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A piecewise quintic G 1 spline surface interpolating the vertices of a triangular surface mesh of arbitrary topological type is presented. The surface has an explicit triangular B ezier representation, is a ne invariant and has local support. The twist compatibility problem which arises when joining an even number of polynomial patches G 1 continuously around a common vertex is solved by constructing C 2 -consistent boundary curves. Piecewise C 1 boundary curves and a regular 4-split of the domain triangle make shape parameters available for controlling locally the boundary curves. A small number of free inner control points can be chosen for some additional local shape e ects.

INTRODUCTION

De ning surfaces from a set of points, which c o n trol in an intuitive w ay the form of a surface due to Bernstein-B ezier or B-spline basis functions has been becoming one of the most popular methods for modeling free form surfaces. The surface hereby is de ned as a regular polynomial (possibly rational) map of a planar domain, tessellated into a regular grid of rectangles or triangles, resulting in a collection of tensor product or triangular patches. Such surface de nitions generally don't allow the representation of surfaces of arbitrary topological type. n-sided patches can ll in n-sided holes in rectangular patch con gurations and o er therefore the possibility to represent general closed surfaces or surfaces with handles. Nevertheless if one wants to model entire surfaces with n-sided patches, restrictions on the control net must be accepted.

A widely accepted and popular way in de ning surfaces without any limit of topologies is the use of smoothly joined triangular patches, where each patch is de ned over the unit triangle. They have the advantage to o er a uniform description for all possible topologies without any restriction on the number of faces that meet at a vertex, or on the number of edges of the faces.

The paper is concerned with de ning a geometrical smooth surface by i n terpolating a triangulated set of points in IR 3 . S u c h a triangulated point s e t w h i c h w e call surface mesh should be 2-manifold and is allowed to represent surfaces of arbitrary topological type. There is no restriction on the order of the mesh vertices (i.e. the number of faces that meet at a vertex). Furthermore the surface mesh furnishes topology information, which i s a data structure generating adjacency informations relating vertices, edges and faces. We assume that the surfaces mesh is already given. Local smooth triangular interpolants of an arbitrary surface mesh have been developed by many. These previous works are the most directly related to the results found here in the sense that they interpolate a control net and not only approximate it. They can be divided into di erent groups depending on how they solve t h e \ v ertex consistency problem", which occurs when joining with G 1 continuity a n e v en number of C 2 -patches around a vertex. The earliest of these schemes are Clough-Tocher-like domain splitting methods [START_REF] Farin | A construction for visual C 1 continuity of polynomial surface patches[END_REF][START_REF] Piper | Visually smooth interpolation with triangular B ezier patches[END_REF][START_REF] Shirman | Local surface interpolation with B ezier patches[END_REF][START_REF] Jensen | Assembling triangular and rectangular patches and multivariate splines[END_REF]. Since the surface mesh triangles are divided into sub-triangles, we refer to them as macro-triangles. Three quartic G 1 patches per macro-triangle interpolating positions and normals are produced. One problem is how to employ the free parameters in order to get pleasing shapes. Convex combination schemes [START_REF] Nielson | A trans nite, visually continuous, triangular interpolant[END_REF][START_REF] Hagen | Geometric surface patches without twist constraints[END_REF][START_REF] Hagen | Curvature continuous triangular interpolants[END_REF][START_REF] Gregory | N-sided surface patches[END_REF], blend side-side or side-vertex operators in order to interpolate trans nite position, tangent or curvature data of the boundary curves. They are rational patches without consistent l y d e n e d t wists at the vertices. The use of singular parameterizations 13] is another possibility but seems to have problems in de ning pleasing shapes. The boundary curve s c hemes 15, 10] rst create C 2 -consistent boundary curves and then ll in the patches polynomial. Furthermore some special interpolation methods can be found in [START_REF] Herron | Smooth closed surfaces with discrete triangular interpolants[END_REF][START_REF] Van Wijk | Bicubic patches for approximating non-rectangular control meshes[END_REF][START_REF] Sarraga | G 1 interpolation of generally unrestricted cubic B ezier curves[END_REF]. They all make either restrictions on the mesh topology or on the input data, and are therefore not general enough in order to be compared with the methods listed above. An overview and comparison of most of these methods can be found in [START_REF] Mann | Surface approximation using geometric Hermite patches[END_REF][START_REF] Mann | A survey of parametric scattered data tting using triangular interpolants[END_REF]. The surface interpolation scheme of an arbitrary mesh of points in IR 3 , w h i c h is presented in this paper will satisfy the following requirements. They are desirable for the reasons that will be explained below:

