localized portion. This classical multiresolution editing

operation generally doesn’t preserve the length of CR. But

in case of keeping the curve length constant one desired ef-

fect would be the generation of wrinkles at some scale w de-

pending on the object. In order to approximate the reference

length, the idea is to compute CA from CD by computing

new detail coefficients of level w. All other detail coeffi-

cients of level w + 1 up to n and all coarse coefficients (if

possible) of level w are kept fixed.

Let us explain this particular choice. The detail coeffi-

cients at level w are used because they encode the geomet-

ric information at that scale. Assume cw
i and cw

i+1 (see Fig.

2) have been moved closer by the user. A new detail dw
i is

computed such as the lengths l̃2i and l̃2i+1 equal the refer-

ence lengths. Hence the norm of dw
i increases, creating a

wrinkle at scale w. Through the choice of w the user con-

trols explicitly the wrinkling scale.

Fixing all other detail coefficients ensures that fine

details of the initial curve are preserved. To not modify the

coarse coefficients of CD at level w ensures that the global

shape of the resulting curve CA differs as less as possible

from CD, i.e. it respects as much as possible the user’s

original deformation.

w+1c2i=i
wc

w
id

cw+1
2i+1

cw
i+1=cw+1

2i+2
cw

i+2

d
w
i+1

cw+1
2i+3

2i+1l
~

2il
~

Figure 2. Interpolating scheme.

Let us now describe how in practice this idea has been

implemented. Let l̃i be the length of the control polygon

edges of the initial curve CR at level w+1. Then starting at

index i (corresponding to the coarse control point of CR that

has been modified by the user) the algorithm traverses all

indices in increasing order, computes for each coarse poly-

gon edge [cw
i , cw

i+1] a new value of the corresponding detail

coefficient dw
i and possibly modifies the coarse coefficients

cw
i of CA such that at level w+1, the length of the edges of

CR’s and CA’s control polygons match. In other words we

have to find the head of the vector dw
i : it lies in the intersec-

tion circle of the two spheres with centers cw
i and cw

i+1, and

with radii l̃2i and l̃2i+1. Moreover we want the new detail

to have the same orientation as the reference one relatively

to the coarse edge [cw
i , cw

i+1]. Hence the problem turns out

to intersect two spheres and a half-plane going through the

centers. The solution is detailed and illustrated in Appendix

B. It may occur that the spheres do not intersect:

• if one sphere is included in the other (caused by a large

compression): we equalize the radii while keeping the

total length l̃2i + l̃2i+1 constant;

• if the two spheres are distinct (caused by a large exten-

sion): we move cw
i+1 along the edge until the spheres

are tangent to each other.

The same procedure as above is applied symmetrically

to the other half of the curve, starting at index i and

traversing all indices in decreasing order.

Discussion:

• An important advantage of this method is that the re-

sulting curve CA is close to CD because their MR co-



efficients match whenever possible, except the details

at level w (level of expected wrinkles). That is to say

the curve CA follows as much as possible the modifi-

cation applied by the user.

• Let us recall the main condition for using the optimiza-

tion method efficiently: a starting curve nearly satisfy-

ing the length constraints. Thanks to the length preser-

vation at the scale w + 1, the reconstructed curve CA

(i.e. after adding back the fine details) has almost the

same length as the initial curve. Hence it can be used

as a good starting point for the second step (see Sec-

tion 2.3) in order to precisely approach the length con-

straint.

• Following this method, a main role of the previous op-

timization method, whose cost dramatically drops, is

to smooth the curve. It is useful since CA generally

may have sharp features.

3 Surfaces

Modelling inelastic soft tissues is a hard task because

it involves area preserving, length preserving and minimiz-

ing some energies on the surface. In this section we show

how the length preserving curve deformations presented in

the previous section can be used to mimic the dynamic be-

haviour of materials like skin or cloths. We take advantage

of the computational efficiency of the curve model in order

to generate wrinkles dynamically with an easy control on

the frequency and the extent.

The main idea of our proposal is to extract a curve on

the surface that will be deformed following the algorithm

of Section 2 and to re-inject it into the surface. The wrin-

kles are then propagated in a pre-defined neighbourhood of

this curve. The wrinkles are smoothly attenuated inside the

neighbourhood. The propagation is obtained by displacing

each vertex of the neighbourhood, depending on its distance

to the curve and on the curve’s nearest points. Though all

examples are given with manifold triangular meshes it can

be applied to any manifold mesh.

3.1 Curve extracting

The first step consists in extracting a curve defined as a

sequence of edges of the mesh. Hence we get a piecewise

linear 3D curve whose control points correspond to the ver-

tices of the mesh. Depending on the application several ex-

tracting methods are possible, including user defined curve,

shortest path between specified ends [24], intersection with

other objects, extracting ridges [26], etc.

