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Abstract

For supervised and unsupervised learning, positive definite kernels allow to use large and
potentially infinite dimensional feature spaces with a computational cost that only depends on
the number of observations. This is usually done through thepenalization of predictor functions
by Euclidean or Hilbertian norms. In this paper, we explore penalizing by sparsity-inducing
norms such as theℓ1-norm or the blockℓ1-norm. We assume that the kernel decomposes into
a large sum of individual basis kernels which can be embeddedin a directed acyclic graph; we
show that it is then possible to perform kernel selection through a hierarchical multiple kernel
learning framework, in polynomial time in the number of selected kernels. This framework
is naturally applied to non linear variable selection; our extensive simulations on synthetic
datasets and datasets from the UCI repository show that efficiently exploring the large feature
space through sparsity-inducing norms leads to state-of-the-art predictive performance.

1 Introduction

In the last two decades, kernel methods have been a prolific theoretical and algorithmic machine
learning framework. By using appropriate regularization by Hilbertian norms, representer theorems
enable to consider large and potentially infinite-dimensional feature spaces while working within an
implicit feature space no larger than the number of observations. This has led to numerous works on
kernel design adapted to specific data types and generic kernel-based algorithms for many learning
tasks (see, e.g., [1, 2]).

Regularization by sparsity-inducing norms, such as theℓ1-norm has also attracted a lot of in-
terest in recent years. While early work has focused on efficient algorithms to solve the convex
optimization problems, recent research has looked at the model selection properties and predictive
performance of such methods, in the linear case [3] or withinthe multiple kernel learning frame-
work [4].

In this paper, we aim to bridge the gap between these two linesof research by trying to use
ℓ1-norms inside the feature space. Indeed, feature spaces are large and we expect the estimated
predictor function to require only a small number of features, which is exactly the situation where
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ℓ1-norms have proven advantageous. This leads to two natural questions that we try to answer in
this paper: (1) Is it feasible to perform optimization in this very large feature space with cost which
is polynomial in the size of the input space? (2) Does it lead to better predictive performance and
feature selection?

More precisely, we consider a positive definite kernel that can be expressed as a large sum of
positive definitebasisor local kernels. This exactly corresponds to the situation where a large fea-
ture space is the concatenation of smaller feature spaces, and we aim to do selection among these
many kernels, which may be done through multiple kernel learning [5]. One major difficulty how-
ever is that the number of these smaller kernels is usually exponential in the dimension of the input
space and applying multiple kernel learning directly in this decomposition would be intractable.

In order to peform selection efficiently, we make the extra assumption that these small kernels
can be embedded in adirected acyclic graph(DAG). Following [6, 7], we consider in Section 2
a specific combination ofℓ2-norms that is adapted to the DAG, and will restrict the authorized
sparsity patterns; in our specific kernel framework, we are able to use the DAG to design an opti-
mization algorithm which has polynomial complexity in the number of selected kernels (Section 3).
In simulations (Section 5), we focus ondirected grids, where our framework allows to perform
non-linear variable selection. We provide extensive experimental validation of our novel regular-
ization framework; in particular, we compare it to the regular ℓ2-regularization and shows that it is
always competitive and often leads to better performance, both on synthetic examples, and standard
regression and classification datasets from the UCI repository.

Finally, we extend in Section 4 some of the known consistencyresults of the Lasso and mul-
tiple kernel learning [3, 4], and give a partial answer to themodel selection capabilities of our
regularization framework by giving necessary and sufficient conditions for model consistency. In
particular, we show that our framework is adapted to estimating consistently only thehull of the
relevant variables. Hence, by restricting the statisticalpower of our method, we gain computational
efficiency.

2 Hierarchical multiple kernel learning (HKL)

We consider the problem of predicting a random variableY ∈ Y ⊂ R from a random variableX ∈
X , whereX andY may be quite general spaces. We assume that we are givenn i.i.d. observations
(xi, yi) ∈ X × Y, i = 1, . . . , n. We define theempirical risk of a functionf from X to R as
1
n

∑n
i=1 ℓ(yi, f(xi)), whereℓ : Y × R 7→ R

+ is a loss function. We only assume thatℓ is convex
with respect to the second parameter (but not necessarily differentiable). Typical examples of loss
functions are the square loss for regression, i.e.,ℓ(y, ŷ) = 1

2(y− ŷ)2 for y ∈ R, and the logistic loss
ℓ(y, ŷ) = log(1+ e−yŷ) or the hinge lossℓ(y, ŷ) = max{0, 1−yŷ} for binary classification, where
y ∈ {−1, 1}, leading respectively to logistic regression and support vector machines. Other losses
may be used for other settings (see, e.g., [2] or the Appendix).

2.1 Graph-structured positive definite kernels

We assume that we are given apositive definite kernelk : X × X → R, and that this kernel can
be expressed as the sum, over an index setV , of basis kernelskv, v ∈ V , i.e, for all x, x′ ∈ X ,
k(x, x′) =

∑

v∈V kv(x, x
′). For eachv ∈ V , we denote byFv andΦv the feature space and feature

map ofkv, i.e., for allx, x′ ∈ X , kv(x, x
′) = 〈Φv(x),Φv(x

′)〉. Throughout the paper, we denote
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Figure 1: Example of graph and associated notions. (Left) Example of a 2D-grid. (Middle) Example
of sparsity pattern (× in light blue) and the complement of its hull (+ in light red). (Right) Dark
blue points (×) are extreme points of the set of all active points (blue×); dark red points (+) are
the sources of the set of all red points (+).

by ‖u‖ the Hilbertian norm ofu and by〈u, v〉 the associated dot product, where the precise space
is omitted and can always be inferred from the context.