-the surface interpolates the vertices of the given surface mesh. And if desired, the interpolation condition can be relaxed in order to only approximate the mesh, -the surface is G 1 continuous for visual smoothness, -the surface is piecewise triangular and the de nition domain of the surface is the input surface mesh itself, -the surface can be of arbitrary topological type, -the surface results of a local interpolation method, where only a few data of the corresponding mesh triangle and its neighbors is used. Global interpolation schemes generally result in a big system of equations where all input data in uences the shape of every patch, -an explicit closed f o r m p olynomial and low degree parameterization is given for each patch. Fast surface evaluations and calculus on the surfaces, like derivatives and curvature, are important for rendering and interrogation purposes, -the surface is a ne invariant and shape p arameters are available for local shape control. An interesting triangular G 1 surface spline, which motivated this work, was recently given by Loop, and consists of triangular B ezier patches of degree six, one per macro-triangle. All requirements are satis ed except one: interpolation is theoretically possible, but leads to unwanted surface undulations in practice 10]. These undulations are due to severe constraints on the second derivatives along the boundary curves, at each end-point. The surface mesh therefore only acts as a control mesh which is approximated and not interpolated.

In this paper we present a n i n terpolating quintic G 1 triangular spline surface, which i s a generalization of Loop's scheme. All requirements are full-lled. Four B ezier patches per macro-triangle are created by a local scheme. The basic idea, which allows to perform interpolation without undulations, is to use a regular 4-split of the domain triangles. As a consequence of the 4-split, the constraints between derivatives at each end-point of the boundary curves are relaxed, and an interpolating curve network, without unwanted undulations, can be built. This approach has never been used before for parametric G 1 interpolation of triangulated surface meshes in IR 3 . The advantage over the Clough-Tocher-split is that tiny triangles are avoided, the sub-triangles are more regular. Mesh vertices of arbitrary order are allowed. The vertex consistency problem is solved by constructing C 2 -consistent boundary curves. The 4-split doesn't solve t h e v ertex consistency problem, like the Clough-Tocher-split does, but it introduces enough degrees of freedom enabling to produce this new quintic surface spline. It will furthermore been shown in this paper that the additional vertices of order six which are introduced by the 4-split don't present the vertex consistency problem and that the four patches per macro-triangle join C 1 -continuously to each other.

The paper is organized as follows. Section 2 reviews the G 1 conditions when a pair of parametric surfaces meet and when a collection of parametric patches meet at a corner. The \vertex consistency problem" which arises when an even number of patches meet at a corner is discussed. Section 3 brie y recalls the results of Loop, and shows an example where unwanted oscillations occurs when interpolating meshes with this method. Section 4 gives some general remarks on the 4-split of the macro-patches. The following sections 5-8 concentrate on the di erent steps of the surface construction resulting in an explicit representation of the four B ezier patches which i n terpolate the corners of a mesh triangle. Examples illustrating di erent meshes interpolation are given in section 9. Eventually, section 10 o ers some concluding remarks and directions for future work.

NOTATIONS and G 1 -CONDITIONS

Surface mesh

Let M denote the input surface mesh. It consists of a list of vertices and a list of edges.

Together they describe a 2-manifold mesh in IR 3 whose faces are triangles. The number of faces/edges incident in one vertex is referred as order of a vertex.

We aim to construct a piecewise triangular surface S that interpolates the given vertices V . The spline surface is composed of triangular macro-patches M i which are in one-to-one correspondence to the mesh facets. They are all polynomial images of the unit triangle in IR 2 , composed of four B ezier triangles each, joining G 1 continuously. W e assume the reader is familiar with B ezier curves and surfaces 3, 8].

The algorithm for constructing the spline surface consists mainly of three steps -constructing boundary curves -constructing cross-boundary tangents -lling in the patches. The boundary curves of the macro-patches are constructed in correspondence to a mesh edge. Therefore there is a one-to-one correspondence between the mesh faces and the macro-triangles of S. It is therefore convenient for the following sections to choose a parameterization of the macro-patches M i around a common vertex, sharing pairwise a common boundary as illustrated in g. 1.

u i u i u i-1 u i+1
. . . All subscripts i = 1 : : : nare taken modulo n, where n is the order of the mesh vertex corresponding to M i (0 0). The parameter u i lies in the interval 0 1].

In order to allow a uni ed treatment of the surface patches, the surface mesh M is supposed to be closed. We shall point out that since the scheme is local, there should be no theoretical di culties in treating meshes with boundaries. This is left for further research.

