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Abstract

For supervised and unsupervised learning, positive defi@tnels allow to use large and
potentially infinite dimensional feature spaces with a catapional cost that only depends on
the number of observations. This is usually done througpémalization of predictor functions
by Euclidean or Hilbertian norms. In this paper, we explogaglizing by sparsity-inducing
norms such as th&-norm or the block’*-norm. We assume that the kernel decomposes into
a large sum of individual basis kernels which can be embetidadlirected acyclic graph; we
show that it is then possible to perform kernel selectionulgh a hierarchical multiple kernel
learning framework, in polynomial time in the number of stéel kernels. This framework
is naturally applied to non linear variable selection; ogteasive simulations on synthetic
datasets and datasets from the UCI repository show thaieetftiz exploring the large feature
space through sparsity-inducing norms leads to stateesftt predictive performance.

1 Introduction

In the last two decades, kernel methods have been a proldardtical and algorithmic machine

learning framework. By using appropriate regularizatigrHilbertian norms, representer theorems
enable to consider large and potentially infinite-dimenalideature spaces while working within an
implicit feature space no larger than the number of obsiemst This has led to numerous works on
kernel design adapted to specific data types and generielkeaised algorithms for many learning

tasks (see, e.gLI[ 2]).

Regularization by sparsity-inducing norms, such as/theorm has also attracted a lot of in-
terest in recent years. While early work has focused on efficalgorithms to solve the convex
optimization problems, recent research has looked at thdehselection properties and predictive
performance of such methods, in the linear case [3] or withénmultiple kernel learning frame-
work [4].

In this paper, we aim to bridge the gap between these two bhessearch by trying to use
¢*-normsinside the feature space. Indeed, feature spaces are large andpeet ¢éxe estimated
predictor function to require only a small number of feasunehich is exactly the situation where
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¢*-norms have proven advantageous. This leads to two natuestigns that we try to answer in

this paper: (1) Is it feasible to perform optimization instiery large feature space with cost which
is polynomial in the size of the input space? (2) Does it leaddtter predictive performance and
feature selection?

More precisely, we consider a positive definite kernel ttzat be expressed as a large sum of
positive definitebasisor local kernels This exactly corresponds to the situation where a large fea
ture space is the concatenation of smaller feature spacésy@ aim to do selection among these
many kernels, which may be done through multiple kernehiear[5]. One major difficulty how-
ever is that the number of these smaller kernels is usuafipreantial in the dimension of the input
space and applying multiple kernel learning directly irsttdecomposition would be intractable.

In order to peform selection efficiently, we make the extrsuagption that these small kernels
can be embedded indirected acyclic grapi(DAG). Following [6,[7], we consider in Sectidd 2
a specific combination of>-norms that is adapted to the DAG, and will restrict the aritteol
sparsity patterns; in our specific kernel framework, we &le & use the DAG to design an opti-
mization algorithm which has polynomial complexity in thenmber of selected kernels (Sectldn 3).
In simulations (Sectiofl5), we focus afirected grids where our framework allows to perform
non-linear variable selection. We provide extensive arpemtal validation of our novel regular-
ization framework; in particular, we compare it to the reguf-regularization and shows that it is
always competitive and often leads to better performanath, @n synthetic examples, and standard
regression and classification datasets from the UCI rapgsit

Finally, we extend in Sectiodl 4 some of the known consisteesylts of the Lasso and mul-
tiple kernel learning[]3[J14], and give a partial answer to thedel selection capabilities of our
regularization framework by giving necessary and sufficamditions for model consistency. In
particular, we show that our framework is adapted to estigatonsistently only thédaull of the
relevant variables. Hence, by restricting the statisficaber of our method, we gain computational
efficiency.

2 Hierarchical multiple kernel learning (HKL)

We consider the problem of predicting a random variable ) C R from a random variabl& <

X, whereX and) may be quite general spaces. We assume that we aregivieth observations
(xi,y;) € X x Y, i =1,...,n. We define theempirical risk of a function f from X to R as

LS L (yi, f(x:)), wherel : Y x R — RT is aloss function We only assume thatis convex
with respect to the second parameter (but not necessaiffigyatitiable). Typical examples of loss
functions are the square loss for regression, 4(g.,y) = %(y — )% fory € R, and the logistic loss
((y,y) = log(1+e~¥¥) or the hinge losé(y, ) = max{0, 1 —yy} for binary classification, where
y € {—1,1}, leading respectively to logistic regression and suppectar machines. Other losses
may be used for other settings (see, eld., [2] or the App&ndix

2.1 Graph-structured positive definite kernels

We assume that we are giverpasitive definite kernet : X x X — R, and that this kernel can
be expressed as the sum, over an indeX/’senf basis kernels,, v € V, i.e, for allz, 2’ € X,
k(xz,2') = >, ey ko(z,2"). Foreachy € V, we denote byF, and®, the feature space and feature
map ofk,, i.e., for allz, 2’ € X, ky(z,2") = (®,(x), ®,(2)). Throughout the paper, we denote



Figure 1. Example of graph and associated notions. (Lefinipie of a 2D-grid. (Middle) Example
of sparsity patternx in light blue) and the complement of its hull-(in light red). (Right) Dark
blue points &) are extreme points of the set of all active points (bkie dark red points) are
the sources of the set of all red points)(

by ||| the Hilbertian norm of. and by (u, v) the associated dot product, where the precise space
is omitted and can always be inferred from the context.

