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Abstract.

A piecewise quintic G1 spline surface interpolating the vertices of a triangu-

lar surface mesh of arbitrary topological type is presented. The surface has

an explicit triangular B�ezier representation, is a�ne invariant and has local

support. The twist compatibility problem which arises when joining an even

number of polynomial patches G1 continuously around a common vertex is

solved by constructing C2-consistent boundary curves. Piecewise C1 bound-

ary curves and a regular 4-split of the domain triangle make shape parameters

available for controlling locally the boundary curves. A small number of free

inner control points can be chosen for some additional local shape e�ects.

Keywords: G1 continuity, triangular B�ezier surfaces, twist compatibility,

interpolation, triangle 4-split

R�esum�e.

Cet article pr�esente une m�ethode d'interpolation des sommets d'un r�eseau tri-

angulaire de topologie arbitraire par une surface G1 quintique par morceaux.

La surface a une repr�esentation de B�ezier triangulaire explicite, est a�nement

invariante et de support local. Le probl�eme de compatibilit�e du twist est r�e-

solu par la construction de courbes fronti�eres C2-consistantes. Ce probl�eme

apparâ�t lors du raccordement G1 d'un nombre pair de facettes polynomiales

autour d'un sommet commun. La construction de courbes fronti�eres C1 par

morceaux et la d�ecomposition r�eguli�ere du triangle domaine permettent un

contrôle locale des courbes fronti�eres grâce �a plusieurs param�etres de forme.

Un petit nombre de points de contrôle int�erieurs peuvent être choisis pour

modi�er localement la forme de la surface.

Mots-clef: continuit�e g�eom�etrique, surfaces de B�ezier triangulaires, compat-

ibilit�e du twist, interpolation, subdivision uniforme de triangles
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1. INTRODUCTION

De�ning surfaces from a set of points, which control in an intuitive way the form of a

surface due to Bernstein-B�ezier or B-spline basis functions has been becoming one of the

most popular methods for modeling free form surfaces. The surface hereby is de�ned as a

regular polynomial (possibly rational) map of a planar domain, tessellated into a regular

grid of rectangles or triangles, resulting in a collection of tensor product or triangular

patches. Such surface de�nitions generally don't allow the representation of surfaces of

arbitrary topological type. n-sided patches can �ll in n-sided holes in rectangular patch

con�gurations and o�er therefore the possibility to represent general closed surfaces or

surfaces with handles. Nevertheless if one wants to model entire surfaces with n-sided

patches, restrictions on the control net must be accepted.

A widely accepted and popular way in de�ning surfaces without any limit of topologies

is the use of smoothly joined triangular patches, where each patch is de�ned over the unit

triangle. They have the advantage to o�er a uniform description for all possible topologies

without any restriction on the number of faces that meet at a vertex, or on the number of

edges of the faces.

The paper is concerned with de�ning a geometrical smooth surface by interpolating a

triangulated set of points in IR3. Such a triangulated point set which we call surface mesh

should be 2-manifold and is allowed to represent surfaces of arbitrary topological type.

There is no restriction on the order of the mesh vertices (i.e. the number of faces that

meet at a vertex). Furthermore the surface mesh furnishes topology information, which is

a data structure generating adjacency informations relating vertices, edges and faces. We

assume that the surfaces mesh is already given.

Local smooth triangular interpolants of an arbitrary surface mesh have been developed

by many. These previous works are the most directly related to the results found here

in the sense that they interpolate a control net and not only approximate it. They can

be divided into di�erent groups depending on how they solve the \vertex consistency

problem", which occurs when joining with G1continuity an even number of C2-patches

around a vertex. The earliest of these schemes are Clough-Tocher-like domain splitting

methods [2, 18, 20, 9]. Since the surface mesh triangles are divided into sub-triangles, we

refer to them asmacro-triangles. Three quartic G1patches per macro-triangle interpolating

positions and normals are produced. One problem is how to employ the free parameters in

order to get pleasing shapes. Convex combination schemes [14, 5, 6, 4], blend side-side or

side-vertex operators in order to interpolate trans�nite position, tangent or curvature data

of the boundary curves. They are rational patches without consistently de�ned twists at

the vertices. The use of singular parameterizations [13] is another possibility but seems to

have problems in de�ning pleasing shapes. The boundary curve schemes [15, 10] �rst create

C2-consistent boundary curves and then �ll in the patches polynomial. Furthermore some

special interpolation methods can be found in [7, 21, 19]. They all make either restrictions

on the mesh topology or on the input data, and are therefore not general enough in order
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to be compared with the methods listed above. An overview and comparison of most of

these methods can be found in [11, 12].

The surface interpolation scheme of an arbitrary mesh of points in IR3, which is presented

in this paper will satisfy the following requirements. They are desirable for the reasons

that will be explained below:

- the surface interpolates the vertices of the given surface mesh. And if desired, the

interpolation condition can be relaxed in order to only approximate the mesh,

- the surface is G1
continuous for visual smoothness,

- the surface is piecewise triangular and the de�nition domain of the surface is the input

surface mesh itself,

- the surface can be of arbitrary topological type,

- the surface results of a local interpolation method, where only a few data of the cor-

responding mesh triangle and its neighbors is used. Global interpolation schemes gen-

erally result in a big system of equations where all input data in
uences the shape of

every patch,

- an explicit closed form polynomial and low degree parameterization is given for each

patch. Fast surface evaluations and calculus on the surfaces, like derivatives and cur-

vature, are important for rendering and interrogation purposes,

- the surface is a�ne invariant and shape parameters are available for local shape control.

An interesting triangular G1surface spline, which motivated this work, was recently given

by Loop, and consists of triangular B�ezier patches of degree six, one per macro-triangle.

All requirements are satis�ed except one: interpolation is theoretically possible, but leads

to unwanted surface undulations in practice [10]. These undulations are due to severe

constraints on the second derivatives along the boundary curves, at each end-point. The

surface mesh therefore only acts as a control mesh which is approximated and not inter-

polated.

In this paper we present an interpolating quintic G1triangular spline surface, which is

a generalization of Loop's scheme. All requirements are full-�lled. Four B�ezier patches

per macro-triangle are created by a local scheme. The basic idea, which allows to per-

form interpolation without undulations, is to use a regular 4-split of the domain triangles.

