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Abstract

Although deforming surfaces are frequently used in nu-
merous domains (scientific applications, games...), only few
works have been proposed until now for simplifying such
data. However, these time-varying surfaces are generally
represented as oversampled triangular meshes with a static
connectivity, involving a large number of unnecessary de-
tails for some frames. Among the related works, some meth-
ods provide globally good results, but fine details appearing
during the animation are not always well-preserved, be-
cause of a static geometry sampling. We propose a new
simplification method for deforming surfaces based on a
dynamic geometry sampling. The idea is to compute one
coarse version at the first frame, and then to progressively
update the coarse sampling for the subsequent frames. In
order to optimally approximate each frame, vertices are
added or removed following the appearance or disappear-
ance of fine details in the frames. Our approach is fast, easy
to implement, and produces good quality time-varying ap-
proximations with well-preserved fine details, at any given
frame.

1. Introduction

The temporal dimension of the deforming surfaces is
particularly attractive in numerous domains. From scien-
tific applications (simulation or physical processes...) to
animation (movie, games, morphing...), these time-varying
surfaces are frequently used to represent and visualize
models or objects in motion.
Deforming surfaces are most of times represented by dense
triangular meshes sharing the same connectivity. The shape
deformations are simply obtained by spatially displacing
the vertices across the time. This representation has a
lot of advantages (fast visualization processing, simple
data structure, storage), but only for specific surfaces like
surfaces undergoing few non-rigid deformations.
For surfaces with strong non-rigid deformations, the static

connectivity involves that the meshes are particularly
oversampled at some frames. But, this surplus of vertices
is necessary to represent the fine details existing at other
frames of the animation. Figure 1 illustrates this problem.It
shows one hoof of the morphing sequenceHORSE-TO-MAN

at the first frame (Figure 2). During the morphing, this hoof
is progressively transformed in one hand. The amount of
unnecessary vertices at the first frames is nothing but the
fingers of the man appearing at the next frames.

Figure 1. Example of an oversampled region
of HORSE-TO-MAN . The unnecessary vertices
will be used to represent the fingers appear-
ing during the morphing.

In case of static surface meshes, this problem could be
easily solved by applying one of the numerous existing
simplification algorithms [9, 10, 8]. For a complete
overview, see [7, 15].
Unfortunately, for time-varying meshes, the problem of
simplification has been rarely addressed [19, 13, 16, 4, 11],
and adapting static mesh simplification algorithms to
surfaces with strong non-rigid deformations is inefficient
(see fig. 3(b)). Recently, a relevant method based on



Figure 2. The morphing sequence HORSE-TO-MAN is represented by a time-varying mesh with a static
connectivity (17489 vertices, 34974 triangles)..

connectivity transformations has been proposed for such
surfaces [11]. Despite of this, some fine details appearing
during the animation are not always well-preserved even
with this method (see fig. 3(c)). The main reason is
that a connectivity transformation is not sufficient, when
constrained by a fixed geometry sampling.

We therefore propose a new simplification method based
on a dynamic geometry sampling, for complex deforming
surfaces. The principle is to compute one coarse version of
the mesh at the first frame, and then to progressively update
the coarse sampling during the animation (by adding or
removing vertices), in order to well approximate the mesh
at any frame, while preserving appearing details.

The rest of the paper is organized as follows. Section 2
presents the previous works related to simplification of de-
forming surfaces. Section 3 introduces the problem state-
ment and the approach proposed in this paper. Section
4 deals with the simplification technique used to compute
the coarse version of the mesh at the first frame. Section
5 presents the updating scheme based on dynamic geome-
try sampling providing time-varying approximated meshes.
Section 6 gives some experimental results. We finally con-
clude and present some future works in Section 7.