Our sum assumption corresponds to a situation where theréeatap®(x) and feature space
F for k is theconcatenatiorof the feature map#, (=) for each kernek,, i.e, 7 = [[, . F», and
®(z) = (®y,(2))vev. Thus, looking for a certai¥ € F and a predictor functiotf(z) = (3, (z))
is equivalent to looking jointly foB, € F,, forallv € V, andf(z) = > .y (8o, Pu(2)).

As mentioned earlier, we make the assumption that th& s=tn be embedded intodirected
acyclic graph Directed acyclic graphs (referred to as DAGS) allow to redty define the notions
of parents children descendantandancestors Given a nodev € V, we denote byA (w) C V the
set of its ancestors, and By(w) C V/, the set of its descendants. We use the convention that any
w is a descendant and an ancestor of itself, e A(w) andw € D(w). Moreover, forW C V,
we let denotesources(1) the set ofsourcesof the graphG restricted tolV (i.e., nodes if¥ with
no parents belonging td”). Given a subset of nodé& C V, we can define thaull of W as the
union of all ancestors ab € W, i.e.,hull(W) = J,,c; A(w). Given a seWV, we define the set
of extreme pointsf IV as the smallest subsétC W such thathull(7") = hull(IW) (note that it is
always well defined, a8y, Lui(r)—nun(w) 1)- See Figuréll for examples of these notions.

The goal of this paper is to perform kernel selection amoed@émnels:,, v € V. We essentially
use the graph to limit the search to specific subsets.dlamely, instead of considering all possible
subsets of active (relevant) vertices, we are only intetest estimating correctly the hull of these
relevant vertices; in Sectidn 2.2, we design a specific gparglucing norms adapted to hulls.

In this paper, we primarily focus on kernels that can be esqwé as “products of sums”, and on
the associateg-dimensional directed grids, while noting that our framewig applicable to many
other kernels. Namely, we assume that the input spaéactorizes intgp componentst’ = X x
.- x X, and that we are givemsequences of lengtf- 1 of kernelsk; ; (z;, «}),7 € {1,...,p},j €
{0,...,q}, such thatk(z,z") = ;1'1,...,3'13:0 [T Kiji (i, ) = TT7-, (Zi:e kij; (wl,w;)> We
thus have a sum df;+1)? kernels, that can be computed efficiently as a produgsoins. A natural
DAG onV = [[?_,{0,...,q} is defined by connecting eady,...,j,) to (j1i+1,52,--.Jp),
oy (J1s-- 3 dp—1,Jp+1). As shown in Sectiofi 22, this DAG will correspond to the ¢oaiat
of selecting a given product of kernels only after all themolducts are selected. Those DAGs
are especially suited to nonlinear variable selectionaiigular with the polynomial and Gaussian



kernels. In this context, products of kernels corresponatésactions between certain variables, and
our DAG implies that we select an interaction only after athgnteractions were already selected.

Polynomial kemels  We consider; = R, kij(z;,2;) = (1) (w;})’; the full kernel is then
equal tok(z,z") = [[i_; 37 () (w})! = I, (1 + @2})?. Note that this is not exactly
the usual polynomial kernel (whose feature space is theesplamultivariate polynomials abtal
degree less thag)), since our kernel considers polynomialsnoéximaldegreq;.

Gaussian kernels We also conside®t; = R, and the Gaussian-RBF kernet® @@=’ The
following decomposition is the eigendecomposition of tlo@ wentered covariance operator for a
normal distribution with variancé/4a (see, e.g.[18]):

emblemal)® = 500 %[6_%(a+c)x2ﬂk(\/%x)][6_%(a+6)(xl)2ﬂk(\/%$/)],
wherec? = a? + 2ab, A = a + b + ¢, and Hy, is the k-th Hermite polynomial. By appropriately
truncating the sum, i.e, by considering that the firddasis kernels are obtained from the figst
single Hermite polynomials, and th{e + 1)-th kernel is summing over all other kernels, we ob-
tain a decomposition of a uni-dimensional Gaussian kemteld + 1 components¢ of them are
one-dimensional, the last one is infinite-dimensional, dart be computed by differencing). The
decomposition ends up being close to a polynomial kernetfafite degree, modulated by an ex-
ponential [2]. One may also use adaptivedecomposition using kernel PCA (see, elgl. 12, 1]),
which is equivalent to using the eigenvectors of the emglimovariance operator associated with
the data (and not the population one associated with thedizadistribution with same variance).
In simulations, we tried both with no significant differesce

Finally, by taking product over all variables, we obtain @a@position of thep-dimensional
Gaussian kernel int¢; + 1)? components, that are adapted to nonlinear variable safechote
that forq = 1, we obtain ANOVA-like decomposition§1[2].