As a consequence of the 4-split, the constraints between derivatives at each end-point

of the boundary curves are relaxed, and an interpolating curve network, without un-

wanted undulations, can be built. This approach has never been used before for parametric

G1interpolation of triangulated surface meshes in IR3. The advantage over the Clough-

Tocher-split is that tiny triangles are avoided, the sub-triangles are more regular. Mesh

vertices of arbitrary order are allowed. The vertex consistency problem is solved by con-

structing C2-consistent boundary curves. The 4-split doesn't solve the vertex consistency

problem, like the Clough-Tocher-split does, but it introduces enough degrees of freedom
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enabling to produce this new quintic surface spline. It will furthermore been shown in this

paper that the additional vertices of order six which are introduced by the 4-split don't

present the vertex consistency problem and that the four patches per macro-triangle join

C1-continuously to each other.

The paper is organized as follows. Section 2 reviews the G1conditions when a pair of

parametric surfaces meet and when a collection of parametric patches meet at a corner.

The \vertex consistency problem" which arises when an even number of patches meet at

a corner is discussed. Section 3 brie
y recalls the results of Loop, and shows an example

where unwanted oscillations occurs when interpolating meshes with this method. Section

4 gives some general remarks on the 4-split of the macro-patches. The following sections

5-8 concentrate on the di�erent steps of the surface construction resulting in an explicit

representation of the four B�ezier patches which interpolate the corners of a mesh triangle.

Examples illustrating di�erent meshes interpolation are given in section 9. Eventually,

section 10 o�ers some concluding remarks and directions for future work.

2. NOTATIONS and G1-CONDITIONS

2.1 Surface mesh

Let M denote the input surface mesh. It consists of a list of vertices and a list of edges.

Together they describe a 2-manifold mesh in IR3 whose faces are triangles. The number of

faces/edges incident in one vertex is referred as order of a vertex.

We aim to construct a piecewise triangular surface S that interpolates the given vertices

V . The spline surface is composed of triangular macro-patches M i which are in one-to-one

correspondence to the mesh facets. They are all polynomial images of the unit triangle in

IR2, composed of four B�ezier triangles each, joining G1continuously. We assume the reader

is familiar with B�ezier curves and surfaces [3, 8].

The algorithm for constructing the spline surface consists mainly of three steps

- constructing boundary curves

- constructing cross-boundary tangents

- �lling in the patches.

The boundary curves of the macro-patches are constructed in correspondence to a mesh

edge. Therefore there is a one-to-one correspondence between the mesh faces and the

macro-triangles of S. It is therefore convenient for the following sections to choose a

parameterization of the macro-patches M i around a common vertex, sharing pairwise a

common boundary as illustrated in �g. 1.
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Figure 1: parameterization of macro-patches around a vertex

All subscripts i = 1; : : : ; n are taken modulo n, where n is the order of the mesh vertex

corresponding to M i(0; 0). The parameter ui lies in the interval [0; 1].

In order to allow a uni�ed treatment of the surface patches, the surface meshM is supposed

to be closed. We shall point out that since the scheme is local, there should be no theoretical

di�culties in treating meshes with boundaries. This is left for further research.

2.2 G1 continuity between two adjacent patches

Consider two adjacent patches M i�1(ui�1; ui) and M i(ui; ui+1) that share a common

boundary, i.e. M i�1(0; ui) = M i(ui; 0) for 0 � ui � 1. Both patches have coincident

tangent planes at every point of their common boundary, if the vectorsM i
ui
, M i

ui+1
, M i�1

ui�1

are coplanar for 0 � ui � 1. M i
ui

denotes the partial derivative of M i with respect to the

parameter ui.

Therefore, two adjacent patchesM i, M i�1 join at a common boundary with G1continuity

if and only if there exist three scalar functions �i, �i and �i such that

(IC) �i(ui)M
i
ui
(ui; 0) = �i(ui)M

i
ui+1

(ui; 0) + �i(ui)M
i�1
ui�1

(0; ui) ; ui 2 [0; 1] ;

where �i(ui)�i(ui) > 0 (preservation of orientation) and M i
ui
(ui; 0) �M i

ui+1
(ui; 0) 6= 0

(well de�ned normal vectors).

2.3 G1 continuity of a network of patches

If one wants to join several patches together in a network of patches with G1continuity, it

can happen that satisfying condition (IC) for all edges can present serious di�culties. This

problem has been mentioned by several authors, �rst by Van Wijk [21] and is called \vertex

consistency problem". At a vertex, where n patches meet, G1continuity can generally not

be achieved by simply solving the linear system of n equations (IC). This system can

have singularities, which are not easy to overcome. At such a vertex, the G1continuity is

directly related to the twists. The twist vector is the second order mixed partial derivative
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at a patch corner. For polynomial patches, which lie in the continuity class C2, both twists

are identical:
@2M i

@ui@ui+1
(0; 0) =

@2M i

@ui+1@ui
(0; 0) ; i = 1; : : : ; n :

Therefore, additional conditions at the patch corner, which involve the twists, have to be

satis�ed for G1continuity of a network of patches:

(IT )

�i(0) M
i
uiui+1

(0; 0) + �i(0) M
i�1
ui�1ui

(0; 0) =�0

i(0) M
i
ui
(0; 0) + �i(0)M

i
uiui

(0; 0)

+ �0i(0) M
i
ui+1

(0; 0) + �0i(0) M
i�1
ui�1

(0; 0) ;

i = 1; : : : ; n :

This system of equations is obtained by di�erentiating (IC) with respect to ui taken at

ui = 0.

Now, for solving the G1problem at a vertex two strategies can be employed:

- �x the boundary curves and solve (IT ) for the twists, or

- �x the twists and solve the n equations (IT ) for the boundary curves.

Both strategies, which should make n patches joining G1at a common vertex, will not give

a solution in general for the same reason. They lead to linear systems of equations with a

circulant matrix, which is singular if n is even and greater than 2 [21, 16, 10].

2.4 C2-consistent boundary curves

A closer look to (IT ) shows that the right hand side only contains �rst and second deriva-

tives of the patch boundary curves at the common vertex. Whether or not the linear sys-

tem (IT ) can be solved depends therefore on the choice of the boundary curves. Boundary

curves are called to be C
2
-consistent, if the right hand side vectors [: : : ;M i

ui
(0; 0); : : :]T

and [: : : ;M i
uiui

(0; 0); : : :]T lie in the image space of the rank de�cient system (IT ).