2. Related works

Shamiret al. [19] are the first to adress the problem
of simplifying efficiently deforming surfaces. They pro-
pose a global multiresolution structure named the TDAG
(Time-dependent Directed Acyclic Graph) which allows to
represent any time-varying mesh, at any level of details.
This structure has the advantage to accept any arbitrary

topology and any shape deformation. Unfortunately this
scheme is complex, and cannot be easily handled, even if
the time-varying mesh has a fixed connectivity [18].

Mohr and Gleicher [16] directly adapt the simplification
algorithm for static meshesQslim [8]. They sum for each
vertex the quadrics relative to its different positions during
the animation, before applying the decimation sequence.
This approach produces a single multiresolution hierarchy
for all the frames. Consequently this technique provides
a good approximation of the original time-varying mesh
only when the original surfaces do not present strong
deformations or fine details.
Decoro and Rusinkiewicz [4] propose a view- and
pose-independent method for simplifying the skeletally
articulated meshes. This technique is efficient but limited
to very specific kinds of shape deformations.

In parallel, Kobbeltet al. [13] modify the classical
concept of multiresolution representation by no longer
requiring a global hierarchical structure linking the levels
of details. Contrary to the previous works, this approach
modifies the connectivity during the animation, and pro-
duces a better approximation of the original surface at any
frame. The idea was to implicitly represent the details by
using the geometric difference between independent ap-
proximated meshes. The details are computed by shooting
rays in normal direction from one surface to another one.
Unfortunately, considering only the normals to compute
the details limits the efficiency of the method. very specific
kinds of shape deformations.

More recently, Kircher and Garland [11] propose a mul-
tiresolution representation with a dynamic connectivity for
deforming surfaces. Their idea is to produce a coarse ver-



(a) Original last frame: 17489 vertices. (b) Static connectivity approximation (3200 ver-
tices).

(c) fixed geometry sampling (3200 vertices).

Figure 3. Approximating a time-varying surface with method s based on single static connectivity
(fig. 3(b)) or fixed geometry sampling [11] (fig. 3(c)) does not preserve the appearing fine details.

sion of the first frame and then to adapt this base mesh with
a sequence of update transformations to produce a good
approximation for the other frames. The update operation
consists in edge swaps, due to a reclustering [7] of the dec-
imated vertices. This method seems to be particularly ef-
ficient because of its connectivity transformation. Finally,
this method parallels the techniques of connectivity trans-
formations for mesh morphing [14, 1, 2].

3. Problem statement and proposed approach

Among the techniques introduced in the previous sec-
tion, the method of Kircher and Garland is particularly in-
teresting [11]. Its main advantage is the potential connectiv-
ity modification (edge swaps) of a coarse mesh at any frame
adapted to the shape deformations during the animation.
The limitation of this approach is due to the fact that the
connectivity changes are restricted to edge swaps, and that
the geometry sampling is fixed1. This results in two draw-
backs:

• some fine details appearing with the shape deforma-
tions are not well preserved since no vertex is added
during the animation. We observe this drawback on
fingers on the last frames of the sequenceHORSE-TO-
MAN (Fig. 3);

• on the other hand, some vertices relative to details dis-
appearing in one frame are unnecessarily kept in nu-
merous frames.

1In parallel to our works, the authors have introduced in [12]a vertex
teleportation method that is also meant to solve this problem

So, even if the edge swaps due to the reclustering are
clearly efficient, the results are not optimal for shapes with
strong local deformations when a fixed number of vertices
is used during the simplification.

One solution to overcome this problem is to allow a non
fixed sampling of the geometry. In other words, additional
vertices could be added in regions where fine details appear
[14]. In parallel, some vertices should be removed where
details disappear during the animation. Hence, a more
accurate approximation for any frame is obtained.
By considering a non fixed geometry sampling, the extreme
and naive solution is to compute an entirely new simplified
mesh at each frame. But this solution is irrelevant, since
it does not exploit the temporal coherence of the data and
involves some unpleasant visual artefacts (vibrating and
twitching surfaces).