Kernels or features? In this paper, we emphasize tkernel viewi.e., we are given a kernel
(and thus a feature space) and we explore it uétagorms. Alternatively, we could use tfeature
view, i.e., we have a large structured set of features that weotsglect from; however, the tech-
niques developed in this paper assume that (a) each featghe be infinite-dimensional and (b)
that we can sum all the local kernels efficiently (see in paléir Sectiol3]2). Following the kernel
view thus seems slightly more natural.

2.2 Graph-based structured regularization

Given 8 € [],cy Fou. the natural Hilbertian nornjg| is defined through|s||> = 3, v 18412
Penalizing with this norm is efficient because summing alh&s k., is assumed feasible in poly-
nomial time and we can bring to bear the usual kernel magpihexvever, it does not lead to sparse
solutions, where mang, will be exactly equal to zero.

As said earlier, we are only interested in the hull of theceld elementg, € F,, v € V; the
hull of a set! is characterized by the setofsuch thaD(v) C I¢,i.e., such that all descendants of
v are in the complement’: hull(I) = {v € V,D(v) C I°}°. Thus, if we try to estimatéull(7),
we need to determine whighe V' are such thab(v) C I¢. In our context, we are hence looking
at selecting vertices € V for which 3p,,) = (Bw)wep(v) = 0-

We thus consider the following structured blo€knorm defined as

S dlBowll =Y do( Y 18P,

veV veV weD(v)
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where(d,),cy are positive weights. Penalizing by such a norm will indeagase that some of
the vectorsfp,) € HweD(U) F., are exactly zero. We thus consider the following minimizati

problent:

mingery, ., 7 & i1 (Wi Xoer (Bos Po(@))) + 3 (Coev dullBo 1) L)

Our Hilbertian norm is a Hilbert space instantiation of ther&rchical norms recently introduced
by [6]. If all Hilbert spaces are finite dimensional, our pautar choice of norms corresponds to an
“¢1-norm of /2-norms”. While with uni-dimensional groups or kernels, tti&-norm of />°-norms”
allows an efficient path algorithm for the square loss andnithe DAG is a treel]6], this is not
possible anymore with groups of size larger than one, or win@DAG is a not a tree. In Sectif@h 3,
we propose a hovel algorithm to solve the associated ogtiniz problem in time polynomial in the
number of selected groups or kernels, for all group size<G®And losses. Moreover, in Sectidn 4,
we show under which conditions a solution to the problem in@}consistently estimates the hull
of the sparsity pattern.

Finally, note that in certain settings (finite dimensionalbErt spaces and distributions with
absolutely continuous densities), these norms have tketedf selecting a given kernehly after
all of its ancestorg6]. This is another explanation why hulls end up being geldcsince to include
a given vertex in the models, the entire set of ancestors atsstoe selected.

3 Optimization problem

In this section, we give optimality conditions for the prefls in Eq.[(L), as well as optimization
algorithms with polynomial time complexity in the numbers#lected kernels. In simulations we
consider total numbers of kernels larger thar’, and thus such efficient algorithms are essential
to the success of hierarchical multiple kernel learning (HiK

3.1 Reformulation in terms of multiple kernel learning

Following [2,[10], we can simply derive an equivalent foration of Eq. [1). Using Cauchy-
Schwarz inequality, we have that for glie RV such that; > 0 and>", ., d2n, < 1,

2
(Coev doll oy I)? € Cper 205 = 5 0 (e 1o MBull?

with equality if and only ifn, = d, || Bp ) |3 ey dollBpw) )~ We associate to the vector
n € RY, the vector € RY such thatrw € V, (! = ZUGA(w) n, L. We use the natural convention
that if , is equal to zero, then,, is equal to zero for all descendantsof v. We let denoted
the set of allowed; and Z the set of all associatefl The setH and Z are in bijection, and we
can interchangeably usge € H or the corresponding(n) € Z. Note thatZ is in general not
convex (unless the DAG is a tree, see the Appendix), agdsifZ, then¢,, < ¢, for all w € D(v),
i.e., weights of descendant kernels are smaller, whichnsistent with the known fact that kernels
should always be selected after all their ancestors.

The problem in Eq{1) is thus equivalent to

fz%ilzll ﬁef][ﬁienvﬂ % Z?ﬂ (i 2vev<ﬁv’ Dy (24))) + % Ewev Cw(n)_l HﬁwHZ. (2)

Following [H], we consider the square of the norm, which doeschange the regularization properties, but allow
simple links with multiple kernel learning.




Using the change of variablg, = 8,¢, /2 and ®(z) = (¢/*®,(x))vey, this implies that

given the optimaly (and associated), 5 corresponds to the solution of the regular supervised
learning problem with kernel matriX” = CwKy, Where K, is n x n the kernel matrix
associated with kerndi,,. Moreover, the solution is thefl, = ¢, > ;- ; @i Py (2;), wherea € R”
are the dual parameters associated with the single kelamelihgy problem.