The present interpolation scheme solves the problem by �rst constructing C2-consistent

boundary curves of the patch network. This ensures G1continuity at the patch vertices by

(IT ). In order to get an overall G1surface, (IC) has to be satis�ed between all adjacent

patches. We therefore de�ne cross-boundary tangents along each edge satisfying (IC) and

(IT ). It has to be noticed, that both steps are not independent, the values of the cross-

boundary tangents at the vertices are already �xed by the boundary curves because of the

following equality:

M i
ui+1

(0; 0) =M i+1
ui+1

(0; 0) ; i = 1; : : : ; n :

3. LOOP's SCHEME

Loop constructs sextic G1triangular B�ezier patches in one-to-one correspondence with the

input mesh faces. In this section we brie
y recall the method of Loop in order to point

out later the di�erences with our work. Details are in [10].
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� Boundary curves & vertex consistency

Around a vertex p of order n, with neighbor vertices pi of order ni, Loop uses the following

scalar functions �i; �i; �i in systems (IC) and (IT ):

�i(ui) = cos
�2�
n

�
B2
0(ui) +

1

2
B2
1(ui) + (1 � cos

�2�
ni

�
)B2

2(ui) (quadratic)

�i(ui) = �i(ui) =
1

2
: (constant)

(1)

The following choice for the �rst three B�ezier points f
0
i ;f

1
i ;f

2
i of the boundary curve

between p and pi enables to �nd a solution to system (IT ) around p:

f
0
i = �p+

(1� �)

n

nX
j=1

pj

f
1
i = �p+

1

n

nX
j=1

�
1� � + � cos(

2�(j � i)

n
)
�
pj

f
2
i =

1

3
p+

1

6
pi�1 +

1

3
pi +

1

6
pi+1

(2)

The boundary curve between p and pi is of degree 4, and has control points f0i ; : : : ;f
4
i ,

where f3i ;f
4
i are constructed as ~f

0

i ;
~f
1

i from the opposite vertex pi.

� and � in (2) are shape parameters. There is no shape parameter for f2i . In fact, since the

boundary curve has degree 4, the middle control point f2i must be computed symmetrically

from both end-points.

� Cross-boundary tangents

The cross-boundary tangents are set to be equal

@Hi

@ui+1
(ui; 0) = �i(ui)

@Hi

@ui
(ui; 0) + 	i(ui)Vi(ui) (quintic)

@Hi�1

@ui�1
(0; ui) = �i(ui)

@Hi

@ui
(ui; 0) �	i(ui)Vi(ui) ; (quintic)

(3)

which ensures automatically that (IC) is satis�ed. The scalar function 	i and the vec-

tor function Vi are built of minimal degree so as to interpolate the values of the cross-

derivatives and the twists at the vertices p and pi:

	i(ui) = sin
2�

n
(1 � ui) + sin

2�

ni
ui (linear)

Vi(ui) =

nX
k=1

v
k
iB

3
k(ui) ; (cubic)

(4)

8



where v0i =
Pn

j=1 V
0
ijpj and v

1
i =

Pn

j=1 �iV
0
ij + pj

8<:
2
3

�i(0)

	i(0)
if j = i + 1

�2
3

�i(0)

	i(0)
if j = i � 1

0 otherwise
with V 0

ij =
1
n
4� sin

2�(j�i)

n
and �i = 1 � 1

3	i(0)
[tan �

n
(6�i(0) � �0

i(0)) + 	0

i(0)]. v
2
i and v3i

are constructed as ~v0i ; ~v
1
i from the opposite vertex.

� = 1:0 � = 0:1 � = 1:0 � = 0:5 � = 1:0 � = 1:0

� = 0:5 � = 0:1 � = 0:5 � = 0:5 � = 0:7 � = 1:0

Figure 2: A typical case where undulations in the curve network happen, when interpolating

with Loop's patches. The top shows the interpolation case, � = 1. To remove the oscillations, a

smaller value of � has to be chosen, and the original mesh is not interpolated (bottom).

Each triangular patchH must be of degree 6 because of the quintic cross-boundary tangent

functions (3). From the boundary curves (2 times degree elevated) and the cross-boundary

tangents the �rst two rows of B�ezier control points of H are calculated. The remaining

middle control point of each patch is chosen so that H has quintic precision. In two special

cases Loop's patches are quintic (the three patch vertices have same order) or quartic (the

three patch vertices are of order 6).

4. REGULAR 4-SPLIT

Subdivision of the domain into several pieces has been shown to be bene�t for interpolation

by piecewise polynomial curves or tensor product surfaces. The polynomial degree can be

kept low and additional degrees of freedom allow for shape improvements.
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In the same intend we split the domain triangles into 4 sub-triangles by joining the edge

midpoints together, see �g. 3. Each triangular macro-patch M , which interpolates the 3

vertices of a surface mesh triangle, will be a piecewise C1 quintic surface.

u i−1

M
i

.
u i+1

ui

Mi

M
i−1

p
0

1/2

1

Figure 3: 4-split of all domain triangles

For the following developments we �rst consider the macro-patch as a whole. The boundary

curves and cross-boundary tangents are therefore piecewise polynomial functions. The four

sub-patches are then considered independently when �lling-in the macro-patches with the

C1 quintic B�ezier triangles.

4-splitting the domain triangles for parametric G1interpolation is the key issue of the

present method. It doesn't cause additional problems, as one would probably think; in

contrary ! We shall point out, that we don't use the 4-split in order to solve the vertex

consistency problem as the Clough-Tocher methods do. The advantages are obvious, be-

cause the number of degrees of freedom per macro-patch is increased. They can be used

to perform interpolation of vertices and to e�ciently control the shape. The additional

vertices, which are created at the edge midpoints, are of order 6. But the vertex consis-

tency problem is implicitly solved by the special construction of the boundary curves and

the cross-boundary tangents of the macro-patches, as will be shown in section 8.

5 CHOICE OF SCALAR FUNCTIONS �i; �i; �i

For the interpolating spline surface presented in this paper one of the most important

targets is to keep the total degree of the patches as low as possible. If M i(ui; ui+1)

is a triangular surface of total parametric degree d, then M i
ui
(ui; 0), M

i
ui+1

(ui; 0), and

M i�1
ui�1

(0; ui) are of degree d � 1 in equation (IC). When joining patches G1continuously,

the conditions (IC) and (IT ) must be satis�ed. It is important to choose the scalar valued

functions �i; �i; �i such that they don't raise the degree of the �nal patches. Ideally this

would mean to take �i linear and �i; �i constant and the degree of the patches would not

be raised when satisfying equation (IC).

One of the main contributions of this paper is to show that we can make it possible. First

important point is the choice of �i. For locality reasons, Loop is not able to take �i linear,
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he takes it quadratic, which �nally leads to patches of degree six, one degree more than

our proposal.

For symmetry reasons we choose �i = �i =
1
2
and as a simpli�cation we suppose that �0 :=

�i(0) and �1 := �0

i(0) for i = 1; : : : ; n. These assumptions imply that the G1conditions

now state as follows:

(IIC) �i(ui)M
i
ui
(ui; 0) =

1

2
M i

ui+1
(ui; 0) +

1

2
M i�1

ui�1
(0; ui) ;

�i(0) M
i
uiui+1

(0; 0) + �i(0)M
i�1
ui�1ui

(0; 0) = �0

i(0) M
i
ui
(0; 0) + �i(0) M

i
uiui

(0; 0) :

Varying i from 0 to n� 1 leads to the following linear system of equations:

(IIT ) T �t = �1
r
1 +�0

r
2 :

where

T =

2666664
1
2

0 � � � 1
2

1
2

1
2

� � � 0

. . .