We therefore propose a new simplification algorithm
for deforming surfaces, based on a dynamic geometry
sampling. This method preserves fine details appearing
during the animation, without computing an entirely new
approximation hierarchy at each frame. The idea is to
create a coarse version of the first frame, and then to
progressively update the base simplification hierarchy for
the subsequent frames by changing the geometry sampling.
In other words, we propose to automatically add or remove
some specific vertices according to their relevance at any
frame. This can be done by a fine-to-coarse updating
scheme, contrary to [11], which uses a coarse-to-fine one.

The overview of the proposed algorithm is the following:



1. simplification of the first frame (until a user-given
number of vertices is reached). The associated deci-
mation sequence will be considered as the base simpli-
fication at the next frame;

2. for any given frame, we apply the simplification of the
previous frame on the given mesh while testing if dec-
imations would eliminate some appearing fine details.
Such decimations are not applied at this frame.

3. once the previous simplification partially applied at
this frame, the resulting simplified mesh obviously
have more vertices than the previous one. So, we pro-
pose to remove additional vertices until the fixed num-
ber of vertices is reached.

4. Creation of the base hierarchy

In this paper we only focus on manifold time-varying
meshes. Let us define the deforming surfaceS represented
by a sequence of meshes sharing the same connectivity:
S = {M0, M1, ...}. The first stage of our algorithm is to
simplify the meshM0 by applying a sequence ofn decima-
tions{deci

0
}i∈{0,..,n−1}:

(M0 = Mn
0
)

dec
n−1

0−→ Mn−1

0

dec
n−2

0−→ ...
dec0

0−→M0

0
. (1)

M0

0
represents the simplified surface at the first frame. As

simplification technique, we choose theQslimalgorithm of
Garland and Heckbert [7]. To evaluate the approximation
error relative an edge collapse (i.e. the cost of removing
this edge), we use the simple unweightedQuadric Error
Metric (QEM ) [8]. Moreover, to ensure that our algorithm
produces time-varying approximated meshes preserving the
topological type at any frame, we add the topology test
proposed by Deyet al. [5] to the Qslim algorithm. This
test determines if an edge collapse produces non-manifold
meshes. This stage provides the simplified versionM0

0
of

the first meshM0, but also determines the base hierarchy
that will be progressively updated to simplify the follow-
ing meshes relative to the deforming surface2. This refer-
ence hierarchyH0 is defined as the set of edge collapses
{eci

0
}i∈{0,..,n−1} applied on the meshM0, and the associ-

ated contraction costs{costi
0
}i∈{0,..,n−1} :

H0 = {(ecn−1

0
, costn−1

0
), ...(ec0

0
, cost0

0
)}.

5. Updating scheme

5.1 Principle

Once the coarse meshM0

0
obtained, we have to deal

with the other meshesM1, M2... Applying directly the
2This step corresponds to the functionsimplify(Mn

0
,n) in the pseudo-

code given in Section 5.1, page 5.

sequence of edge contractions defined at the first frame
to all the subsequent frames produces bad time-varying
approximations, as pointed out in [11]. Since this sequence
depends on the positions of the vertices at the first frame,
this is not adapted any more for the other frames.
We therefore propose a progressive updating scheme of
the base hierarchy to adapt the sequence of contractions
for each mesh, in order to obtain an accurate time-varying
approximation at any frame. The originality of our
approach is to detect the fine details appearing at some
frame, and then to preserve them thanks to geometry
sampling transformations across the time. Consequently,
the undesired oversampling when details appear/disappear
(as illustrated in Figure 1) is automatically removed in all
other remaining frames.