2.2 G 1 continuity b e t ween two adjacent patches Consider two adjacent patches M i;1 (u i;1 u i ) and M i (u i u i+1 ) that share a common boundary, i.e. M i;1 (0 u i ) = M i (u i 0) for 0 u i 1. Both patches have coincident tangent planes at every point of their common boundary, i f t h e v ectors M i u i , M i u i+1 , M i;1 u i;1 are coplanar for 0 u i 1. M i u i denotes the partial derivative o f M i with respect to the parameter u i . Therefore, two adjacent patches M i , M i;1 join at a common boundary with G 1 continuity if and only if there exist three scalar functions i , i and i such t h a t

(I C ) i (u i ) M i u i (u i 0) = i (u i ) M i u i+1 (u i 0) + i (u i ) M i;1 u i;1 (0 u i ) u i 2 0 1]
where i (u i ) i (u i ) > 0 (preservation of orientation) and M i u i (u i 0) M i u i+1 (u i 0) 6 = 0 (well de ned normal vectors).

G 1 continuity of a network of patches

If one wants to join several patches together in a network of patches with G 1 continuity, i t can happen that satisfying condition (I C ) for all edges can present serious di culties. This problem has been mentioned by s e v eral authors, rst by V an Wijk 21] and is called \vertex consistency problem". A t a v ertex, where n patches meet, G 1 continuity can generally not be achieved by simply solving the linear system of n equations (I C ). This system can have singularities, which are not easy to overcome. At s u c h a v ertex, the G 1 continuity i s directly related to the twists. The twist vector is the second order mixed partial derivative at a patch corner. For polynomial patches, which lie in the continuity class C 2 , b o t h t wists are identical:

@ 2 M i @u i @u i+1 (0 0) = @ 2 M i @u i+1 @u i (0 0) i = 1 : : : n :
Therefore, additional conditions at the patch corner, which i n volve the twists, have t o b e satis ed for G 1 continuity of a network of patches:

(I T ) i (0) M i u i u i+1 (0 0) + i (0) M i;1 u i;1 u i (0 0) = 0 i (0) M i u i (0 0) + i (0) M i u i u i (0 0) + 0 i (0) M i u i+1 (0 0) + 0 i (0) M i;1 u i;1 (0 0) i = 1 : : : n :
This system of equations is obtained by d i e r e n tiating (I C ) with respect to u i taken at u i = 0 . Now, for solving the G 1 problem at a vertex two strategies can be employed:

-x the boundary curves and solve ( I T ) for the twists, or -x the twists and solve the n equations (I T ) for the boundary curves. Both strategies, which should make n patches joining G 1 at a common vertex, will not give a solution in general for the same reason. They lead to linear systems of equations with a circulant matrix, which is singular if n is even and greater than 2 21, 16, 10].

C 2 -consistent boundary curves

A closer look to (I T ) shows that the right hand side only contains rst and second derivatives of the patch boundary curves at the common vertex. Whether or not the linear system (I T ) can be solved depends therefore on the choice of the boundary curves. Boundary curves are called to be C 2 -consistent, if the right hand side vectors : : : M i u i (0 0) : : : ] T and : : : M i u i u i (0 0) : : : ] T lie in the image space of the rank de cient s y s t e m ( I T ). The present i n terpolation scheme solves the problem by rst constructing C 2 -consistent boundary curves of the patch network. This ensures G 1 continuity at the patch v ertices by (I T ). In order to get an overall G 1 surface, (I C ) has to be satis ed between all adjacent patches. We therefore de ne cross-boundary tangents along each edge satisfying (I C ) and (I T ). It has to be noticed, that both steps are not independent, the values of the crossboundary tangents at the vertices are already xed by the boundary curves because of the following equality:

M i u i+1 (0 0) = M i+1
u i+1 (0 0) i = 1 : : : n :

3. LOOP's SCHEME Loop constructs sextic G 1 triangular B ezier patches in one-to-one correspondence with the input mesh faces. In this section we brie y recall the method of Loop in order to point out later the di erences with our work. Details are in 10].