0 � � � 1
2

1
2

0

0 � � � 1
2

1
2

3777775 ; r
1 =

26666664

M1
u1
(0; 0)

...

Mn
un
(0; 0)

37777775 ; r
2 =

26666664

M1
u1u1

(0; 0)

...

Mn
unun

(0; 0)

37777775 ;

and �t is the vector of the twists. In Loop'94 it was now shown, that it is possible to

determine �0 and �1. For ui = 0 it is easy to see that M i
ui+1

(0; 0) = M i+1
ui+1

(0; 0). Equa-

tions (IIC) (i = 1; : : : ; n) taken at ui = 0 are therefore transformed into the following

homogeneous system

266666664

�0 �1
2

: : : �1
2

� 1
2

�0 1
2

. . .
. . .

. . .

�1
2

� 1
2

�1
2

�0

377777775

2666666664

M1
u1

...

Mn
un

3777777775
= O (5)

where the determinant is equal to �n�1
i=0 cos

�
2�k
n

�
��0 for some integer k [1]. A non-trivial

solution exists if and only if �0 = cos
�
2�k
n

�
; where n is the order of the vertex ui = 0.

k = 1 was set to insure that the M i
ui

span a plane and are ordered properly, thus

�0 = �i(0) = cos
�2�
n

�
: (6)
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In an analogous way, one obtains

�i(1) = 1� cos
�2�
ni

�
; (7)

where ni is the order of the opposite vertex.

If one takes the functions �i as linear blending functions, this would imply that �1 =

�0

i(0) in (IIT ) depends on the order ni of the opposite vertex. This would make the

algorithm global instead of local, which is not acceptable. Since Loop in [10] wanted a

single polynomial patch per input triangle, he was forced to take �i quadratic in order to

separate vertex informations and to keep the algorithm local.

In our new method, the 4-splitting of domain triangles enables to separate vertex informa-

tions by taking the functions �i piecewise linear, continuous, de�ned on [0; 1
2
] and [1

2
; 1],

with �i(
1
2
) = 1

2
, as shown in �g. 4.

�i(ui) =

8<:
cos 2�

n
(1 � 2ui) + ui for ui 2 [0; 1

2
]

(1� ui) + (1� cos 2�
ni
)(2ui � 1) for ui 2 [ 1

2
; 1]

(8)

11/2

1/2

1

Φ (1)i

Φ (0)i
ui

Figure 4: scalar valued function �i(ui), piecewise linear

This choice is justi�ed by the observations that n = ni implies �i(1) = 1 � �i(0) (and

therefore �i is a single linear function) and n = ni = 6 implies �i(ui) =
1
2
for all ui 2 [0; 1].

This choice for �i would not have been possible without 4-splitting the domain triangles.

6 BOUNDARY CURVE NETWORK

The boundary curves of the macro-patches are constructed in correspondence to the edges

of M. This is the most important step in the surface construction method, because the

shape of this curve network has great in
uence on the surface shape. The requirements on

the boundary curves are the following:

- interpolating the vertices of M,

- satisfying the G1conditions (IIC), (IIT ) at the end points
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- keeping the surface scheme local.

The locality requirement imposes to construct the curves such that they satisfy (IIC),

(IIT ) at one vertex (end point) independently from the opposite vertex. The �rst and

second derivatives at the curve's end points are involved in system (IIT ). A polynomial

curve which separates these informations of both end points should be of degree � 5. The

advantage of the domain 4-split is now, that it allows to take piecewise C
1
polynomial

curves of degree 3. Each boundary curve between two adjacent mesh vertices consists of 2

cubic pieces, which are constructed independently from each other.

Let denote the polynomial piece of the boundary curve between the neighboring vertices

v of order n and the vertex pi of order ni in B�ezier form by the control points bi0; : : : ; b
i
3,

see �g. 5. f0; 1
2
; 1g is the subdivision of the parameter interval for the whole boundary

curve. Around each vertex of M the control points b
i
0; b

i
1; b

i
2, i = 1; : : : ; n, of all incident

boundary curves can be constructed independently from the joining curve piece of the

opposite vertices, i.e. the �rst and second derivatives can be isolated at each vertex. The

\midpoints" bi3 are constructed in oder to have C
1 joints between both curve pieces. These

points correspond to the parameter ui =
1
2
, i.e. the midpoint of an edge ofM, where the 4-

split has been accomplished. The control points of the joining pieces bk0; b
k
1 ; b

k
2 and b

k
3 = b

i
3

are found when treating the boundary curve pieces incident in pi, where k is the index of

v relative to the neighborhood of v.

+++++++
+++++++
+++++++
+++++++
+++++++
+++++++
+++++++
+++++++

b  =v0
i

b1
i

b i

b3
i

p

pi−1

pi+1

i

2

tangent plane

Figure 5: control points of the boundary curves at vertex v

For simpli�cation it is convenient to adopt a matrix notation:

�b0 :=

264 b
1
0

...

b
n
0

375 ; �b1 :=

264 b
1
1

...

b
n
1

375 ; �b2 :=

264 b
1
2

...

b
n
2

375 ; �p :=

264 p1...
pn

375 ;
where �p is referred as to the vertex neighborhood of v.

The boundary curves have to be constructed in order to have one-to-one correspondence

between the macro-patches and the faces of M. Therefore the boundary curve end points

13



should correspond to the vertices of M. Looking at vertex v,

b
i
0 = v ; i = 1; : : : ; n;

should hold for interpolation. This is a special case of the more general setting

b
i
0 = �v+ (1 � �)

nX
j=1

pj

n
; (9)

where � 2 IR is a shape parameter controlling the interpolation. In matrix representation

(9) corresponds to
�b0 = ��v+B0�p ; (10)

where B0 is a n� n matrix with B0
ij =

1��
n

; i; j = 1; : : : ; n and �v = [v; : : : ;v]T .

The points bi1 de�ne the tangent plane of S and the �rst derivative at the boundary curve

end point:

r
1
i :=M i

ui
(0; 0) = 6(b

i
1 � b

i
0) : (11)

Additionally, they have to make r1 lying in the image space of T in (IIT ) and to satisfy

(IIC). A solution to that problem is to take r
1 as the local averaging of the vertex

neighborhood of v which is known as �rst order discrete Fourier approximation to �p [21,

17, 10]:

r
1
i =

6�

n

nX
j=1

cos
�2�(j � i)

n

�
pj ; i = 1; : : : ; n ; (12)

where � is a shape parameter controlling the magnitude of the tangent vectors.