Thus, the solution is entirely determined byc R™ andn € R" (and its corresponding <
R"). More precisely, we have (see proof in the Appendix):

Proposition 1 The pair (o, n) is optimal for Eq. [L), withvw, 8, = Cuw Y g Py (z4), if and
only if (a) givenn, « is optimal for the single kernel learning problem with kdrngatrix K =
> wev Gw(n Ky, and(b) givena, n € H maximizes

Z( Z n;l)_laTKwa.

weV veA(w)

Moreover, the total duality gap can be upperbounded as theo$the two separate duality gaps for
the two optimization problems, which will be useful in Secl3.2 (see Appendix for more details).
Note that in the case of “flat” regular multiple kernel leagni where the DAG has no edges, we
obtain back usual optimality conditioris [9,]10].

Following a common practice for convex sparsity problefdd,[fve will try to solve a small
problem where we assume we know the set stich that| 3, || is equal to zero (Sectidn_3.3).
We then “simply” need to check that variables in that set nmalged be left out of the solution. In
the next section, we show that this can be done in polynorinied although the number of kernels
to consider leaving out is exponential (Secfiad 3.2).

3.2 Conditions for global optimality of reduced problem

We let denoteJ the complement of the set of horms which are set to zero. We ¢haosider the
optimal solutions of the reduced problem (a®h), namely,

minﬁ]EHUeJ}—u % Z?:l E(yu ZUEJ<ﬁU> (I)U(xl») + % (EUEV deﬁD(v)ﬁJH)2 ) (3)

with optimal primal variables3;, dual variablesx and optimal pair(n;,{;). We now consider
necessary conditions and sufficient conditions for thigtsmh (augmented with zeros for non active
variables, i.e., variables ii°) to be optimal with respect to the full problem in EQl (1). Wendte
by d = ,c; dvllBpw)ns |l the optimal value of the norm for the reduced problem.

Proposition 2 (V;) Ifthe reduced solution is optimal for the full problem in Ef) and all kernels
in the extreme points of are active, then we have

max o Kio/d? <682
tesources(J€)

PrOpOSItIOH 3 (SJ,E) If maXtesources(Jc) ZUJED(t) O‘TKwO‘/(ZueA(w)mD(t) dv)2 < 52 +€/>\, then
the total duality gap is less than



The proof is fairly technical and can be found in the Appendhis result constitutes the main
technical contribution of the paper: it essentially alld@solve a very large optimization problem
over exponentially many dimensions in polynomial time.

The necessary conditigiV,;) does not cause any computational problems. However, tfie suf
cient condition(S; . ) requires to sum over all descendants of the active kernélishvis impossible
in practice (as shown in Sectifh 5, we consitiesf cardinal often greater thard*®). Here, we need
to bring to bear the specific structure of the kerkeln the context of directed grids we consider in
this paper, ifd, can also be decomposed as a product, en , (,,)p) dv is also factorized, and
we can compute the sum over alle D(¢) in linear time inp. Moreover we can cache the sums

> wen @) Kuw/ (Coeaw)np dv)” in order to save running time.

3.3 Dual optimization for reduced or small problems

When kernels:,, v € V have low-dimensional feature spaces, we may use a primagseptation
and solve the problem in EqJ(1) using generic optimizatmsittoxes adapted to conic constraints
(see, e.g.[112]). However, in order to reuse existing ojzeh supervised learning code and use
high-dimensional kernels, it is preferable to use a duahapation. Namely, we use the same tech-
nique as([B]: we consider fare Z, the functionB(¢) = mingery, 7, = >oimy £(Wis Yopey (B, Puli)))+
3> wev GotllBw |, which is the optimal value of the single kernel learninghpem with kernel
matrix ), v Gy Solving Eq. [2) is equivalent to minimizing (¢ (n)) with respect ta) € H.

If aridge (i.e., positive diagonal) is added to the kernetrioas, the functiorB is differentiable.
Moreover, the functiom) — ((n) is differentiable onR*.)". Thus, the functiom — B[(((1 —
e)n + fv'd‘Q)] , whered =2 is the vector with elementg, 2, is differentiable ifz > 0. We can then
use the same projected gradient descent stratedy as [9himiné it. The overall complexity of
the algorithm is then proportional 19(|V'|n?)—to form the kernel matrices—plus the complexity
of solving a single kernel learning problem—typically beenO(n?) andO(n?).

3.4 Kernel search algorithm

We are now ready to present the detailed algorithm whichnelsteéhe feature search algorithm
of [I1]. Note that the kernel matrices are never all needguiatty, i.e., we only need them (a)
explicitly to solve the small problems (but we need only a téthose) and (b) implicitly to compute
the sufficient conditior{.S ;. ), which requires to sum over all kernels, as shown in Se€fidn 3

e Input: kernel matriceds,, € R™"*", v € V, maximal gap, maximal# of kernels@

e Algorithm
1. Initialization: set/ = sources(V'),
compute(a, n) solutions of Eq.[{[B), obtained using Sectlonl 3.3
2. while () and(S, ) are not satisfied angt(V') < Q

— If (V) is not satisfied, add violating variablessources(J¢) to J
else, add violating variables #urces(.J¢) of (S;.) to J

— Recomput€«a, ) optimal solutions of Eq[{3)

e Output: J, a, n



The previous algorithm will stop either when the duality ggfess tharr or when the maximal
number of kernelg) has been reached. In practice, when the weighiacrease with the depth of
v in the DAG (which we use in simulations), the small dualitpggenerally occurs before we reach
a problem larger thay. Note that some of the iterations only increase the sizeeohttive sets to
check the sufficient condition for optimality; forgettingose does not change the solution, only the
fact that we may actually know that we havesaaptimal solution.