Let us consider now the meshMf and its simplified ver-
sionM0

f (1 ≤ f ). The principle of our method is to apply
the reference contractions{eci

f−1
} onMf only if the costs

{costif} at this frame do not differ too much from the costs
{costif−1

} at the previous framef − 1. If an edge contrac-
tion would introduce a too important additional cost, the
contraction is not applied onMf . Hence, we aim to detect
and preserve appearing details, and we obtain a simplified
meshMn−m

f , with m the number of still valid contractions
(m ≤ n).
To estimate the cost evolution for a given edge contraction,
the relative errorseri

f between the reference cost and the

new one is computed:eri
f =

costi
f−costi

f−1

costi
f−1

. At present,

to evaluate the cost evolution, we simply use a user-given
thresholdǫ:

eri
f =

costif − costif−1

costif−1

< ǫ. (2)

The meshMn−m
f obviously has more vertices than the ap-

proximatedM0

f−1
, since potentially less contractions have

been applied at this frame. If we want time-varying approx-
imated surfaces with a fixed number of vertices,(n − m)
contractions are missing to obtain the vertex count of the
coarse meshM0

f−1
. We therefore make some additional

contractions onMn−m
f by applying the simplification algo-

rithm presented in Section 4, until the objective ofn con-
tractions is reached.
We finally obtain for each frame a sequence ofn edge col-
lapses depending of the reference hierarchy, allowing a mul-
tiscale representation of the input deforming surface. Thus,
time-varying surfaces can be displayed, at any level of de-
tails and at any frame. the pseudo-code of our approach is
given below.



1: (M0

0
, H0)←− simplify(M0,n);

2: for f = 0 to T − 1 do
3: m←− 0
4: for i = n− 1 to 0 do
5: costif ←− computeCost(Mf ,eci

f−1
);

6: if
costi

f−costi
f−1

costi
f−1

< ǫ then

7: Mn−m
f

eci
f−1

−→ Mn−m−1

f

8: ecm
f−1
←− eci

f−1

9: m++;
10: end if
11: if n 6= m then
12: (M0

f , Hf )←− simplify(Mn−m
f ,n−m);

13: end if
14: end for
15: end for

5.2 Choice of the threshold value

This algorithm involves that a set of edge collapses is
common during the simplification of subsequent meshes.
The number of common collapsed edges mainly depends
on the user-given thresholdǫ. On one hand, a too high
value for ǫ provides that most of collapsed edges of the
reference will be good at any frame. In that case, we would
obtain only one single hierarchy for all frames, leading to
the well known bad approximations at some frames. On
the other hand, a too small value forǫ would tend to create
an entirely new hierarchy at any frame, causing unpleasant
visual artefacts (vibrations and twitching surfaces), and
increasing significantly the time computation. Thus the
choice ofǫ is essential.
At present, the threshold value is user-given, but some
other solutions are possible in order to compute it auto-
matically. Unfortunately all these solutions would increase
the computation time. At least they would need some
pre-computation time. For example, one could estimate a
threshold value empirically by applying a fixed number of
edge contractions for some arbitrary frames individually
and then taking a mean value of the resulting thresholds.
Many variants of this procedure cam be imagined. Also
more sophisticated statistical models can be used.

Another possibility would be to replace the current static
threshold by a variable one, in order to take into account
more accurately the local shape deformations. To do this,
it would be necessary to look at the entire sequence, or at
least a large number of frames. Such a threshold would be
an advantage for surfaces with few deformations, since this
avoids some potential flickering due to collapses close to
the threshold value. However, a relevant argument for using
a static threshold is the possibility of on-line processing, i.e.

treating the meshes as they come in (such a scan-based ap-
proach enables a memory cost limited to the one needed to
store only one frame). The same argument holds for some
more sophisticated error measures, since the on-line pro-
cessing would not be possible anymore, and the time effi-
ciency would globally suffer.

5.3 Time complexity

In this section, we discuss the time complexity of our
approach. The first step corresponds to the functionsim-
plify producing the coarse meshM0

0
and the reference hi-

erarchy. This function is theQSlimalgorithm improved by
the topological type preservation technique of [5]. Thus the
complexity of this step is the complexity of theQSlimal-
gorithm [6], i.e., O(n log n) (by assuming thatO(n) can-
didate edges are selected). This complexity is due to the
handling of the priority queue.