Combining (11) with (10) and (12) gives

�b1 = ��v+B1�p ; (13)

where

B1
ij =

1� �+ � cos
�
2�(j�i)

n

�
n

; i; j = 1; : : : ; n :

The points bi2 are related to the second derivatives at the boundary curve end point:

r
2
i :=M i

uiui
(0; 0) = 12(bi2 � 2bi1 + b

i
0) (14)

and have to lie in the image space of T in (IIT ).

It has been shown [10] that di = 1
6
(2v + pi�1 + 2pi + pi+1) su�ces to that condition.

Since any a�ne combination of points, which lie in the image space of T also does, let

de�ne
b
i
2 := 
0b

i
0 + 
1b

i
1 + 
2d

i ; 
0 + 
1 + 
2 = 1

= b
i
0 + 
1(b

i
1 � b

i
0) + 
2(d

i � b
i
0) ;

14



where 
0; 
1; 
2 are shape parameters controlling the value of the second derivative. The

matrix expression is given by

�b2 =
�
(
0 + 
1)�+


2

3

�
�v+B2�p ; (15)

where

B2
ij =

(
0 + 
1)(1 � �) + 
1� cos
�
2�(j�i)

n

�
n

+ 
2

(
1=6 if j = i� 1; i+ 1

1=3 if j = i

0 otherwise

:

The boundary curves have to be C1-continuous at the knot ui = 1=2 in order to get

continuous cross boundary tangents later, which results in

b
i
3 =

1

2
(bi2 + b

k
2) ; (16)

where b
k
2 belongs to the joining curve piece constructed from the vertex neighborhood of

pi.

The piecewise cubic boundary curves of the macro-patches of S can now be calculated by

using eqs. (10), (13), (15) and (16) for each vertex v of M. They form a C2-consistent

curve network.

The �rst and second derivatives at the corners, r1i , r
2
i , lie in the image space of T . It is

now possible to solve (IIT ) for the twist

�t =

24 t1...
tn

35 ; with ti =M i
uiui+1

(0; 0); i = 1; : : : ; n

by observing that the control points (10), (13), (15) are constructed such that they lie in

the image space of T , i.e. there exist some points ebi0;ebi1;ebi2 such that

T ebi0 = b
i
0 ; T ebi1 = b

i
1 ; T ebi2 = b

i
2 :

Due to the simple structure of the matrix T , it is easy to verify that

ebi0 = 1

2
(bi0 + b

i�1
0 )

ebi1 = �v +

nX
j=1

(1� �) + �
h
cos
�
2�(j�i)

n

�
+ tan

�
�
n

�
sin
�
2�(j�i)

n

�i
n

pj

ebi2 = 
0b
i
0 + 
1ebi1 + 1

3

2(v + pi + pi+1)
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are solutions of these three equations.

It follows that

�1
r
1 +�0

r
2 = 6�1(bi1 � b

i
0) + 24�0(bi2 � 2bi1 + b

i
0)

= (�6�1 + 24�0)bi0 + (6�1 � 48�0)bi1 + 24�0
b
i
2

= T
h
(�6�1 + 24(1 + 
0)�

0)bi0 + (6�1 + (�48 + 24
1)�
0)ebi1

+ 8
2�
0(v + pi + pi+1)

i
:

From equation (IIT ) the following expression of the twists is obtained:

ti = 8
2�
0(1� 3�)v

+

nX
j=1

�24
2�
0(1� �) + (6�1 + (24
1 � 48)�0)�

h
cos

2�(j�i)

n
+ tan

�
�
n

�
sin
�
2�(j�i)

n

�i
n

pj

+ 8
2�
0(pi + pi+1) ; i = 1; : : : ; n:

(17)

Since the method of this paper is an interpolation scheme, � = 1 is generally chosen. In

order to avoid undulations of the boundary curves, for each vertex a set of three free shape

parameters �; 
1; 
2 (
0 = 1 � 
1 � 
2) is available. As mentioned above, � controls the

magnitude of the tangents and 
1; 
2 the second derivatives and therefore the shape of the

curves, see also section 9.

7 CROSS BOUNDARY TANGENTS

Once C2-consistent boundary curves have been found, the second step in constructing a

network of G1continuous patches is to de�ne the cross-boundary tangentsM i
ui+1

(ui; 0) and

M i�1
ui�1

(0; ui) for each boundary curve of the curve network. The conditions on them are

three

- satisfy the G1condition (IIC) along the boundary curve,

- satisfy the twist constraint at the end points,

- be consistent to the curve network.

With the curve network, the values of the cross-boundary tangent functions at the corners

are already �xed, see �g. 6.
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b  0

b1
i

b i

b3
i

p

pi−1

pi+1

i

2

b1
i−1

b1
i+1

M
i
(0,0)= 6(

ui+1
b1

i+1
b  0− )

M
i−1
(0,0)= 6(

ui−1
b1

i−1
b  0− )

M
i−1

M
i

Figure 6: cross-boundary tangents at the vertices are �xed by the boundary-curves

A convenient way to de�ne cross-boundary tangents that ensure G1continuity is the fol-

lowing:

M i
ui+1

(ui; 0) = �i(ui)M
i
ui
(ui; 0) + 	i(ui)Vi(ui);

M i�1
ui�1

(0; ui) = �i(ui)M
i
ui
(ui; 0) �	i(ui)Vi(ui);

(18)

where 	i is some scalar function and Vi some vector function.

To see that (18) implies (IIc), simply add the two equations in (18). To see that (IIc)

implies (18), choose 	i(ui)Vi(ui) = �i(ui)M
i
ui
(ui; 0)�M

i�1
ui�1

(0; ui) = ��i(ui)M
i
ui
(ui; 0)+

M i
ui+1

(ui; 0).

The degree of 	i and Vi in (18) decides now about the degree of the surface S. The

product �iM
i
ui

is piecewise C0 cubic, see (8) and section 6. Therefore, 	iVi should not be

of degree higher than 3. Due to the domain 4-split it will again be possible to construct

these functions continuous and piecewise polynomial of degree 1 and 2.