In the directedp-grid case, the total running time complexity is a functidnttee number of
observationsn, and the numbelR of selected kernels; with proper caching, we obtain the fol-
lowing complexity, assumin@(n?) for the single kernel learning problem, which is conseweati
O(n®R+n?Rp? +n?R?p), which decomposes into solvir@(R) single kernel learning problems,
cachingO(Rp) kernels, and computin@(R?p) quadratic forms for the sufficient conditions. Note
that the kernel search algorithm is also an efficient algorifor unstructured MKL.

4 Consistency conditions

As said earlier, the sparsity pattern of the solution of ER.will be equal to its hull, and thus we
can only hope to obtain consistency of the hull of the pattetrich we consider in this section.

For simplicity, we consider the case of finite dimensiondbgiit spaces (i.eF, = R/*) and
the square loss. We also hold fixed the vertex set pf.e., we assume that the total number of
features is fixed, and we lettend to infinity and\ = \,, decrease with.

Following [4], we make the following assumptions on the utdeg joint distribution of( X, Y):

(a) the joint covariance matriX of (®(x,)).ev (defined with appropriate blocks of siZe x fy,)
is invertible, (D)E(Y[X) = 3, cw (8w, Puw(z)) with W C V andvar(Y|X) = o > 0 almost
surely. With these simple assumptions, we obtain (see pndbe Appendix):

Proposition 4 (Sufficient condition) If we have

max Y. [Zww Sy Diag(dol|Bp () I~ Dvew Bw || <1
tesources(W€) weD(?) (ZueA(w)ﬁD(t) dy)? ’

then@ and the hull ofW are consistently estimated whapn!/2 — oo and ), — 0.

Proposition 5 (Necessary condition)If the 3 and the hull of W are consistently estimated for
some sequenck,, then

max || Z,w Sy Diag(do/||Bpw) | vew Bw |1 /df < 1.
tesources(W¢)
Note that the last two propositions are not consequencelseositmilar results for flat MKLI4],
because the groups that we consider are overlapping. Mergibe last propositions show that we
indeed can estimate the correct hull of the sparsity paitéhe sufficient condition is satisfied. In
particular, if we can make the groups such that the betweempgcorrelation is as small as possible,
we can ensure correct hull selection. Finally, it is worttimpthat if the ratios?,, / max,c a () dv
tend to infinity slowly withn, then we always consistently estimate the depth of the hell,the
optimal interaction complexity. We are currently inveatigg extensions to the non parametric
case[[#], in terms of pattern selection and universal ctersiy.
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Figure 2: Comparison on synthetic examples: mean squaredaer 40 replications (with halved
standard deviations). Left: non rotated data, right: eatatata. See text for details.

5 Simulations

Synthetic examples We generated regression data as follows= 1024 samples of € [22,27]
variables were generated from a random covariance matrikite labely € R was sampled as a
random sparse fourth order polynomial of the input varialffeith constant number of monomials).
We then compare the performance of our hierarchical mealtiginel learning method (HKL) with
the polynomial kernel decomposition presented in Sedfldao &her methods that use the same
kernel and/or decomposition: (a) the greedy strategy etctiely basis kernels one after the other, a
procedure similar td[13], and (b) the regular polynomiainie regularization with the full kernel
(i.e., the sum of all basis kernels). In Figliie 2, we complaggwo approaches on 40 replications in
the following two situations: original data (left) and rtgd data (right), i.e., after the input variables
were transformed by a random rotation (in this situatioe, generating polynomial is not sparse
anymore). We can see that in situations where the underjyiadictor function is sparse (left),
HKL outperforms the two other methods when the total numbemadablesp increases, while in
the other situation where the best predictor is not spaiglet)y it performs only slightly better: i.e.,
in non sparse problemé!-norms do not really help, but do help a lot when sparsity jseeted.

UCI datasets For regression datasets, we compare HKL with polynomiagi@ele 4) and
Gaussian-RBF kernels (each dimension decomposed inton@lkgrto the following approaches
with the same kernel: regular Hilbertian regularizatior2)Lsame greedy approach as earlier
(greedy), regularization by thé'-norm directly on the vecton, a strategy which is sometimes
used in the context of sparse kernel learning [14] but do¢sise the Hilbertian structure of the
kernel (lassax), multiple kernel learning with the kernels obtained by summing all kernels as-
sociated with a single variable, a strategy suggestedlbyMEKL). For all methods, the kernels
were held fixed, while in Tablg 1, we report the performanaeHe best regularization parameters
obtained by 10 random half splits.

We can see from Tabld 1, that HKL outperforms other methadgairticular for the datasets
bank-32nm, bank-32nh, pumadyn-32nm, pumadyn-32nh, varelatasets dedicated to non linear
regression. Note also, that we efficiently explore DAGs withy large numbers of vertice’s(1).