Our sum assumption corresponds to a situation where the feature mapΦ(x) and feature space
F for k is theconcatenationof the feature mapsΦv(x) for each kernelkv, i.e,F =

∏

v∈V Fv and
Φ(x) = (Φv(x))v∈V . Thus, looking for a certainβ ∈ F and a predictor functionf(x) = 〈β,Φ(x)〉
is equivalent to looking jointly forβv ∈ Fv, for all v ∈ V , andf(x) =

∑

v∈V 〈βv,Φv(x)〉.
As mentioned earlier, we make the assumption that the setV can be embedded into adirected

acyclic graph. Directed acyclic graphs (referred to as DAGs) allow to naturally define the notions
of parents, children, descendantsandancestors. Given a nodew ∈ V , we denote byA(w) ⊂ V the
set of its ancestors, and byD(w) ⊂ V , the set of its descendants. We use the convention that any
w is a descendant and an ancestor of itself, i.e.,w ∈ A(w) andw ∈ D(w). Moreover, forW ⊂ V ,
we let denotesources(W ) the set ofsourcesof the graphG restricted toW (i.e., nodes inW with
no parents belonging toW ). Given a subset of nodesW ⊂ V , we can define thehull of W as the
union of all ancestors ofw ∈ W , i.e.,hull(W ) =

⋃

w∈W A(w). Given a setW , we define the set
of extreme pointsof W as the smallest subsetT ⊂ W such thathull(T ) = hull(W ) (note that it is
always well defined, as

⋂

T⊂V, hull(T )=hull(W ) T ). See Figure 1 for examples of these notions.
The goal of this paper is to perform kernel selection among the kernelskv , v ∈ V . We essentially

use the graph to limit the search to specific subsets ofV . Namely, instead of considering all possible
subsets of active (relevant) vertices, we are only interested in estimating correctly the hull of these
relevant vertices; in Section 2.2, we design a specific sparsity-inducing norms adapted to hulls.

In this paper, we primarily focus on kernels that can be expressed as “products of sums”, and on
the associatedp-dimensional directed grids, while noting that our framework is applicable to many
other kernels. Namely, we assume that the input spaceX factorizes intop componentsX = X1 ×
· · ·×Xp and that we are givenp sequences of lengthq+1 of kernelskij(xi, x

′
i), i ∈ {1, . . . , p}, j ∈

{0, . . . , q}, such thatk(x, x′) =
∑q

j1,...,jp=0

∏p
i=1 kiji

(xi, x
′
i) =

∏p
i=1

(

∑q
ji=0 kiji

(xi, x
′
i)
)

. We

thus have a sum of(q+1)p kernels, that can be computed efficiently as a product ofp sums. A natural
DAG on V =

∏p
i=1{0, . . . , q} is defined by connecting each(j1, . . . , jp) to (j1 +1, j2, . . . , jp),

. . . , (j1, . . . , jp−1, jp +1). As shown in Section 2.2, this DAG will correspond to the constraint
of selecting a given product of kernels only after all the subproducts are selected. Those DAGs
are especially suited to nonlinear variable selection, in particular with the polynomial and Gaussian
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kernels. In this context, products of kernels correspond tointeractions between certain variables, and
our DAG implies that we select an interaction only after all sub-interactions were already selected.

Polynomial kernels We considerXi = R, kij(xi, x
′
i) =

(q
j

)

(xix
′
i)

j ; the full kernel is then

equal tok(x, x′) =
∏p

i=1

∑q
j=0

(q
j

)

(xix
′
i)

j =
∏p

i=1(1 + xix
′
i)

q. Note that this is not exactly
the usual polynomial kernel (whose feature space is the space of multivariate polynomials oftotal
degree less thanq), since our kernel considers polynomials ofmaximaldegreeq.

Gaussian kernels We also considerXi = R, and the Gaussian-RBF kernele−b(x−x′)2 . The
following decomposition is the eigendecomposition of the non centered covariance operator for a
normal distribution with variance1/4a (see, e.g., [8]):

e−b(x−x′)2 =
∑∞

k=0
(b/A)k

2kk!
[e−

b
A

(a+c)x2
Hk(

√
2cx)][e−

b
A

(a+c)(x′)2Hk(
√

2cx′)],

wherec2 = a2 + 2ab, A = a + b + c, andHk is thek-th Hermite polynomial. By appropriately
truncating the sum, i.e, by considering that the firstq basis kernels are obtained from the firstq
single Hermite polynomials, and the(q + 1)-th kernel is summing over all other kernels, we ob-
tain a decomposition of a uni-dimensional Gaussian kernel into q + 1 components (q of them are
one-dimensional, the last one is infinite-dimensional, butcan be computed by differencing). The
decomposition ends up being close to a polynomial kernel of infinite degree, modulated by an ex-
ponential [2]. One may also use anadaptivedecomposition using kernel PCA (see, e.g., [2, 1]),
which is equivalent to using the eigenvectors of the empirical covariance operator associated with
the data (and not the population one associated with the Gaussian distribution with same variance).
In simulations, we tried both with no significant differences.

Finally, by taking product over all variables, we obtain a decomposition of thep-dimensional
Gaussian kernel into(q + 1)p components, that are adapted to nonlinear variable selection. Note
that forq = 1, we obtain ANOVA-like decompositions [2].

Kernels or features? In this paper, we emphasize thekernel view, i.e., we are given a kernel
(and thus a feature space) and we explore it usingℓ1-norms. Alternatively, we could use thefeature
view, i.e., we have a large structured set of features that we try to select from; however, the tech-
niques developed in this paper assume that (a) each feature might be infinite-dimensional and (b)
that we can sum all the local kernels efficiently (see in particular Section 3.2). Following the kernel
view thus seems slightly more natural.

2.2 Graph-based structured regularization

Givenβ ∈ ∏v∈V Fv, the natural Hilbertian norm‖β‖ is defined through‖β‖2 =
∑

v∈V ‖βv‖2.
Penalizing with this norm is efficient because summing all kernelskv is assumed feasible in poly-
nomial time and we can bring to bear the usual kernel machinery; however, it does not lead to sparse
solutions, where manyβv will be exactly equal to zero.

As said earlier, we are only interested in the hull of the selected elementsβv ∈ Fv, v ∈ V ; the
hull of a setI is characterized by the set ofv, such thatD(v) ⊂ Ic, i.e., such that all descendants of
v are in the complementIc: hull(I) = {v ∈ V,D(v) ⊂ Ic}c. Thus, if we try to estimatehull(I),
we need to determine whichv ∈ V are such thatD(v) ⊂ Ic. In our context, we are hence looking
at selecting verticesv ∈ V for whichβD(v) = (βw)w∈D(v) = 0.