The function values 	i(0) and Vi(0) are now determined following [10]. The cross-

boundary tangents have to correspond to the tangents of the boundary curve tangents

at the end points. The �rst equation of (18) evaluated at ui = 0, gives

M i
ui+1

(0; 0) = �i(0)M
i
ui
(0; 0) + 	i(0)Vi(0)

, r
1
i+1 = �0

r
1
i +	0

Vi(0)
(19)

in terms of section 5, with the simplifying assumption 	i(0) = 	0 for all i. Expanding

(19) by using (12) and (6) results in

	0
Vi(0) = sin

�2�
n

�
�

nX
j=1

6�

n
sin

2�(j � i)

n
pj :

An appropriate choice of 	0 is therefore

 0 = sin
�2�
n

�
:
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From the opposite end point, the product 	i(1)Vi(1) can be obtained analogously, which

gives 	i(1) = sin 2�
ni
, where ni is the order of vertex pi. Hence the function 	i can be

chosen linear, which is minimal degree:

	i(ui) = sin
�2�
n

�
(1� ui) + sin

�2�
ni

�
ui ; ui 2 [0; 1]: (20)

The function Vi cannot be taken linear, because it's derivative depends on the twists.

When di�erentiating the �rst equation of (18) with respect to ui and evaluating at ui = 0

M i
ui+1ui

(0; 0) = �0

i(0)M
i
ui
(0; 0) + �i(0)M

i
uiui

(0; 0) + 	0

i(0)Vi(0) + 	i(0)V
0

i(0) : (21)

The derivative V0i(0) appears in relation to the twist ti =M i
uiui+1

(0; 0) =M i
ui+1ui

(0; 0). It

explains, why the cross-boundary tangents have to be constructed subject to the twists.

From (21) one gets therefore

Vi
0(0) =

1

	0

�
ti � �1

r
1
i � �0

r
2
i �	1

iVi(0)

�
; (22)

where 	1
i = 	0

i(0) = sin
�
2�
ni

�
� sin

�
2�
n

�
depends on i.

Vi(1) and Vi
0(1) are known from the opposite vertex pi. A Hermite interpolation of these

four values Vi(0);Vi
0(0);Vi(1);Vi

0(1) would result in a cubic polynomial. The domain

4-split of the present method allows to lower the degree by one by taking Vi as a piecewise

C0 quadratic function requiring that Vi(
1
2

�

) = Vi(
1
2

+
). In fact, as will be shown in section

8.3, it is only required that Vi is C
0-continuous.

For the quadratic piece of Vi corresponding to the vertex v one gets in terms of Bernstein-

B�ezier representation the following control points:

v
i
0 =

nX
j=1

6�

n
sin

2�(j � i)

n
pj

v
i
1 =

nX
j=1

1

 0i

h
(6�1 � 48�0 + 24�0) tan(

�

n
)� 6 1i

i �
n
sin
�2�(j � i)

n

�
pj

+
4

 0i

2�

0(pi+1 � pi�1)

v
i
2 free subject to Vi(

1

2

�

) = Vi(
1

2

+

) :

(23)

In matrix form, the control points of Vi are given by

�v0 = V 0�p;

�v1 = V 1�p;
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where

V 0
ij =

6�

n
sin
�2�(j � i)

n

�
; i; j = 1; : : : ; n;

V 1
ij =

1

 0i

h
(6�1 � 48�0 + 24�0) tan(

�

n
)� 6 1i

i �
n
sin
�2�(j � i)

n

�
+

4

 0i

2�

0

�
1 if j = i+ 1

�1 if j = i� 1
:

As written above, Vi is only required to be C0-continuous, and therefore the value of vi2
is free. Nevertheless, in the example shown in section 9, we have chosen C1-continuous Vi

functions by taking vi2 =
1
2
v
i
1 +

1
2
v
k
1 , where vk1 is known from the opposite vertex pi.

Piecewise cubic cross-boundary tangents have been constructed in this section. However,

the surface will only be piecewise quintic, because up to now, it is an open question how to

use the degrees of freedoms in order to obtain a piecewise quartic surface. This is subject

of current research.

8 MACRO-PATCHES IN B�EZIER FORM

From now up, the macro-patches are considered individually. The domain 4-split leads

to the construction of 4 triangular patches per macro-patch for which the B�ezier control

points will be given in this section. The border and �rst inner row of control points of

the macro-patch can be found from the boundary curves (sect. 6) and the cross-boundary

tangents (sect. 7). They ensure the G1-join to the neighboring macro-patches. In order

to have an overall visually smooth surface, the remaining inner control points are used to

join the 4 sub-patches C1-continuously. Six control points per macro-patch remain free for

local shape control.

8.1 Notations

A triangular B�ezier patch of degree d is given by

B(u; v;w) =
X

i+j+l=d

i;j;l�0

b(i;j;l)B
d
i;j;l(u; v;w); u+ v + w = 1;

where u; v;w 2 [0; 1] are the barycentric coordinates of a point inside the domain triangle,

and bi are the B�ezier control points. The basis functions B
d
i;j;l(u; v;w) =

i!j!l!

d!
uivjwl are

known as generalized Bernstein polynomials. For more details about triangular B�ezier

patches, see [3, 8].

The 4 triangular B�ezier patches of degree 5 which compose the macro-patchM are denoted

by S1; S2; S3; Sm and are parameterized as in �g. 7.
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M
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k+1

k+2
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a  =(1,0,0)k a      =(0,1,0)k+1

a      =(0,0,1)k+2

Figure 7: Parameterization of the macro-patch M ,

labeling of sub-patches and derivative directions.

The B�ezier control points ofM are therefore denoted resp. by s1
(i;j;l)

, s2
(i;j;l)

, s3
(i;j;l)

, sm
(i;j;l)

,

where i+j+ l = 5. uk = ak+1�ak are vectors between the domain vertices and de�ne the

directional derivatives [Duk
M ](u; v;w) ofM . Furthermore, let Ek(u) = ak(1�u)+ak+1u,

for u 2 [0; 1], de�ne an edge function and let nk be the order of the mesh vertex which is

interpolated by M(Ek(0)).

8.2 Finding boundary and �rst (row) derivative control points of M

Let denote the piecewise cubic boundary curve by

M(Ek(u)) =

8<:
P3

i=0 b
L
i B

3
i (2u) for u 2 [0; 1

2
]P3

i=0 b
R
i B

3
i (2u� 1) for u 2 [ 1

2
; 1]

; k = 1; 2; 3; (24)

where bLi ; b
R
i are the control points of the two curve pieces, computed in sect. 6.