For any subsequent frame, the estimation of the cost
evolution given by (2) requiresO(n) time. Collapsing
the m edges verifying (2) takes onlyO(m) time, since
a priority queue is unnecessary at this step. Then, the
complexity of applying the(n−m) additional contractions
with the function simplify used for the first frame is
O((n−m) log(n−m)).
In the best case,i.e, (m = n), the updating scheme only
requiresO(n) time. In the worst case,i.e, (m = 0),
the complexity of the updating scheme for one frame is
approximatively equivalent to the complexity of producing
the first mesh:O(n log n).
Finally, by assuming that the deforming surface is rep-
resented byT meshes, the overall complexity of our
algorithm in the best case isO(n log n + (T − 1) · n), and
in the worst case, isO(T n log n).

In section 5.2, we discussed the efficiency of our algo-
rithm, which depends on the threshold value of (2). Note
that the time complexity depends on this value as well, be-
cause of the output parameter(n−m). The best case of the
time complexity (m = n) corresponds to the highest thresh-
old value, whereas the worst case (m = 0) corresponds to
the lowest threshold value. In the examples given in section
6 for instance, the mean ration−m

m
along the sequence is

always less than0.5%. For these examples, we tend to be in
the best case, meaning that the complexity of this example
is O(n log n + T · n).

6. Results

In this section we present some experimental results rel-
ative to our algorithm. First, Figure 4 compares the original
last frame of the time-varying surfaceHORSE-TO-MAN

(200 frames,17489 vertices and34974 triangles) with



(a) Original right hand. (b) Approximated with [11]. (c) Approximated with our method.

(d) Original feet. (e) Approximated with [11]. (f) Approximated with our method.

(g) Original head. (h) Approximated with [11]. (i) Approximated with our method.

Figure 4. Comparison of the original last frame of the time-v arying surface HORSE-TO-MAN (200
frames, 17489 vertices and 34974 triangles) with approximated versions ( 3200 vertices and 6396 tri-
angles) obtained with [11] and with our method ( ǫ = 0.2). We observe that the fine details are well-
preserved with our method based on dynamic geometry samplin g.



Figure 5. Time-varying approximation of one ”hoof”. The red triangles correspond to the triangles
appearing during the animation, thanks to our dynamic schem e. At the first frame, the oversampling
of the original hoof has been strongly removed. On the other h and, observe at the other frames the
additional vertices in this region, allowing to preserve th e fingers appearing during the animation.

approximated versions (3200 vertices and6396 triangles)
obtained either with [11] or with our method (ǫ = 0.2). We
observe that the regions with fine details appearing during
the animation (head, hands, feet) are better-preserved by
our algorithm. This is due to the fact that our updating
scheme based on dynamic geometry sampling takes into
account the local shape deformations.

Figure 5 shows the evolution of one of the hoofs
simplified with our method. The red triangles correspond
to the triangles appearing during the animation. At the first
frame, we observe that the oversampling of the original
hoof has been strongly removed. On the other frames,
some additional vertices only appear in order to allow
good approximations of the fingers appearing during the
animation.
In addition, Figure 6 shows several frames of theHORSE-
TO-MAN sequence approximated with our method, at
different levels of details :6000 vertices (first row),3200
vertices (second row), and800 vertices (third row). We can
observe that the appearing fine details are well-preserved
whatever the desired level of details.

To evaluate the efficiency of our approach, Figure 8 gives
the evolution of theRMS error (normalized by the bound-
ing box diagonal of the original meshes [3]) for two differ-
ent sequences,HORSE-TO-MAN and COW (2904 vertices,
5804 triangles, see Figure 7), according to different simpli-
fication methods:

• ”static hierarchy” is using the decimation sequence ob-

tained at the first frame for all the subsequent frames;

• ”independent hierarchy” is applying an independent
simplification at each frame,i.e., the ”optimal results”;

• ”Kircher-Garland” corresponds to the method based
on connectivity transformations and static geometry
sampling of [11].