Then the curve is deformed at constant length using the

MR method presented in Section 2. The deformed curve

thus defines a dispacement of the corresponding mesh ver-

tices. In order to create a surfacic deformation we have to

propagate these displacements on the mesh in a predefined

neighbourhood.

3.2 Propagation on the surface

Firstly we specify an area of influence defining the part

of the mesh that will be modified. In the literature, dif-

ferent appraoches to solve this problem have been used.

In [20] they use a geodesic distance on the surface. This

geometry-based approach is probably the most accurate but

it is much time consuming. Another possibility [21] is to

project the mesh on the tangent plane and to use the eu-

clidian distance, but this approach fails in high-curvature

regions. This is the reason why we choose the following

topology-based approach. Herein, we choose the region of

extend for the wrinkle propagation by selecting the vertices

at a uniformly bounded topological distance of the extracted

curve (Fig. 3). The topological distance between two ver-

tices is the minimal number of edges for all paths connect-

ing this two vertices. We define the area of influence as

the set of mesh triangles whose vertices have a topological

distance to a curve’s vertex less or equal than a specified

number. The choice of using topological distance is made

for efficiency reasons. Highly non-uniform meshes would

however require using geodesic distance instead of a topo-

logical distance.
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Figure 3. Propagation of the deformation.

Let us now explain how to compute the new position of

all vertices belonging to the area of influence so that the new

shape of the extracted 3D curve is propagated smoothly in-

side that area. Let v be a vertex (see Fig. 3) inside the

area. The corresponding vertex ṽ on the deformed surface

is obtained by ṽ = v + ~δv. The displacement ~δv has to

be defined. This vertex may have several closest points

on the curve (named v1, · · · ,vk) with respect to the topo-

logical distance. It means that there is a path from v to

each of them with topological length equal to the minimal

topological distance lv from v to the curve. Remember we

know the displacement vector of each curve point. The dis-

placement ~δv is defined as an average of ~δv1
, · · · , ~δvk

. But



Figure 4. Selected area and profile curve on the initial mesh (left); resulting small (middle) and large

(right) wrinkles on the back of the hand.

the edges of the mesh may have different lengths involv-

ing important differences between the geometric distances

‖v − v1‖, · · · , ‖v − vk‖. In order to overcome that prob-

lem the average is weighted by the inverse of the geometric

distance between the points and v:

~δv = a(lv)
(

k
∑

i=1

1

‖v − vi‖

)

−1
k

∑

i=1

1

‖v − vi‖
~δvi

, (6)

where a(l) is a transverse attenuation function making the

deformation more realistic. It must decrease from 1 for

lv = 0 (i.e. v belongs to the curve) to 0 for lv maximum

(i.e. when v is on the boundary of the selected area). In

our examples a is made up of a step a(l) = 1 for l small,

followed by a smooth cubic polynomial join.

A hard task when deforming surfaces is to prevent self-

intersections. Creating wrinkles may cause some when the

user prescribes a large compression. A simple heuristics

proved in practice to prevent most of the intersections be-

tween neighbouring wrinkles. It consists in slightly modify-

ing the explicit length preserving step (see Section 2.4): the

radii-equalizing technique is extended to hazardous cases,

i.e. when α < 0 or α > 1 (see Appendix B).

Furthermore, one could consider some alternatives to the

propagation around one single reference curve. One of them

consists in applying the method of Section 2 on several reg-

ularly spaced curves (according to the topological distance)

but it turns out to lack robustness.

3.3 Results

We present here examples of mesh editing that illustrates

the process previously presented. Once the mesh is loaded

and the deformation area is defined, the deformation pro-

cess works dynamically.

Figure 4 shows the wrinkling of a mesh. The initial mesh

(left) has 50 000 triangles and the selected area (blue/dark

area) has 1 400 triangles. The extracted curve (red) is

pinched by the user and the length is enforced following the

process of Sections 2 and 3. Two different values for w (see

Section 2.2) are used: w = 4 (middle) and w = 3 (right),

providing small and large wrinkles on the back of the hand.

It illustrates the control of the wrinkling scale thanks to the

MR representation. The propagation process automatically

creates realistic surface wrinkles.

Figure 5 shows the superposition of three deformations

(lower row). The initial surface (upper left) has 93 000 tri-

angles but only 13 000 triangles have been modified, cre-

ating several wrinkles around the cow’s neck (upper right).

This example illustrates the ability of our model to be inte-

grated into a surface designing tool.

4 Conclusion

We have first presented a method for length preserving

deformation of multiresolution 3D curves. It combines a

step of length approximating and a smoothing step via con-

strained optimization. The MR representation allows easy

editing and control of the deformation scale. This method

is then used for mesh wrinkling by extracting a deforma-

tion profile which is propagated on the surface. The whole

process works dynamically. It is illustrated on triangular

meshes.