Boundary curve s & v ertex consistency Around a vertex p of order n, with neighborvertices p i of order n i , Loop uses the following scalar functions i i i in systems (I C ) and (I T ):

i (u i ) = c o s ; 2 n B 2 0 (u i ) + 1 2 B 2 1 (u i ) + ( 1 ; cos ; 2 n i )B 2 2 (u i ) (quadratic) i (u i ) = i (u i ) = 1 2 : (constant) (1) 
The following choice for the rst three B ezier points f 0 i f 1 i f 2 i of the boundary curve between p and p i enables to nd a solution to system (I T ) around p:

f 0 i = p + (1 ; ) n n X j=1 p j f 1 i = p + 1 n n X j=1 ; 1 ; + cos( 2 (j ; i) n ) p j f 2 i = 1 3 p + 1 6 p i;1 + 1 3 p i + 1 6 p i+1
(2)

The boundary curve b e t ween p and p i is of degree 4, and has control points f 0 i : : : f 4 i , where f 3 i f 4 i are constructed as f0 i f1 i from the opposite vertex p i . and in (2) are shape parameters. There is no shape parameter for f 2 i . In fact, since the boundary curve has degree 4, the middle control point f 2 i must be computed symmetrically from both end-points.

Cross-boundary tangents The cross-boundary tangents are set to be equal

@H i @u i+1 (u i 0) = i (u i ) @H i @u i (u i 0) + i (u i )V i (u i ) (quintic) @H i;1 @u i;1 (0 u i ) = i (u i ) @H i @u i (u i 0) ; i (u i )V i (u i ) (quintic) (3) 
which ensures automatically that (I C ) is satis ed. The scalar function i and the vector function V i are built of minimal degree so as to interpolate the values of the crossderivatives and the twists at the vertices p and p i :

i (u i ) = sin 2 n (1 ; u i ) + sin 2 n i u i (linear) V i (u i ) = n X k=1 v k i B 3 k (u i ) (cubic) (4) 
where v 0 i = P n j=1 V 0 ij p j and v 1 i = P n

j=1 i V 0 ij + p j 8 < : 2 3 i (0) i (0) if j = i + 1 ; 2 3 i (0) i (0) if j = i ; 1 0 otherwise with V 0 ij = 1 n 4 sin 2 (j;i)
n and i = 1 ; 1 3 i (0) tan n (6 i (0) ; 0 i (0)) + 0 i (0)]. v 2 i and v 3 i are constructed as ṽ0 i ṽ1 i from the opposite vertex.

= 1 :0 = 0 :1 = 1 :0 = 0 :5 = 1 :0 = 1 :0 = 0 :5 = 0 :1 = 0 :5 = 0 :5 = 0 :7 = 1 :0 smaller value of has to be chosen, and the original mesh is not interpolated (bottom).

Each triangular patch H must be of degree 6 because of the quintic cross-boundary tangent functions (3). From the boundary curves (2 times degree elevated) and the cross-boundary tangents the rst two r o ws of B ezier control points of H are calculated. The remaining middle control point of each patch i s c hosen so that H has quintic precision. In two special cases Loop's patches are quintic (the three patch v ertices have same order) or quartic (the three patch v ertices are of order 6).

4. REGULAR 4-SPLIT Subdivision of the domain into several pieces has been shown to be bene t for interpolation by piecewise polynomial curves or tensor product surfaces. The polynomial degree can be kept low and additional degrees of freedom allow for shape improvements.

In the same intend we split the domain triangles into 4 sub-triangles by joining the edge midpoints together, see g. 3. Each triangular macro-patch M, which i n terpolates the 3 vertices of a surface mesh triangle, will be a piecewise C 1 quintic surface. For the following developments we rst consider the macro-patch as a whole. The boundary curves and cross-boundary tangents are therefore piecewise polynomial functions. The four sub-patches are then considered independently when lling-in the macro-patches with the C 1 quintic B ezier triangles. 4-splitting the domain triangles for parametric G 1 interpolation is the key issue of the present method. It doesn't cause additional problems, as one would probably think in contrary ! We shall point out, that we don't use the 4-split in order to solve t h e v ertex consistency problem as the Clough-Tocher methods do. The advantages are obvious, because the number of degrees of freedom per macro-patch is increased. They can be used to perform interpolation of vertices and to e ciently control the shape. The additional vertices, which are created at the edge midpoints, are of order 6. But the vertex consistency problem is implicitly solved by the special construction of the boundary curves and the cross-boundary tangents of the macro-patches, as will be shown in section 8.

u i-1 M i . u i+1 u i M i M i-1 p 0 1/2 1

CHOICE OF SCALAR FUNCTIONS i i i

For the interpolating spline surface presented in this paper one of the most important targets is to keep the total degree of the patches as low as possible. If M i (u i u i+1 ) is a triangular surface of total parametric degree d, then M i u i (u i 0), M i u i+1 (u i 0), and M i;1 u i;1 (0 u i ) are of degree d ; 1 in equation (I C ). When joining patches G 1 continuously, the conditions (I C ) a n d ( I T ) m ust be satis ed. It is important t o c hoose the scalar valued functions i i i such that they don't raise the degree of the nal patches. Ideally this would mean to take i linear and i i constant and the degree of the patches would not be raised when satisfying equation (I C ). One of the main contributions of this paper is to show that we can make it possible. First important p o i n t is the choice of i . F or locality reasons, Loop is not able to take i linear, he takes it quadratic, which nally leads to patches of degree six, one degree more than our proposal.