We thus consider the following structured blockℓ1-norm defined as
∑

v∈V

dv‖βD(v)‖ =
∑

v∈V

dv(
∑

w∈D(v)

‖βw‖2)1/2,
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where(dv)v∈V are positive weights. Penalizing by such a norm will indeed impose that some of
the vectorsβD(v) ∈ ∏w∈D(v) Fw are exactly zero. We thus consider the following minimization

problem1:

minβ∈
∏

v∈V Fv

1
n

∑n
i=1 ℓ(yi,

∑

v∈V 〈βv ,Φv(xi)〉) + λ
2

(
∑

v∈V dv‖βD(v)‖
)2
. (1)

Our Hilbertian norm is a Hilbert space instantiation of the hierarchical norms recently introduced
by [6]. If all Hilbert spaces are finite dimensional, our particular choice of norms corresponds to an
“ℓ1-norm ofℓ2-norms”. While with uni-dimensional groups or kernels, the“ℓ1-norm ofℓ∞-norms”
allows an efficient path algorithm for the square loss and when the DAG is a tree [6], this is not
possible anymore with groups of size larger than one, or whenthe DAG is a not a tree. In Section 3,
we propose a novel algorithm to solve the associated optimization problem in time polynomial in the
number of selected groups or kernels, for all group sizes, DAGs and losses. Moreover, in Section 4,
we show under which conditions a solution to the problem in Eq. (1) consistently estimates the hull
of the sparsity pattern.

Finally, note that in certain settings (finite dimensional Hilbert spaces and distributions with
absolutely continuous densities), these norms have the effect of selecting a given kernelonly after
all of its ancestors[6]. This is another explanation why hulls end up being selected, since to include
a given vertex in the models, the entire set of ancestors mustalso be selected.

3 Optimization problem

In this section, we give optimality conditions for the problems in Eq. (1), as well as optimization
algorithms with polynomial time complexity in the number ofselected kernels. In simulations we
consider total numbers of kernels larger than1030, and thus such efficient algorithms are essential
to the success of hierarchical multiple kernel learning (HKL).

3.1 Reformulation in terms of multiple kernel learning

Following [9, 10], we can simply derive an equivalent formulation of Eq. (1). Using Cauchy-
Schwarz inequality, we have that for allη ∈ R

V such thatη > 0 and
∑

v∈V d
2
vηv 6 1,

(
∑

v∈V dv‖βD(v)‖)2 6
∑

v∈V
‖βD(v)‖

2

ηv
=
∑

w∈V (
∑

v∈A(w) η
−1
v )‖βw‖2,

with equality if and only ifηv = d−1
v ‖βD(v)‖(

∑

v∈V dv‖βD(v)‖)−1. We associate to the vector
η ∈ R

V , the vectorζ ∈ R
V such that∀w ∈ V , ζ−1

w =
∑

v∈A(w) η
−1
v . We use the natural convention

that if ηv is equal to zero, thenζw is equal to zero for all descendantsw of v. We let denoteH
the set of allowedη andZ the set of all associatedζ. The setH andZ are in bijection, and we
can interchangeably useη ∈ H or the correspondingζ(η) ∈ Z. Note thatZ is in general not
convex (unless the DAG is a tree, see the Appendix), and ifζ ∈ Z, thenζw 6 ζv for all w ∈ D(v),
i.e., weights of descendant kernels are smaller, which is consistent with the known fact that kernels
should always be selected after all their ancestors.

The problem in Eq. (1) is thus equivalent to

min
η∈H

min
β∈
∏

v∈V Fv

1
n

∑n
i=1 ℓ(yi,

∑

v∈V 〈βv ,Φv(xi)〉) + λ
2

∑

w∈V ζw(η)−1‖βw‖2. (2)

1Following [5], we consider the square of the norm, which doesnot change the regularization properties, but allow
simple links with multiple kernel learning.
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Using the change of variablẽβv = βvζ
−1/2
v and Φ̃(x) = (ζ

1/2
v Φv(x))v∈V , this implies that

given the optimalη (and associatedζ), β corresponds to the solution of the regular supervised
learning problem with kernel matrixK =

∑

w∈V ζwKw, whereKw is n × n the kernel matrix
associated with kernelkw. Moreover, the solution is thenβw = ζw

∑n
i=1 αiΦw(xi), whereα ∈ R

n

are the dual parameters associated with the single kernel learning problem.
Thus, the solution is entirely determined byα ∈ R

n andη ∈ R
V (and its correspondingζ ∈

R
V ). More precisely, we have (see proof in the Appendix):

Proposition 1 The pair (α, η) is optimal for Eq. (1), with∀w, βw = ζw
∑n

i=1 αiΦw(xi), if and
only if (a) givenη, α is optimal for the single kernel learning problem with kernel matrix K =
∑

w∈V ζw(η)Kw, and(b) givenα, η ∈ H maximizes

∑

w∈V

(
∑

v∈A(w)

η−1
v )−1α⊤Kwα.

Moreover, the total duality gap can be upperbounded as the sum of the two separate duality gaps for
the two optimization problems, which will be useful in Section 3.2 (see Appendix for more details).
Note that in the case of “flat” regular multiple kernel learning, where the DAG has no edges, we
obtain back usual optimality conditions [9, 10].

Following a common practice for convex sparsity problems [11], we will try to solve a small
problem where we assume we know the set ofv such that‖βD(v)‖ is equal to zero (Section 3.3).
We then “simply” need to check that variables in that set may indeed be left out of the solution. In
the next section, we show that this can be done in polynomial time although the number of kernels
to consider leaving out is exponential (Section 3.2).