For binary classification datasets, we compare HKL (witHolgéstic loss) to two other methods
(L2, greedy) in Tabld]2. For some datasets (e.g., spambeisd), works better, but for some
others, in particular when the generating problem is knawet non sparse (ringnorm, twonorm),
it performs slightly worse than other approaches.



dataset n p k #(V) L2 greedy lassex MKL HKL

abalone 4177 10 pol4~10" [44.2£1.3 43.9%1.4 47.90.7 44.51.1 43.3t1.0
abalone 4177 10 rbf~10!° |43.0:0.9 45.0:1.7 49.6:1.7 43.21.0 43.6:1.1

bank-32fh 8192 32 pol4~10%*? [40.H0.7 39.20.8 41.30.7 38.740.7 38.9:0.7
bank-32fh 8192 32 rbf ~103! {39.0:0.7 39.20.7 66.16.9 38.4:0.7 38.4-0.7

bank-32fm 8192 32 pol4~10%? | 6.0:0.1 5.0:0.2 7.0+0.2 6.1#0.3 5.HO0.1
bank-32fm 8192 32 rbf~103' | 5.740.2 5.80.4 36.34.1 590.2 4.6:0.2

bank-32nh 8192 32 pol4<10?? [44.3t1.2 46.31.4 45.80.8 46.:1.2 43.6+1.1
bank-32nh 8192 32 rbf~103! |44.3:t1.2 49.41.6 93.@2.8 46.1+1.1 43.5+1.0

bank-32nm 8192 32 pol410?? [17.2:0.6 18.2:0.8 19.5-0.4 21.6:0.7 16.8:0.6
bank-32nm 8192 32 rbf~103! |16.9:0.6 21.8-0.6 62.32.5 20.90.7 16.4:0.6

boston 506 13 pol4~10° [17.13.6 24.7410.8 29.32.3 22.22.2 18.1%3.8
boston 506 13 rbf ~10'% |16.4t4.0 32.4:8.2 29.41.6 20.722.1 17.%4.7

pumadyn-32fh 8192 32 pol4v10%? [57.3:0.7 56.4-0.8 57.3-0.4 56.4-0.7 56.4+0.8
pumadyn-32fh 8192 32 rbfa~103' |57.72:0.6 72.2:22.5 89.32.0 56.530.8 55.70.7

pumadyn-32fm 8192 32 pol4<10?? | 6.9+0.1 6.4£1.6 7.5:0.2 7.0:0.1 3.1+0.0
pumadyn-32fm 8192 32 rbf~103! | 5.0:0.1 46.251.6 44.25.7 7.#0.1 3.4:0.0

pumadyn-32nh 8192 32 pol4:10%? |84.2+1.3 73.3-25.4 84.80.5 83.6:1.3 36.70.4
pumadyn-32nh 8192 32 rbf~103! |56.5t1.1 81.325.0 98.%#0.7 83.%1.3 35.5:0.5

pumadyn-32nm 8192 32 pol4:10?2 [60.11.9 69.932.8 78.51.1 77.50.9 5.5:0.1
pumadyn-32nm 8192 32 rbfx~10%' [15.7:0.4 67.342.4 95.91.9 77.60.9 7.2:0.1

Table 1: Mean squared errors (multiplied by 100) on UCI regian datasets, normalized so that
the total variance to explain is 100. See text for details.

dataset n p k #(V) L2 greedy  HKL
mushrooms 1024 117 pol4:10%? | 0.4:0.4 0.1H0.1 0.140.2
mushrooms 1024 117 rbf10'?| 0.14+0.2 0.14+0.2 0.10.2
ringnorm 1024 20 pol4~10™ | 3.8:1.1 5.9-1.3 2.0+0.3
ringnorm 1024 20 rbf ~10'9 | 1.2+0.4 2.4-0.5 1.6:0.4
spambase 1024 57 pol410%° | 8.3:t1.0 9.A1.8 8.1H0.7
spambase 1024 57 rbf10%* | 9.4£1.3 10.6:1.7 8.4+-1.0
twonorm 1024 20 pol4~10™ | 2.9+0.5 4.740.5 3.2:0.6
twonorm 1024 20 rbf ~10'9 | 2.8£0.6 5.140.7 3.2:0.6
magic04 1024 10 pol4~107 [15.9+1.0 16.6-1.6 15.6+0.8
magic04 1024 10 rbf~10'" |15.70.9 17.21.3 15.6+0.9

Table 2: Error rates (multiplied by 100) on UCI binary cldissition datasets. See text for details.
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6 Conclusion

We have shown how to perform hierarchical multiple kernatméng (HKL) in polynomial time in

the number of selected kernels. This framework may be applienany positive definite kernels
and we have focused on polynomial and Gaussian kernels oseatfilinear variable selection.
In particular, this paper shows that trying to Usetype penalties may be advantageous inside the
feature space. We are currently investigating applicatiwnother kernels, such as the pyramid
match kernell[15], string kernels, and graph kerriéls [2].