Future works concern the adaptation of the method to

adaptative meshes. Refining the mesh on the wrinkling area

while keeping a coarse sampling on flat areas could improve

the results with minor computation overloading.
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Figure 5. Wrinkles around the neck. The initial mesh (upper row left) is wrinkled (upper row right)

trough three deformations (lower row).
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A Multiresolution curves

Let us briefly sketch the notation of the wavelet based

multiresolution analysis used here. For more details see

[23], [13], and [31]. Suppose we have a certain func-

tional space E and some nested linear approximation spaces

V j ⊂ E with V 0 ⊂ V 1 ⊂ · · · ⊂ V n. Let V n be

of dimension N . Since we are dealing with finite curves,

these spaces have finite dimension. Let V j be spanned

by a set of basis functions ϕj = [ϕj
1, . . . , ϕ

j
m]T , called

scaling functions. A space W j being the complement of

V j in V j+1 is called the detail space. Its basis functions

ψj = [ψj
1, . . . , ψ

j
N−m]T are such that together with ϕj they

form a basis of V j+1. The functions ψj
i are called wavelets.

The space V n can therefore be decomposed as follows:

V n = V n−1 ⊕ Wn−1 = V n−2
⊕n−1

j=n−2
W j

= · · · = V 0
⊕n−1

j=0
W j . (7)

A multiresolution curve is then defined as a parametric

curve c(t) = (cn)T (ϕn), element of V n, where cn is a

column of its N control points in R
3. Due to property 7

the same curve can be expressed in terms of the basis func-

tions of the different decompositions of V n, each of it cor-

responding to a certain resolution of the curve. The mul-

tiresolution curve at any level of resolution e ∈ [0, n], i.e.

element of Ve

⊕n−1

j=e Wj is then given by some coarse con-

trol points ce that form approximations of the initial control

polyline and by the detail coefficients de, . . . ,dn−1 as fol-

lows:



c(t) = (ce)T (ϕe)
+(de)T (ψe) + · · · + (dn−1)T (ψn−1) .

(8)

The filter bank algorithm [23, 13] is used to compute

the coefficients of all levels of resolutions from the initial

coefficients cn and vice versa.

The function so represented can be edited in an intu-

itive way: editing the coarse coefficients modifies the global

shape without affecting the details; in contrast editing the

details modifies the character of the object without chang-

ing its overall shape.

B Intersecting 2 spheres and a half-plane

O

F

O

O

F’

1 2

P

Figure 6. Intersecting two spheres.

The problem of section 2.4 can be stated as finding the in-

tersections of (see Fig. 6):

1. the sphere S1(O1, r1),

2. the sphere S2(O2, r2),

3. the plane P : (O1, O2, ~δ),

instantiated with O1 = cw
i , O2 = cw

i+1, r1 = l̃2i,

r2 = l̃2i+1 and ~δ = dw
i (detail of the reference curve CR).

Let us define d = dist(O1, O2) = ‖
−−−→
O1O2‖.

Assuming the intersection S1 ∩ S2 6= ∅ (i.e. r1 + r2 ≤ d
and |r1 − r2| ≤ d), that intersection is a circle C(O, r):

1. lying in a plane orthogonal to
−−−→
O1O2 (then also to P),

2. with center O ∈ (O1O2),

3. with radius r ≤ min (r1, r2).

Let (1 − α, α) be the homogenous barycentric coordi-

nates of O with respect to {O1, O2} i.e.
−−→
O1O = α

−−−→
O1O2

(see Fig. 7).

Applying Pythagorean theorem in the triangles (O1, O, F )

O

O O

r
r r

2

1

1

2

α
1 - α

(a) α > 0

Oα

O
O

1

1

2

(b) α < 0

Figure 7. The intersection circle.

and (O2, O, F ) with F belonging to the circle, we deduce

O and r:
{

r2 + (1 − α)2d2 = r2
2

r2 + α2d2 = r2
1

⇔

{

α = (d2 + r2
1 − r2

2) / 2d2

r2 = r2
1 − α2d2

Hence S1 ∩ S2 ∩ P = C(O, r) ∩ P is the set of 2 points

{F, F ′} such as:

1.
−−→
OF and

−−→
OF ′ ⊥

−−−→
O1O2,

2. F and F ′ ∈ P , i.e.
−−→
OF and

−−→
OF ′ ⊥ ~δ ×

−−−→
O1O2,

3. ‖
−−→
OF‖ = ‖

−−→
OF ′‖ = r,

4.
−−→
OF = −

−−→
OF ′.

Then
−−→
OF and

−−→
OF ′ are the only 2 vectors colinear with

−−−→
O1O2 × (~δ ×

−−−→
O1O2) whose norm equals r. The one (let’s

say
−−→
OF ) lying in the same half-plane as ~δ has the same di-

rection as
−−−→
O1O2 × (~δ ×

−−−→
O1O2). The point F is our choice

for the head of the new detail vector dw
i .