3.2 Conditions for global optimality of reduced problem

We let denoteJ the complement of the set of norms which are set to zero. We thus consider the
optimal solutionβ of the reduced problem (onJ), namely,

minβJ∈
∏

v∈JFv

1
n

∑n
i=1 ℓ(yi,

∑

v∈J 〈βv,Φv(xi)〉) + λ
2

(
∑

v∈V dv‖βD(v)∩J‖
)2
, (3)

with optimal primal variablesβJ , dual variablesα and optimal pair(ηJ , ζJ). We now consider
necessary conditions and sufficient conditions for this solution (augmented with zeros for non active
variables, i.e., variables inJc) to be optimal with respect to the full problem in Eq. (1). We denote
by δ =

∑

v∈J dv‖βD(v)∩J‖ the optimal value of the norm for the reduced problem.

Proposition 2 (NJ ) If the reduced solution is optimal for the full problem in Eq.(1) and all kernels
in the extreme points ofJ are active, then we have

max
t∈sources(Jc)

α⊤Ktα/d
2
t 6 δ2.

Proposition 3 (SJ,ε) If maxt∈sources(Jc)

∑

w∈D(t) α
⊤Kwα/(

∑

v∈A(w)∩D(t) dv)
2 6 δ2 +ε/λ, then

the total duality gap is less thanε.
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The proof is fairly technical and can be found in the Appendix; this result constitutes the main
technical contribution of the paper: it essentially allowsto solve a very large optimization problem
over exponentially many dimensions in polynomial time.

The necessary condition(NJ) does not cause any computational problems. However, the suffi-
cient condition(SJ,ε) requires to sum over all descendants of the active kernels, which is impossible
in practice (as shown in Section 5, we considerV of cardinal often greater than1030). Here, we need
to bring to bear the specific structure of the kernelk. In the context of directed grids we consider in
this paper, ifdv can also be decomposed as a product, then

∑

v∈A(w)∩D(t) dv is also factorized, and
we can compute the sum over allv ∈ D(t) in linear time inp. Moreover we can cache the sums
∑

w∈D(t)Kw/(
∑

v∈A(w)∩D(t) dv)
2 in order to save running time.

3.3 Dual optimization for reduced or small problems

When kernelskv, v ∈ V have low-dimensional feature spaces, we may use a primal representation
and solve the problem in Eq. (1) using generic optimization toolboxes adapted to conic constraints
(see, e.g., [12]). However, in order to reuse existing optimized supervised learning code and use
high-dimensional kernels, it is preferable to use a dual optimization. Namely, we use the same tech-
nique as [9]: we consider forζ ∈ Z, the functionB(ζ) = minβ∈

∏

v∈V Fv

1
n

∑n
i=1 ℓ(yi,

∑

v∈V 〈βv,Φv(xi)〉)+
λ
2

∑

w∈V ζ
−1
w ‖βw‖2, which is the optimal value of the single kernel learning problem with kernel

matrix
∑

w∈V ζwKw. Solving Eq. (2) is equivalent to minimizingB(ζ(η)) with respect toη ∈ H.
If a ridge (i.e., positive diagonal) is added to the kernel matrices, the functionB is differentiable.

Moreover, the functionη 7→ ζ(η) is differentiable on(R∗
+)V . Thus, the functionη 7→ B[ζ((1 −

ε)η + ε
|V |d

−2)] , whered−2 is the vector with elementsd−2
v , is differentiable ifε > 0. We can then

use the same projected gradient descent strategy as [9] to minimize it. The overall complexity of
the algorithm is then proportional toO(|V |n2)—to form the kernel matrices—plus the complexity
of solving a single kernel learning problem—typically betweenO(n2) andO(n3).

3.4 Kernel search algorithm

We are now ready to present the detailed algorithm which extends the feature search algorithm
of [11]. Note that the kernel matrices are never all needed explicitly, i.e., we only need them (a)
explicitly to solve the small problems (but we need only a fewof those) and (b) implicitly to compute
the sufficient condition(SJ,ε), which requires to sum over all kernels, as shown in Section 3.2.

• Input : kernel matricesKv ∈ R
n×n, v ∈ V , maximal gapε, maximal# of kernelsQ

• Algorithm

1. Initialization: setJ = sources(V ),
compute(α, η) solutions of Eq. (3), obtained using Section 3.3

2. while (NJ) and(SJ,ε) are not satisfied and#(V ) 6 Q

– If (NJ) is not satisfied, add violating variables insources(Jc) to J
else, add violating variables insources(Jc) of (SJ,ε) to J

– Recompute(α, η) optimal solutions of Eq. (3)

• Output : J , α, η

7



The previous algorithm will stop either when the duality gapis less thanε or when the maximal
number of kernelsQ has been reached. In practice, when the weightsdv increase with the depth of
v in the DAG (which we use in simulations), the small duality gap generally occurs before we reach
a problem larger thanQ. Note that some of the iterations only increase the size of the active sets to
check the sufficient condition for optimality; forgetting those does not change the solution, only the
fact that we may actually know that we have anε-optimal solution.

In the directedp-grid case, the total running time complexity is a function of the number of
observationsn, and the numberR of selected kernels; with proper caching, we obtain the fol-
lowing complexity, assumingO(n3) for the single kernel learning problem, which is conservative:
O(n3R+n2Rp2 +n2R2p), which decomposes into solvingO(R) single kernel learning problems,
cachingO(Rp) kernels, and computingO(R2p) quadratic forms for the sufficient conditions. Note
that the kernel search algorithm is also an efficient algorithm for unstructured MKL.

4 Consistency conditions

As said earlier, the sparsity pattern of the solution of Eq. (1) will be equal to its hull, and thus we
can only hope to obtain consistency of the hull of the pattern, which we consider in this section.

For simplicity, we consider the case of finite dimensional Hilbert spaces (i.e.,Fv = R
fv ) and

the square loss. We also hold fixed the vertex set ofV , i.e., we assume that the total number of
features is fixed, and we letn tend to infinity andλ = λn decrease withn.