A Optimization results

In this first section, we give proofs of all results relatedh® optimization problems. We first recall
precisely how we obtained the relationships betweemd(. Using Cauchy-Schwarz inequality,
we know that for ally € RV such that) > 0 and}", ., d2n, < 1,

(Zd 18p(v) H) (Z( 1/2)”[73712% H)

veV veV

<Qy%xZWD Z(zjn)m%

veV veV weV \veA(w)

with equality if and only if, = d;1||ﬁD(v) 1> ver dollBp(w) N1

A.1 Set of weights for trees

When the DAG is a tree (i.e., when each vertex has at most omagpathen, without loss of
generality we may consider that only one vertex has no pdtleatrootr) while all othersw have
exactly one parent(w). In this situation, we have forall # r, (| — ;1 = —77;(11,)- Moreover,
for all leavesv, (, = n,. This implies that the constraimt > 0 is equivalent ta > 0 and for all
v # 1, Cr(v) = G- The final constrainEvev nyd? < 1, may then be written as:

> d2 + ) Guds <

v Co ﬂ(v) v leaf
that is,
d; (cv > Godly <
> LD
vET v leaf
which is clearly conveXT12]. When the DAG is not a tree, wejeoture that the sef is not convex.

A.2 Fenchel conjugates

Following [1€,[17], in order to derive optimality conditisrfor all losses, we need to introduce
Fenchel conjugates. Let; : R — R, be the Fenchel conjugate[12] of the convex functign:
a — {(y;,a), defined as

0i(b) = maxab - gi(a).
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The functiony; is always convex and, because we have assumedgbihigiconvex and continuous,
we can represent; as the Fenchel conjugate ©f, i.e., for alla € R,

pi(a) = I&%ab i (D).

In particular, we have for the following standard examples:
o for least-squares regressipwe havep;(a) = 3(y; — a)? andy;(b) = 3b* + by;,

e for logistic regressionwe havep;(a) = log(1l + exp(—v;a;)), wherey; € {—1,1}, and
;i (b) = (1 + by;) log(1 + by;) — by; log(—by;) if by; € [—1,0], 400 otherwise.

e for support vector machine classificatiowe havey;(a) = max(0,1 — y;a), wherey; €
{—1,1}, andy;(b) = y;bif by; € [—1,0], +00 otherwise.
A.3 Preliminary propositions

We first recall the duality result for the regulé-norm kernel learning problem:

Proposition 6 For all nonnegative, € R", the dual of the optimization problem

min 5 330 0y ey (Bo Po(20))) + 5 ey G 18wl

6€HUEV}—’”

g =1 Do) - o (zcw ) 8

weV

and the optimal3 can be found from an optimal as8,, = > ;" | &Py, (2;).
Proof We introduce auxiliary variables; =~ i (8, ., (z;)) and consider the Lagrangian:

= %Z%w Z G 11Bwll? +AZa, wi = > (Bu, @u()))
=1

wEV veV

Minimizing with respect to the primal variables 3, we get the dual problem. [ |

We will use the following simple result, which implies thatah component,,(n) is a concave
function ofn:

-1
Lemma 1 The minimum of~’_ | a;x7 subject to) 7~ | ; = 1 is equal to(ZJ 1 az_1> and is
-1
-1 -1
attained atz; = a, (E;“zl a; ) :

The following proposition derives the dual of the problemin
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Proposition 7 Let L = {x € RV*V.Yw € V, 3" cr(,) #vw = 1}. The following optimization
problems are dual to each other, and there is no duality gap :

min max d, 2 g k2, ol Ko
k€L veV
weD(v)

Proof We have the Lagrangian
L=+ Z My Z w2, o Kya — 6%d2 |,
veV weD(v)
which can be minimized in closed form with respecft@ndx € L, and leads to (using Lemma 1):

2 2 T
min max d, E ko o Ko —maxa E
KEL veV vw v ( Cw w

weD(v) weV

A.4 Duality gaps

We consider the following function of € H anda € R™:

= - sz ’I’L)\OZZ - _aT Z Cw

weV

This function is convex im (because of Lemma 1) and concaveninstandard arguments (e.g.,
primal and dual strict feasibilities) show that there is mality gap to the variational problems:

inf sup F(n,a) = sup inf F(n,«).
neH qern acRn n€H
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We can decompose the duality gap, given a pairy) as

sup F(n,a) — inf F(1/,a)

o ER™ n'eH
= m&n{% (y2>z<ﬁva z Z (w 1‘|ﬁw||2}
i=1 veV wEV
. /
_nlflel%F(” ;)
< = ZE yz, Z Cu} Z Cuar TKu;Oé + — sz n)\az)
weV wEV
-
+nsgg 204 %‘;Cw
= _Z£ y“ZCw Zz/;l —nAa;) —i—)\ZCw ol Ko
weV weV
+ sup aT Z Cw(n ) — B Z Co(n)a’ Kya.
wen 2 0 weV

We thus get the desired upper bound from which propositicof thé main paper) follows, as well
as the upper bound on the duality gap.

A.5 Necessary and sufficient conditions - truncated problem

We assume that we know the optimal solution of a truncatetllpno where the entire set of de-
cendants of some nodes have been removed. We let déribeehull of the set of active variables.
We now consider necessary conditions and sufficient camditior this solution to be optimal with
respect to the full problem. This will lead to Propositionriia88 of the main paper.