For symmetry reasons we c hoose i = i = 1 2 and as a simpli cation we suppose that 0 := i (0) and 1 := 0 i (0) for i = 1 : : : n . These assumptions imply that the G 1 conditions now state as follows:

(II C ) i (u i ) M i u i (u i 0) = 1 2 M i u i+1 (u i 0) + 1 2 M i;1 u i;1 (0 u i ) i (0) M i u i u i+1 (0 0) + i (0) M i;1 u i;1 u i (0 0) = 0 i (0) M i u i (0 0) + i (0) M i u i u i (0 0) :
Varying i from 0 to n ; 1 leads to the following linear system of equations:

(II T ) T t = 1 r 1 + 0 r 2 :
where T = and t is the vector of the twists. In Loop'94 it was now shown, that it is possible to determine 0 and 1 . F or u i = 0 it is easy to see that M i u i+1 (0 0) = M i+1 u i+1 (0 0). Equations (II C ) ( i = 1 : : : n ) taken at u i = 0 are therefore transformed into the following homogeneous system where n is the order of the vertex u i = 0 . k = 1 w as set to insure that the M i u i span a plane and are ordered properly, t h us

0 = i (0) = cos ; 2 n : (6) 
In an analogous way, one obtains i (1) = 1 ; cos ; 2 n i [START_REF] Herron | Smooth closed surfaces with discrete triangular interpolants[END_REF] where n i is the order of the opposite vertex. If one takes the functions i as linear blending functions, this would imply that 1 = 0 i (0) in (II T ) depends on the order n i of the opposite vertex. This would make t h e algorithm global instead of local, which is not acceptable. Since Loop in 10] wanted a single polynomial patch per input triangle, he was forced to take i quadratic in order to separate vertex informations and to keep the algorithm local. In our new method, the 4-splitting of domain triangles enables to separate vertex informations by taking the functions i piecewise linear, continuous, de ned on 0 1 2 ] and 1 2 1], with i ( 12 ) = 1 2 , a s s h o wn in g. [START_REF] Gregory | N-sided surface patches[END_REF].

i (u i ) = 8 < : cos 2 n (1 ; 2u i ) + u i for u i 2 0 1 2 ]
(1 ; u i ) + ( 1 ; cos 2 n i )(2u i ; 1) for u i 2 1

2 1] (8) This choice is justi ed by the observations that n = n i implies i (1) = 1 ; i (0) (and therefore i is a single linear function) and n = n i = 6 implies i (u i ) = 1 2 for all u i 2 0 1].

1 1/2 1/2 1 Φ (1) i Φ (0) i u i
This choice for i would not have been possible without 4-splitting the domain triangles.

6 BOUNDARY CURVE NETWORK The boundary curves of the macro-patches are constructed in correspondence to the edges of M. This is the most important step in the surface construction method, because the shape of this curve network has great in uence on the surface shape. The requirements on the boundary curves are the following:

-i n terpolating the vertices of M, -satisfying the G 1 conditions (II C ), (II T ) at the end points -k eeping the surface scheme local. The locality requirement imposes to construct the curves such that they satisfy (II C ), (II T ) at one vertex (end point) independently from the opposite vertex. The rst and second derivatives at the curve's end points are involved in system (II T ). A polynomial curve which separates these informations of both end points should be of degree 5. The advantage of the domain 4-split is now, that it allows to take piecewise C 1 polynomial curves of degree 3 . E a c h boundary curve b e t ween two adjacent m e s h v ertices consists of 2 cubic pieces, which are constructed independently from each other. Let denote the polynomial piece of the boundary curve b e t ween the neighboring vertices v of order n and the vertex p i of order n i in B ezier form by the control points b i 0 : : : b i 3 , see g. 5. f0 1 2 1g is the subdivision of the parameter interval for the whole boundary curve. Around each v ertex of M the control points b i 0 b i 1 b i 2 , i = 1 : : : n , of all incident boundary curves can be constructed independently from the joining curve piece of the opposite vertices, i.e. the rst and second derivatives can be isolated at each v ertex. The \midpoints" b i 3 are constructed in oder to have C 1 joints between both curve pieces. These points correspond to the parameter u i = 1 split has been accomplished. The control points of the joining pieces b k 0 b k 1 b k 2 and b k 3 = b i 3 are found when treating the boundary curve pieces incident i n p i , where k is the index of v relative to the neighborhood of v. where 2 IR is a shape parameter controlling the interpolation. In matrix representation [START_REF] Jensen | Assembling triangular and rectangular patches and multivariate splines[END_REF] corresponds to b 0 = v + B 0 p (10) where B 0 is a n n matrix with B 0 ij = 1; n i j = 1 : : : nand v = v : : : v] T .