Following [4], we make the following assumptions on the underlying joint distribution of(X,Y ):
(a) the joint covariance matrixΣ of (Φ(xv))v∈V (defined with appropriate blocks of sizefv × fw)
is invertible, (b)E(Y |X) =

∑

w∈W 〈βw,Φw(x)〉 with W ⊂ V andvar(Y |X) = σ2 > 0 almost
surely. With these simple assumptions, we obtain (see proofin the Appendix):

Proposition 4 (Sufficient condition) If we have

max
t∈sources(Wc)

∑

w∈D(t)

‖ΣwW Σ
−1
W W

Diag(dv‖βD(v)‖
−1)v∈W βW ‖2

(
∑

v∈A(w)∩D(t) dv)2
< 1,

thenβ and the hull ofW are consistently estimated whenλnn
1/2 → ∞ andλn → 0.

Proposition 5 (Necessary condition)If the β and the hull ofW are consistently estimated for
some sequenceλn, then

max
t∈sources(Wc)

‖ΣwWΣ
−1
WW Diag(dv/‖βD(v)‖)v∈WβW‖2/d2

t 6 1.

Note that the last two propositions are not consequences of the similar results for flat MKL [4],
because the groups that we consider are overlapping. Moreover, the last propositions show that we
indeed can estimate the correct hull of the sparsity patternif the sufficient condition is satisfied. In
particular, if we can make the groups such that the between-group correlation is as small as possible,
we can ensure correct hull selection. Finally, it is worth noting that if the ratiosdw/maxv∈A(w) dv

tend to infinity slowly withn, then we always consistently estimate the depth of the hull,i.e., the
optimal interaction complexity. We are currently investigating extensions to the non parametric
case [4], in terms of pattern selection and universal consistency.
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Figure 2: Comparison on synthetic examples: mean squared error over 40 replications (with halved
standard deviations). Left: non rotated data, right: rotated data. See text for details.

5 Simulations

Synthetic examples We generated regression data as follows:n = 1024 samples ofp ∈ [22, 27]
variables were generated from a random covariance matrix, and the labely ∈ R was sampled as a
random sparse fourth order polynomial of the input variables (with constant number of monomials).
We then compare the performance of our hierarchical multiple kernel learning method (HKL) with
the polynomial kernel decomposition presented in Section 2to other methods that use the same
kernel and/or decomposition: (a) the greedy strategy of selecting basis kernels one after the other, a
procedure similar to [13], and (b) the regular polynomial kernel regularization with the full kernel
(i.e., the sum of all basis kernels). In Figure 2, we compare the two approaches on 40 replications in
the following two situations: original data (left) and rotated data (right), i.e., after the input variables
were transformed by a random rotation (in this situation, the generating polynomial is not sparse
anymore). We can see that in situations where the underlyingpredictor function is sparse (left),
HKL outperforms the two other methods when the total number of variablesp increases, while in
the other situation where the best predictor is not sparse (right), it performs only slightly better: i.e.,
in non sparse problems,ℓ1-norms do not really help, but do help a lot when sparsity is expected.

UCI datasets For regression datasets, we compare HKL with polynomial (degree 4) and
Gaussian-RBF kernels (each dimension decomposed into 9 kernels) to the following approaches
with the same kernel: regular Hilbertian regularization (L2), same greedy approach as earlier
(greedy), regularization by theℓ1-norm directly on the vectorα, a strategy which is sometimes
used in the context of sparse kernel learning [14] but does not use the Hilbertian structure of the
kernel (lasso-α), multiple kernel learning with thep kernels obtained by summing all kernels as-
sociated with a single variable, a strategy suggested by [5](MKL). For all methods, the kernels
were held fixed, while in Table 1, we report the performance for the best regularization parameters
obtained by 10 random half splits.

We can see from Table 1, that HKL outperforms other methods, in particular for the datasets
bank-32nm, bank-32nh, pumadyn-32nm, pumadyn-32nh, whichare datasets dedicated to non linear
regression. Note also, that we efficiently explore DAGs withvery large numbers of vertices#(V ).

For binary classification datasets, we compare HKL (with thelogistic loss) to two other methods
(L2, greedy) in Table 2. For some datasets (e.g., spambase),HKL works better, but for some
others, in particular when the generating problem is known to be non sparse (ringnorm, twonorm),
it performs slightly worse than other approaches.
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dataset n p k #(V ) L2 greedy lasso-α MKL HKL
abalone 4177 10 pol4≈107 44.2±1.3 43.9±1.4 47.9±0.7 44.5±1.1 43.3±1.0
abalone 4177 10 rbf≈1010 43.0±0.9 45.0±1.7 49.0±1.7 43.7±1.0 43.0±1.1

bank-32fh 8192 32 pol4≈1022 40.1±0.7 39.2±0.8 41.3±0.7 38.7±0.7 38.9±0.7
bank-32fh 8192 32 rbf ≈1031 39.0±0.7 39.7±0.7 66.1±6.9 38.4±0.7 38.4±0.7
bank-32fm 8192 32 pol4≈1022 6.0±0.1 5.0±0.2 7.0±0.2 6.1±0.3 5.1±0.1
bank-32fm 8192 32 rbf ≈1031 5.7±0.2 5.8±0.4 36.3±4.1 5.9±0.2 4.6±0.2
bank-32nh 8192 32 pol4≈1022 44.3±1.2 46.3±1.4 45.8±0.8 46.0±1.2 43.6±1.1
bank-32nh 8192 32 rbf≈1031 44.3±1.2 49.4±1.6 93.0±2.8 46.1±1.1 43.5±1.0
bank-32nm 8192 32 pol4≈1022 17.2±0.6 18.2±0.8 19.5±0.4 21.0±0.7 16.8±0.6
bank-32nm 8192 32 rbf≈1031 16.9±0.6 21.0±0.6 62.3±2.5 20.9±0.7 16.4±0.6

boston 506 13 pol4≈109 17.1±3.6 24.7±10.8 29.3±2.3 22.2±2.2 18.1±3.8
boston 506 13 rbf ≈1012 16.4±4.0 32.4±8.2 29.4±1.6 20.7±2.1 17.1±4.7