• the 3 other curves are using our method with different
values forǫ.

The resulting approximations have respectively3200 and
704 vertices for theHORSE-TO-MAN and the COW. We
observe that our method provides significantly better
results than the ”static hierarchy” method, for the two
data. Moreover, as expected, the lower the threshold value,
the higher is the quality of the approximated surface.
Furthermore, this is not surprising that our method provides
slightly worse results than the method of [11], when the
same number of vertices is fixed. This was expected, since
the main objective of our method is to preserve fine details,
and not to minimize the global error. Preserving regions
with appearing details implies that less vertices are located
in the other approximated regions. The global error is thus
higher. Nevertheless, from a distortion point-of-view, our
method provides good results.

Moreover, to underline that a dynamic geometry sam-
pling do not cause unacceptable visual artefacts (vibrations
or twitching surfaces, see Section 1), Figure 9 shows
the number of triangles appearing at a given frame (in
comparison with the previous one) for the two sequences.



Figure 6. Time-varying Approximation of the HORSE-TO-MAN sequence, at different levels of details :
6000 vertices (first row), 3200 vertices (second row), and 800 vertices (third row).

As expected, the number of appearing triangles is in-
versely proportional to the threshold value. We can also
observe that the number of triangles appearing between
two successive frames is obviously lower than when using
an independent simplification at each frame (dark blue
curves). As discussed in section 5.2, there is a risk of
creating undesired vibrations and twitching triangles due
to the dynamic geometry sampling (in particular when the
threshold value is small), but in practice our method leads
to relatively smooth connectivity changes, and finally the
resulting visual artefacts are not important. This is due to
the fact that the appearing triangles are generally smaller
than the other ones at this frame. The visual artefacts
are therefore minimized. As a proof, the accompanying
material contains two videos, the approximated sequence
HORSE-TO-MAN resulting from our method (3200 vertices,

thresholdǫ = 0.2), and the approximated sequence when
using an independent hierarchy at each frame.

7. Conclusions and future works

In this paper, we have presented a simplification method
for deforming surfaces based on dynamic geometry sam-
pling. Given a sequence of meshes representing time vary-
ing 3D data, our method produces a sequence of simpli-
fied meshes that are good approximations of the original
deformed surface for a given frame. A sequence of edge
collapses is computed for the first frame only and is then
adapted by a fine-to-coarse updating scheme which fully
takes advantage of the temporal coherence of the data. This
method is fast, easy to implement and produces good ap-



Figure 7. Several frames of the original sequence COW.
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Figure 8. Evolution of the normalized RMS error per frame. Co mparison of our method (for three
different threshold values ǫ) with some alternative methods for the sequences HORSE-TO-MAN and
COW.
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Figure 9. Number of varying triangles between two successiv e frames for our method with three
different threshold values ǫ in comparison with the independent hierarchy method.



proximations at any frame. The dynamic geometry sam-
pling enables in particular to well preserve the fine details
appearing during the animation. The problem of undesired
oversampling of some mesh frames in order to represent
appearing/disappearing fine details with a fixed mesh con-
nectivity doesn’t occur with our method. Moreover, the
progressive representation of each mesh allows to display
the deforming surfaces at any level of details, at any frame.
Several examples and video have been produced in order to
illustrate and to analyze the present algorithm. The tech-
nique also enables to create time-varying approximated sur-
faces with regular quality. All we have to do is to apply our
updating scheme until we obtain a user-given target quality,
instead of the fixed number of vertices.
Future research would include the application of the present
method to view-dependent simplification of deforming sur-
faces. In fact, the use of edge collapses and the simplic-
ity of the multiscale data may also permit to implement an
efficient view-dependent simplification algorithm [17] for
deforming surfaces.
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