We first use Proposition 2 of the Appendix, to get a setQf for (v, w) € J for the reduced
problem; the goal here is to get necessary conditions byinglahe dual problem defining €
L and find an approximate solution, while for the sufficient diGon, any candidate leads to a
sufficient condition. It turns out that we will use the soduttiof the relaxed solution required for the
necessary condition for the sufficient condition.

If we assume that all variables ih are indeed active, then any optimale L must be such
thatk,, = 0if v € Jandw € J°. We then let free:,,, for v,w in J. Our goal is to find good
candidates for those free dual parameters.

We first derive necessary conditions by lowerbounding timessbly maxima:

2 2 2
B 2 e e > g 0,7 g, oo Ko

which can be minimized in closed form with respecktieading to

Royw = dv( Z dv’)_l

v eA(w)nJe
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and to the lower bound

min max d> Z k2,0 Kya > max ol Kuo 4)
reLvevne t fs weT® (3 e aw)nge dv)?

For sufficient conditions, we simply take the value obtaibetbre forx, which leads to

T
K,
mlnmaxd ZKJQKO( maxz(za @

¢ c
k€L veVNI weD W) veVnJ weD(v) veA(w)NJe dv)
al Ko
= max .
i E 2
vesources(J€) weD(v) (ZveA(w)ﬂJC dv)

We have moreover
Yodoz Y Az Yy,
veEA(w) veA(w)NJe veA(w)ND(t)

leading to the desired upper bound

min max d? Z e TKya < max Z alKya (5)
keL veVNJe weD () tesources(J€) weD(®) (ZUEA(w)ﬂD(t) dU)Z

A.6 Optimality conditions for the primal formulation

We know derive optimality conditions for the problem in thappr, which we will need in Sectigd B,

i.e.:

BEHH.GVFU LS i v (Bor ®u(0))) + 3 (Zev dollBow 1)

Let 3 € RY, with .J being the hull of the active variables. The directional eagive in the direction

A € RV is equal to
o Z > O (B B (@) Bu () Ay

i=1 weV ved
ﬁJ
ved ved D(“ nJ veJe

and thus3 if optimal if and ony if, we have, withh = 3 _ ; dul|Bp ) lI:

Yw € J, EZ%(ZWU#I’U(%»)@@U(%) +AS ( > N . ) e
P D(v)nJ

veJ vEA(w)

VA € BT, T3S GO, @) Bulen) A+ 0 (Z deADmH) >0

=1 weJe ved veJe

Note that when regularizing by>>, ., du|Bp () || instead o3 (3, dollBpw) ||)2, we have
the same optimality condition with = 1.
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B Consistency conditions

We assume that we are in the finite dimensional setting éaeh*, has finite dimensiong,) with
the square loss. Far € V, we let denoteX,, € R™*fv the matrix whose:-th row is®,,(z;). We
let denotex,,,, € R/**/w the population covariance betweeg(x) and®,,(x). The full covariance
matrix, defined from the blockx,,, is assumed invertible. With these assumptions, we canaollo
the approach of [16, 19, P0] : that is, i, tends to zero faster tham!/2, then the estimatg
converges in probability to the generatifigand we have the expansigh= 3 + Ay where?y is
the solution of the following optimization problem, with= 3 vy, dul|Bpw II:

B (w) T
A Yot Z dul[ D) ll-

min —’y TSy 446 d,
2 2 gl 02

v€ll,, Rfw

The consistency condition is then obtained by studying wtherfirst order expansion indeed has
the correct sparsity pattern (for more precise statemamtsasguments, seé [19]). We let denote
~w the solution of the previous problem, restrictedy{g- = 0. We have:

N _1 . d'U
Yw = 60X 3w Diag (ZveA(w) W)wewﬂw.

Following the previous section, it is optimal if and only fat A € W€,

AveSwewrw + 0 < Z deAD(v)H> =0
veW€

We let denote

Awe = 6 Swewrw = Swew Sy Diag (ZUEA(w) 7|\3D(f’)”mw||>wewﬁw-

The condition for good pattern selection is that forale W€,

Ay Awe + Z do||Apy |l = 0,
veW*e

which is exactly equivalent thAwy<||* < 1, wherex — ||z||* is the dual norm of the nortA yyc —

> vewe dullApgy [l. This dual norm may be computed in closed form in the unsiredt case,
whereD(v) = v, and is equal to thé>-norm. In general, it cannot be computed in closed form.
However, we can give the following lower and upper boundslted to the desired propositions of
the main paper.

We have:
> dlApwll < > Z dollAwl = > S dy | 1Al
veEW*© veEW* weD(v weWe \veA(v)NW¢e

which leads to the upper bound

lell* < max, 1zl y
weW ZveA(v)ﬂWC v
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Moreover, we have:

2
(Z dv”AD(v)H> = > > dydu|Apwlll Al

veW* veWe v eW*e
> > > dudy||Apwyrpe I
VEWE v/ EWE
= Z Z HAwH2 Z dydy
vEW v eW*© weD(v)ND(v')
= > AP Y Y dudy
weW* VEA(W)NWE v €A(w)NW©
2
- ZAw2( > dv).
weW¢ veEA(w)NW*

which leads to the lower bound:

2
weW® <ZveA(v)ch dv)
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