pumadyn-32fh 8192 32 pol4≈1022 57.3±0.7 56.4±0.8 57.5±0.4 56.4±0.7 56.4±0.8
pumadyn-32fh 8192 32 rbf≈1031 57.7±0.6 72.2±22.5 89.3±2.0 56.5±0.8 55.7±0.7
pumadyn-32fm 8192 32 pol4≈1022 6.9±0.1 6.4±1.6 7.5±0.2 7.0±0.1 3.1±0.0
pumadyn-32fm 8192 32 rbf≈1031 5.0±0.1 46.2±51.6 44.7±5.7 7.1±0.1 3.4±0.0
pumadyn-32nh 8192 32 pol4≈1022 84.2±1.3 73.3±25.4 84.8±0.5 83.6±1.3 36.7±0.4
pumadyn-32nh 8192 32 rbf≈1031 56.5±1.1 81.3±25.0 98.1±0.7 83.7±1.3 35.5±0.5
pumadyn-32nm 8192 32 pol4≈1022 60.1±1.9 69.9±32.8 78.5±1.1 77.5±0.9 5.5±0.1
pumadyn-32nm 8192 32 rbf≈1031 15.7±0.4 67.3±42.4 95.9±1.9 77.6±0.9 7.2±0.1

Table 1: Mean squared errors (multiplied by 100) on UCI regression datasets, normalized so that
the total variance to explain is 100. See text for details.

dataset n p k #(V ) L2 greedy HKL
mushrooms 1024 117 pol4≈1082 0.4±0.4 0.1±0.1 0.1±0.2
mushrooms 1024 117 rbf≈10112 0.1±0.2 0.1±0.2 0.1±0.2
ringnorm 1024 20 pol4≈1014 3.8±1.1 5.9±1.3 2.0±0.3
ringnorm 1024 20 rbf ≈1019 1.2±0.4 2.4±0.5 1.6±0.4
spambase 1024 57 pol4≈1040 8.3±1.0 9.7±1.8 8.1±0.7
spambase 1024 57 rbf≈1054 9.4±1.3 10.6±1.7 8.4±1.0
twonorm 1024 20 pol4≈1014 2.9±0.5 4.7±0.5 3.2±0.6
twonorm 1024 20 rbf ≈1019 2.8±0.6 5.1±0.7 3.2±0.6
magic04 1024 10 pol4≈107 15.9±1.0 16.0±1.6 15.6±0.8
magic04 1024 10 rbf ≈1010 15.7±0.9 17.7±1.3 15.6±0.9

Table 2: Error rates (multiplied by 100) on UCI binary classification datasets. See text for details.
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6 Conclusion

We have shown how to perform hierarchical multiple kernel learning (HKL) in polynomial time in
the number of selected kernels. This framework may be applied to many positive definite kernels
and we have focused on polynomial and Gaussian kernels used for nonlinear variable selection.
In particular, this paper shows that trying to useℓ1-type penalties may be advantageous inside the
feature space. We are currently investigating applications to other kernels, such as the pyramid
match kernel [15], string kernels, and graph kernels [2].

A Optimization results

In this first section, we give proofs of all results related tothe optimization problems. We first recall
precisely how we obtained the relationships betweenη andζ. Using Cauchy-Schwarz inequality,
we know that for allη ∈ R

V such thatη > 0 and
∑

v∈V d
2
vηv 6 1,

(

∑

v∈V

dv‖βD(v)‖
)2

=

(

∑

v∈V

(dvη
1/2
v )

‖βD(v)‖
η

1/2
v

)2

6
∑

v∈V

d2
vηv ×

∑

v∈V

‖βD(v)‖2

ηv
6
∑

w∈V





∑

v∈A(w)

η−1
v



 ‖βw‖2,

with equality if and only ifηv = d−1
v ‖βD(v)‖(

∑

v∈V dv‖βD(v)‖)−1.

A.1 Set of weights for trees

When the DAG is a tree (i.e., when each vertex has at most one parent), then, without loss of
generality we may consider that only one vertex has no parent(the rootr) while all othersw have
exactly one parentπ(w). In this situation, we have for allv 6= r, ζ−1

π(v) − ζ−1
v = −η−1

π(v). Moreover,
for all leavesv, ζv = ηv. This implies that the constraintη > 0 is equivalent toζ > 0 and for all
v 6= r, ζπ(v) > ζv. The final constraint

∑

v∈V ηvd
2
v 6 1, may then be written as:

∑

v 6=r

d2
v

1

ζ−1
v − ζ−1

π(v)

+
∑

v leaf

ζvd
2
v 6 1,

that is,
∑

v 6=r

d2
v

(

ζv +
ζ2
v

ζπ(v) − ζv

)

+
∑

v leaf

ζvd
2
v 6 1,

which is clearly convex [12]. When the DAG is not a tree, we conjecture that the setZ is not convex.

A.2 Fenchel conjugates

Following [16, 17], in order to derive optimality conditions for all losses, we need to introduce
Fenchel conjugates. Letψi : R 7→ R, be the Fenchel conjugate [12] of the convex functionϕi :
a 7→ ℓ(yi, a), defined as

ψi(b) = max
a∈R

ab− ϕi(a).
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The functionψi is always convex and, because we have assumed thatϕi is convex and continuous,
we can representϕi as the Fenchel conjugate ofψi, i.e., for alla ∈ R,

ϕi(a) = max
b∈R

ab− ψi(b).

In particular, we have for the following standard examples:

• for least-squares regression, we haveϕi(a) = 1
2(yi − a)2 andψi(b) = 1

2b
2 + byi,

• for logistic regression, we haveϕi(a) = log(1 + exp(−yiai)), whereyi ∈ {−1, 1}, and
ψi(b) = (1 + byi) log(1 + byi) − byi log(−byi) if byi ∈ [−1, 0], +∞ otherwise.

• for support vector machine classification, we haveϕi(a) = max(0, 1 − yia), whereyi ∈
{−1, 1}, andψi(b) = yib if byi ∈ [−1, 0], +∞ otherwise.