The cross-boundary tangent M i
ui+1

(ui; 0) of sect. 7 is here given by

[�Duk+2
M ](Ek(u)) = �k(u)[Duk

M ](Ek(u)) + 	k(u)Vk(u) ; (25)

where

[Duk
M ](Ek(u)) =

8<: 6
P2

i=0(b
L
i+1 � b

L
i )B

2
i (2u) for u 2 [0; 1

2
]

6
P2

i=0(b
R
i+1 � b

R
i )B

2
i (2u� 1) for u 2 [1

2
; 1]

; k = 1; 2; 3; (26)

is the derivative of M(Ek(u)) along the edge uk,

Vk(u) =

8<:
P2

i=0 v
L
i B

2
i (2u) for u 2 [0; 1

2
]P2

i=0 v
R
i B

2
i (2u� 1) for u 2 [1

2
; 1]

; k = 1; 2; 3; (27)

is the cross-derivative function of sect. 7, and �k;	k are the scalar functions de�ned resp.

in sections 3 and 7 by

�k(u) =

8<:
cos 2�

nk
(1� 2u) + u for u 2 [0; 1

2
]

(1 � u) + (1 � cos 2�
nk+1

)(2u � 1) for u 2 [1
2
; 1]

(28)
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	k(u) = sin
�2�
nk

�
(1 � u) + sin

� 2�

nk+1

�
u; u 2 [0; 1]: (29)

Let us now consider the boundary of M corresponding to u1 which is common to the

patches S1 and S2. The control points are labeled as in �g. 8.

u1

S1 S2

s500
1 s410

1 s050
1 s050

2s140
2s230

2s320
2s410

2s140
1s230

1s320
1

= s500
2

s401
1 s311

1 s221
1 s131

1 s041
1

401s2 s311
2 s221

2 s131
2 s041

2

Figure 8: boundary and �rst derivative control points of M corresponding to boundary u1

A double degree elevation of (24) results in the control points of the piecewise C1 quintic

B�ezier curve, which is the boundary curve of M corresponding to direction u1:

s
1
(5;0;0) = b

L
0

s
1
(4;1;0) =

2

5
b
L
0 +

3

5
b
L
1

s
1
(3;2;0) =

1

10
b
L
0 +

3

5
b
L
1 +

3

10
b
L
2

s
1
(2;3;0) =

3

10
b
L
1 +

3

5
b
L
2 +

1

10
b
L
3

s
1
(1;4;0) =

3

5
b
L
2 +

2

5
b
L
3

s
1
(0;5;0) = b

L
3 :

(30)

s
2
(5�i;i;0)

, i = 0; : : : ; 5 are found analogously from b
R
j , j = 0; : : : ; 5.

The �rst row of inner control points s1
(4�i;i;0)

; s2
(4�i;i;0)

, i = 0; : : : ; 4, of M can be found by

the cross-boundary derivatives

[�Du3
M ](E1(u)) =

8<:
10
P4

i=0(b
L
(4�i;i;1) � b

L
(5�i;i;0))B

4
i (2u) for u 2 [0; 1

2
]

10
P4

i=0(b
R
(4�i;i;1) � b

R
(5�i;i;0))B

4
i (2u� 1) for u 2 [1

2
; 1].

(31)

The left hand-side of (31) can be found by combining (25) with (26), (27), (28), (29). It
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is piecewise cubic and must be degree elevated, before rearranging of (31) �nally leads to

s
1
(4;0;1) =s

1
(5;0;0) �

3c1

5
b
L
0 +

3c1

5
b
L
1 +

s1

10
v
L
0

s
1
(3;1;1) =s

1
(4;1;0) �

6c1 + 3

40
b
L
0 +

3� 6c1

40
b
L
1 +

3c1

10
b
L
2 +

3s1 + s2

80
v
L
0 +

s1

20
v
L
1

s
1
(2;2;1) =s

1
(3;2;0) �

1

20
b
L
0 �

1 + 4c1

20
b
L
1 +

c1 + 1

10
b
L
2 +

c1

10
b
L
3 +

s1 + s2

120
v
L
0

+
3s1 + s2

60
v
L
1 +

s1

60
v
L
2

s
1
(1;3;1) =s

1
(2;3;0) �

3

20
b
L
1 +

3� 6c1

40
b
L
2 +

6c1 + 3

40
b
L
3 +

s1 + s2

40
v
L
1 +

3s1 + s2

80
v
L
2

s
1
(0;4;1) =s

1
(1;4;0) �

3

10
b
L
2 +

3

10
b
L
3 +

s1 + s2

20
v
L
2

(32)

and

s
2
(4;0;1) =s

2
(5;0;0)�

3

10
b
R
0 +

3

10
b
R
1 +

s1 + s2

20
v
R
0

s
2
(3;1;1) =s

2
(4;1;0)�

9� 6c2

40
b
R
0 +

3� 6c2

40
b
R
1 +

3

20
b
R
2 +

s1 + 3s2

80
v
R
0 +

s1 + s2

40
v
R
1

s
2
(2;2;1) =s

2
(3;2;0)�

1

20
b
R
0 �

2� c2

10
b
R
1 +

5� 4c2

20
b
R
2 +

1

20
b
R
3 +

s2

60
v
R
0

+
s1 + 3s2

60
v
R
1 +

s1 + s2

120
v
R
2

s
2
(1;3;1) =s

2
(2;3;0)�

3� 3c2

10
b
R
1 +

3� 6c2

40
b
R
2 +

9� 6c2

40
b
R
3 +

s2

20
v
R
1 +

s1 + 3s2

80
v
R
2

s
2
(0;4;1) =s

2
(1;4;0)�

3� 3c2

5
b
R
2 +

3� 3c2

5
b
R
3 +

s2

10
v
R
2

(33)

where cj = cos
�
2�
nj

�
, sj = sin

�
2�
nj

�
.

The control points corresponding to the boundaries u2 and u3 are obtained by shifting

the indices in (30) and (32), (33) once and twice to the left.

8.3 Filling-in the macro-patches by piecewise quintic B�ezier triangles

All control points, which are involved in joining the macro-patches pairwise G1are high-

lighted in �g. 9. In this section, it will be shown that it is possible to join the 4 sub-patches

S1; S2; S3; Sm with C1 continuity and how the remaining control points are used for that.
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Figure 9: control points known from the boundary curves and their cross-boundary tangents,

ensuring pairwise G1continuity between macro-patches

Vertex consistency and C1-continuity at the edge mid-points

Two questions should be answered for the general understanding of the present triangular

interpolation scheme:

- the macro-triangle edge mid-points are vertices of order 6. Why don't they present the

vertex consistency problem ?

- Why using (the stronger) C1 conditions for �lling-in the macro-patches (instead of

G1conditions) ?

In fact, both questions can be answered simultaneously: it turns out that the cross-

boundary tangents constructed in section 7 already ensure continuity of the �rst partial

derivatives at the edge mid-points. To prove this, we temporarily switch to the notations

of section 7. The partial derivatives around an edge mid-point are shown in �g. 10.