A.3 Preliminary propositions

We first recall the duality result for the regularℓ2-norm kernel learning problem:

Proposition 6 For all nonnegativeζ ∈ R
V , the dual of the optimization problem

min
β∈
∏

v∈V Fv

1
n

∑n
i=1 ℓ(yi,

∑

v∈V 〈βv,Φv(xi)〉) + λ
2

∑

w∈V ζ
−1
w ‖βw‖2

is

max
α∈Rn

− 1

n

n
∑

i=1

ψi(−nλαi) −
λ

2
α⊤

(

∑

w∈V

ζwKw

)

α,

and the optimalβ can be found from an optimalα asβw =
∑n

i=1 αiΦw(xi).

Proof We introduce auxiliary variablesui =
∑

v∈V 〈βv ,Φv(xi)〉 and consider the Lagrangian:

L =
1

n

n
∑

i=1

ϕi(ui) +
λ

2

∑

w∈V

ζ−1
w ‖βw‖2 + λ

n
∑

i=1

αi(ui −
∑

v∈V

〈βv,Φv(xi)〉)

Minimizing with respect to the primal variablesu, β, we get the dual problem.

We will use the following simple result, which implies that each componentζw(η) is a concave
function ofη:

Lemma 1 The minimum of
∑m

j=1 ajx
2
j subject to

∑m
j=1 xj = 1 is equal to

(

∑m
j=1 a

−1
i

)−1
and is

attained atxi = a−1
i

(

∑m
j=1 a

−1
i

)−1
.

The following proposition derives the dual of the problem inη:
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Proposition 7 Let L = {κ ∈ R
V ×V ,∀w ∈ V,

∑

v∈A(w) κvw = 1}. The following optimization
problems are dual to each other, and there is no duality gap :

min
κ∈L

max
v∈V

d−2
v

∑

w∈D(v)

κ2
vwα

⊤Kwα

max
η∈H

∑

w∈V

α⊤ζw(η)Kwα.

Proof We have the Lagrangian

L = δ2 +
∑

v∈V

ηv





∑

w∈D(v)

κ2
vwα

⊤Kwα− δ2d2
v



 ,

which can be minimized in closed form with respect toδ2 andκ ∈ L, and leads to (using Lemma 1):

min
κ∈L

max
v∈V

d−2
v

∑

w∈D(v)

κ2
vwα

⊤Kwα = max
η
α⊤

(

∑

w∈V

ζw(η)Kw

)

α.

A.4 Duality gaps

We consider the following function ofη ∈ H andα ∈ R
n:

F (η, α) = − 1

n

n
∑

i=1

ψi(−nλαi) −
λ

2
α⊤

∑

w∈V

ζw(η)Kwα.

This function is convex inη (because of Lemma 1) and concave inα, standard arguments (e.g.,
primal and dual strict feasibilities) show that there is no duality gap to the variational problems:

inf
η∈H

sup
α∈Rn

F (η, α) = sup
α∈Rn

inf
η∈H

F (η, α).
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We can decompose the duality gap, given a pair(η, α) as

sup
α′∈Rn

F (η, α′) − inf
η′∈H

F (η′, α)

= min
β

{

1

n

n
∑

i=1

ℓ(yi,
∑

v∈V

〈βv ,Φv(xi)〉) +
λ

2

∑

w∈V

ζw(η)−1‖βw‖2

}

− inf
η′∈H

F (η′, α)

6
1

n

n
∑

i=1

ℓ(yi,
∑

w∈V

ζw(η)(Kwα)i) +
λ

2

∑

w∈V

ζwα
⊤Kwα+

1

n

n
∑

i=1

ψi(−nλαi)

+ sup
η′∈H

λ

2
α⊤

∑

w∈V

ζw(η′)α

=
1

n

n
∑

i=1

ℓ(yi,
∑

w∈V

ζw(η)(Kwα)i) +
1

n

n
∑

i=1

ψi(−nλαi) + λ
∑

w∈V

ζw(η)α⊤Kwα

+ sup
η′∈H

λ

2
α⊤

∑

w∈V

ζw(η′)α− λ

2

∑

w∈V

ζw(η)α⊤Kwα.

We thus get the desired upper bound from which proposition 1 (of the main paper) follows, as well
as the upper bound on the duality gap.

A.5 Necessary and sufficient conditions - truncated problem

We assume that we know the optimal solution of a truncated problem where the entire set of de-
cendants of some nodes have been removed. We let denoteJ the hull of the set of active variables.
We now consider necessary conditions and sufficient conditions for this solution to be optimal with
respect to the full problem. This will lead to Proposition 2 and 3 of the main paper.

We first use Proposition 2 of the Appendix, to get a set ofκvw for (v,w) ∈ J for the reduced
problem; the goal here is to get necessary conditions by relaxing the dual problem definingκ ∈
L and find an approximate solution, while for the sufficient condition, any candidate leads to a
sufficient condition. It turns out that we will use the solution of the relaxed solution required for the
necessary condition for the sufficient condition.

If we assume that all variables inJ are indeed active, then any optimalκ ∈ L must be such
thatκvw = 0 if v ∈ J andw ∈ Jc. We then let freeκvw for v,w in J . Our goal is to find good
candidates for those free dual parameters.

We first derive necessary conditions by lowerbounding the sums by maxima:

max
v∈V ∩Jc

d−2
v

∑

w∈D(v)

κ2
vwα

⊤Kwα > max
v∈V ∩Jc

d−2
v max

w∈D(v)
κ2

vwα
⊤Kwα,

which can be minimized in closed form with respect toκ leading to

κvw = dv(
∑

v′∈A(w)∩Jc

dv′)
−1
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and to the lower bound

min
κ∈L

max
v∈V ∩Jc

d−2
v

∑

w∈D(v)

κ2
vwα

⊤Kwα > max
w∈Jc

α⊤Kwα

(
∑

v∈A(w)∩Jc dv)2
. (4)

For sufficient conditions, we simply take the value obtainedbefore forκ, which leads to

min
κ∈L

max
v∈V ∩Ic

d−2
v

∑

w∈D(v)

κ2
vwα

⊤Kwα 6 max
v∈V ∩Jc

∑

w∈D(v)

α⊤Kwα

(
∑

v∈A(w)∩Jc dv)2

= max
v∈sources(Jc)

∑

w∈D(v)

α⊤Kwα

(
∑

v∈A(w)∩Jc dv)2
.