M
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M
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2
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− −

− −

Figure 10: partial derivatives at the edge mid-points

We have to prove that M i
ui+1

(1
2

+
; 0) = M i

ui+1
(1
2

�

; 0), M i�1
ui�1

(0; 1
2

+
) = M i�1

ui�1
(0; 1

2

�

) (con-

tinuity at 1
2
inside one macro-patch) and M i

ui+1
(1
2
; 0) = M i�1

ui+1
(0; 1

2
), M i

ui�1
(1
2
; 0) =

M i�1
ui�1

(0; 1
2
) (continuity between the two macro-patches joining at the common edge). The

other identities follow from the C1-continuity of the common boundary curve.
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The continuity of the partial derivatives inside one macro-patch can easily be seen from

(18): since �i(ui);M
i
ui
(ui; 0);	i(ui);Vi(ui) are all continuous at ui =

1
2
, thenM i

ui+1
(ui; 0)

and M i�1
ui�1

(0; ui) are also continuous at ui =
1
2
.

It remains to prove the continuity of the partial derivatives between the joining macro-

patches. We will prove the �rst identity, M i
ui+1

(1
2
; 0) = M i�1

ui+1
(0; 1

2
), the second identity

M i
ui�1

(1
2
; 0) =M i�1

ui�1
(0; 1

2
) can be proven analogously.

Since ui+1 = ui � ui�1, it follows that M
i�1
ui+1

(0; 1
2
) = M i�1

ui
(0; 1

2
) �M i�1

ui�1
(0; 1

2
). In this

last identity, we replace M i�1
ui�1

(0; 1
2
) by its value from (18):

M i�1
ui+1

(0;
1

2
) =M i�1

ui
(0;

1

2
)�

�
�i(

1

2
)M i

ui
(
1

2
; 0)�	i(

1

2
)Vi(

1

2
)

�
:

But �i(
1
2
) = 1

2
, and M i�1

ui
(0; 1

2
) = M i

ui
(1
2
; 0) (the two macro-patches share the same

common C1-continuous boundary curve), therefore:

M i�1
ui+1

(0;
1

2
) = �i(

1

2
)M i

ui
(
1

2
; 0) + 	i(

1

2
)Vi(

1

2
) =M i+1

ui+1
(
1

2
; 0) :

Thus we have shown that all C1-continuity conditions around the edge mid-points are

already ful�lled by the cross-boundary tangents constructed in section 7. Therefore there

is no vertex-consistency problem at these points, and it is natural to use the stronger C1-

continuity conditions for �lling-in the macro-patches. In other words, the 6 B�ezier points

around an edge mid-point form an a�ne transformation of a regular 6-gon, as shown in

�g. 11.

CCCCCCCC
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CCCCCCCC

::::::
::::::
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::::::

222222
222222
222222
222222

S
1
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m
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macro−patch
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macro−patch

Figure 11: the control points around macro-patch boundary mid-points form an a�ne trans-

formation of a regular 6-gon.

Computing the unknown B�ezier points

The necessary and su�cient C1-continuity conditions between two internal B�ezier patches

inside one macro-patch are shown in �g. 12: all pairs of adjacent triangles in �g. 12 must

form a parallelogram.
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Figure 12: C1-conditions between two adjacent quintic B�ezier patches inside one macro-patch.

From the previous proof, we know that the �rst and last pairs of adjacent triangles in �g.

12 already form parallelograms.
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Figure 13: Four steps for �lling-in the macro-patch M with C1-continuity: (a) choose the three

twists of Sm, which are free for local shape control. (b) compute the third and fourth B�ezier

points along each edge using the C1-continuity conditions, (c) choose the three last free B�ezier

points of Sm, which are also free shape parameters, (d) compute the remaining three B�ezier points

using the C1-continuity conditions.

It remains to compute the free B�ezier points such that the other three pair of triangles

along each edge inside on macro-patch also form parallelograms. This is be done in four

steps:

� choose the three twists points of the internal B�ezier patch arbitrarily, these are free
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shape parameters (see �g. 13.a),

� compute the third and fourth B�ezier points along each internal curve joining two B�ezier

patches using the second and fourth parallelogram conditions (see �g. 13.b),

� choose the remaining three unknown B�ezier points of the central patches arbitrarily,

these are free shape parameters (see �g. 13.c),

� compute the three remaining unknown B�ezier points of the outer patches using the

third parallelogram condition along each edge (see �g. 13.d).

9 RESULTS

Interpolation as in [10],

� = 1, � = 0:1

Interpolation with the new method,

� = 1, � = 0:1,


0 = �3:7, 
1 = 4:6, 
2 = 0:1

Figure 14: Removing unwanted undulations in the interpolating curve network. The left part

shows the interpolation of an icosahedron with the method of [10]. The right part shows the

interpolation with the new method presented in this article. The new shape parameters enable to

remove the undulations. The control-polygons are in red, and the boundary curves are in blue.

The �rst example shows how the new shape parameters 
0; 
1 (
2 = 1�
0�
1) can be used

to remove unwanted undulations in the curve network interpolating the input triangular

mesh. The left part of �g. 14 shows the result from [10] when interpolating an icosahedron

by choosing � = 1:0. The value of � is 0:1. The right part shows the curve network from

the new interpolant presented in this paper, with the same values for � and �, but with

the new shape parameters 
0 = �3:7, 
1 = 4:6, 
2 = 0:1. The boundary curves are blue

and the control-polygons are red. The bottom part of �g. 14 shows one of the boundary

curve in blue, with its control-polygon in red. The method in [10] yields a single quartic
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control-polygon (bottom left), while our method yields two cubic control-polygons joining

C1-continuously (bottom right). Since the same � value was chosen in both methods, the

�rst and second control-points at each end of the boundary curves are the same in both

results. Choosing negative values for the new shape parameter 
0 enables to smooth out

the control-polygon and the associated boundary curve.

The color plate shows the interpolation of a deformed icosahedron ((a) and (b)) and of a

triangular mesh with vertices of various orders ((c) and (d), vertices of orders 3, 4, 5, 6, and

8 are visible on these views). For the surfaces shown in the color plate, the six free control-

points mentioned in section 8 were computed automatically based on the minimization of

an local energy functional. More details on this automatic choice will be the subject of a

future publication.

10 CONCLUSIONS

This paper has introduced a new piecewise quintic G1spline surface interpolating an input

triangular surface mesh with arbitrary topological type. This interpolant is local. It

is based on the 4-split of the input mesh triangles. Shape parameters are available for

controlling locally the boundary curves. Furthermore six free control-points per input

triangle can be chosen for additional shape control.

Future work will focus on the proper handling of open triangular meshes, and on the

automatic choice of the shape parameters and of the free control-points.
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