We have moreover
∑

v∈A(w)

dv >
∑

v∈A(w)∩Jc

dv >
∑

v∈A(w)∩D(t)

dv,

leading to the desired upper bound

min
κ∈L

max
v∈V ∩Jc

d−2
v

∑

w∈D(v)

κ2
vwα

⊤Kwα 6 max
t∈sources(Jc)

∑

w∈D(t)

α⊤Kwα

(
∑

v∈A(w)∩D(t) dv)2
. (5)

A.6 Optimality conditions for the primal formulation

We know derive optimality conditions for the problem in the paper, which we will need in Section B,
i.e.:

min
β∈
∏

v∈V Fv

1
n

∑n
i=1 ϕi(

∑

v∈V 〈βv ,Φv(xi)〉) + λ
2

(
∑

v∈V dv‖βD(v)‖
)2
.

Let β ∈ R
V , with J being the hull of the active variables. The directional derivative in the direction

∆ ∈ R
V is equal to

1

n

n
∑

i=1

∑

w∈V

ϕ′
i(
∑

v∈J

〈βv,Φv(xi)〉)Φw(xi)
⊤∆w

+λ

(

∑

v∈J

dv‖βD(v)‖
)(

∑

v∈J

dv

βD(v)∩J

‖βD(v)∩J‖
⊤

∆v +
∑

v∈Jc

dv‖∆D(v)‖
)

and thusβ if optimal if and ony if, we have, withδ =
∑

v∈J dv‖βD(v)∩J‖:

∀w ∈ J,
1

n

n
∑

i=1

ϕ′
i(
∑

v∈J

〈βv,Φv(xi)〉)Φw(xi) + λδ





∑

v∈A(w)

dv

‖βD(v)∩J‖



βw = 0

∀∆Jc ∈ R
Jc

,
1

n

n
∑

i=1

∑

w∈Jc

ϕ′
i(
∑

v∈J

〈βv ,Φv(xi)〉)Φw(xi)
⊤∆w + λδ

(

∑

v∈Jc

dv‖∆D(v)‖
)

> 0.

Note that when regularizing byλ
∑

v∈V dv‖βD(v)‖ instead ofλ2
(
∑

v∈V dv‖βD(v)‖
)2

, we have
the same optimality condition withδ = 1.
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B Consistency conditions

We assume that we are in the finite dimensional setting (i.e.,eachFv has finite dimensionsfv) with
the square loss. Forw ∈ V , we let denoteXw ∈ R

n×fw the matrix whosen-th row isΦw(xi). We
let denoteΣvw ∈ R

fv×fw the population covariance betweenΦv(x) andΦw(x). The full covariance
matrix, defined from the blocksΣvw is assumed invertible. With these assumptions, we can follow
the approach of [18, 19, 20] : that is, ifλn tends to zero faster thann−1/2, then the estimatêβ
converges in probability to the generatingβ, and we have the expansion̂β = β + λnγ̂ whereγ̂ is
the solution of the following optimization problem, withδ =

∑

v∈W dv‖βD(v)‖:

min
γ∈
∏

w Rfw

1

2
γ⊤Σγ + δ

∑

v∈W

dv

βD(v)∩W

‖βD(v)∩W‖

⊤

γv + δ
∑

v∈Wc

dv‖γD(v)‖.

The consistency condition is then obtained by studying whenthe first order expansion indeed has
the correct sparsity pattern (for more precise statements and arguments, see [19]). We let denote
γW the solution of the previous problem, restricted toγWc = 0. We have:

γW = δΣ−1
WW Diag

(

∑

v∈A(w)
dv

‖βD(v)∩W ‖

)

w∈W
βW .

Following the previous section, it is optimal if and only forall ∆ ∈ W c,

∆⊤
WcΣWcWγW + δ

(

∑

v∈Wc

dv‖∆D(v)‖
)

> 0.

We let denote

AWc = δ−1
ΣWcWγW = ΣWcWΣ

−1
WW Diag

(

∑

v∈A(w)
dv

‖βD(v)∩W ‖

)

w∈W
βW .

The condition for good pattern selection is that for all∆ ∈ W c,

∆⊤
Wc

AWc +
∑

v∈Wc

dv‖∆D(v)‖ > 0,

which is exactly equivalent to‖AWc‖∗ 6 1, wherex 7→ ‖x‖∗ is the dual norm of the norm∆Wc 7→
∑

v∈Wc dv‖∆D(v)‖. This dual norm may be computed in closed form in the unstructured case,
whereD(v) = v, and is equal to theℓ∞-norm. In general, it cannot be computed in closed form.
However, we can give the following lower and upper bounds that lead to the desired propositions of
the main paper.

We have:

∑

v∈Wc

dv‖∆D(v)‖ 6
∑

v∈Wc

∑

w∈D(v)

dv‖∆w‖ =
∑

w∈Wc





∑

v∈A(v)∩W c

dv



 ‖∆w‖,

which leads to the upper bound

‖x‖∗ 6 max
w∈Wc

‖xw‖
∑

v∈A(v)∩W c dv
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Moreover, we have:

(

∑

v∈W c

dv‖∆D(v)‖
)2

=
∑

v∈W c

∑

v′∈Wc

dvdv′‖∆D(v)‖‖∆D(v′)‖

>
∑

v∈W c

∑

v′∈Wc

dvdv′‖∆D(v)∩D(v′)‖2

=
∑

v∈W c

∑

v′∈Wc

‖∆w‖2
∑

w∈D(v)∩D(v′)

dvdv′

=
∑

w∈Wc

‖∆w‖2
∑

v∈A(w)∩W c

∑

v′∈A(w)∩Wc

dvdv′

=
∑

w∈Wc

‖∆w‖2





∑

v∈A(w)∩Wc

dv





2

.

which leads to the lower bound:

(‖x‖∗)2 >
∑

w∈Wc

‖xw‖2

(

∑

v∈A(v)∩W c dv

)2 .
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