The points b i 1 de ne the tangent plane of S and the rst derivative at the boundary curve end point:

r 1 i := M i u i (0 0) = 6(b i 1 ; b i 0 ) :
(11) Additionally, they have to make r 1 lying in the image space of T in (II T ) and to satisfy (II C ). A solution to that problem is to take r 1 as the local averaging of the vertex neighborhood of v which i s k n o wn as rst order discrete Fourier approximation to p 21, 17, 10]:

r 1 i = 6 n n X j=1 cos ; 2 (j ; i) n p j i = 1 : : : n ( 12 
)
where is a shape parameter controlling the magnitude of the tangent v ectors. Combining [START_REF] Mann | Surface approximation using geometric Hermite patches[END_REF] with ( 10) and ( 12)

gives b 1 = v + B 1 p ( 13 
)
where

B 1 ij = 1 ; + cos ; 2 (j;i) n n i j = 1 : : : n :
The points b i 2 are related to the second derivatives at the boundary curve end point:

r 2 i := M i u i u i (0 0) = 12(b i 2 ; 2b i 1 + b i 0 ) ( 14 
)
and have to lie in the image space of T in (II T ). It has been shown 10] that d i = 1 6 (2v + p i;1 + 2 p i + p i+1 ) su ces to that condition. Since any a ne combination of points, which lie in the image space of T also does, let de ne b i

2 := 0 b i 0 + 1 b i 1 + 2 d i 0 + 1 + 2 = 1 = b i 0 + 1 (b i 1 ; b i 0 ) + 2 (d i ; b i 0 )
where 0 1 2 are shape parameters controlling the value of the second derivative. matrix expression is given by b 2 = ( 0 + 1 ) + 

i 3 = 1 2 (b i 2 + b k 2 ) ( 16 
)
where b k 2 belongs to the joining curve piece constructed from the vertex neighborhood of p i .

The piecewise cubic boundary curves of the macro-patches of S can now be calculated by using eqs. ( 10), ( 13), ( 15) and ( 16) for each v ertex v of M. They form a C 2 -consistent curve network. The rst and second derivatives at the corners, r 1 i , r 2 i , lie in the image space of T . I t i s now possible to solve ( II T ) for the twist 

b i 0 = 1 2 (b i 0 + b i;1 0 ) e b i 1 = v + n X j=1 (1 ; ) + h cos ; 2 (j;i) n + tan ; n sin ; 2 (j;i) n i n p j e b i 2 = 0 b i 0 + 1 e b i 1 + 1 3 2 (v + p i + p i+1 )
are solutions of these three equations. It follows 1 r 1 + 0 r 2 = 6 1 (b i 1 ; b i 0 ) + 24 0 (b i 2 ; 2b i 1 + b i 0 ) = ( ;6 1 + 24 0 )b i 0 + ( 6 1 ; 48 0 )b i 1 + 24 0 b i 2 = T h (;6 1 + 24(1 + 0 ) 0 )b i 0 + (6 1 + ( ;48 + 24 1 ) 0 ) e b i 1 + 8 2 0 (v + p i + p i+1 ) i :

From equation (II T ) the following expression of the twists is obtained:

t i = 8 2 0 (1 ; 3 )v + n X j=1
;24 2 0 (1 ; ) + ( 61 + (24 1 ; 48) 0 ) h cos 2 (j;i) n + t a n ; n sin ; 2 (j;i) n i n p j + 8 2 0 (p i + p i+1 ) i = 1 : : : n : (17) Since the method of this paper is an interpolation scheme, = 1 is generally chosen. In order to avoid undulations of the boundary curves, for each v ertex a set of three free shape parameters 1 2 ( 0 = 1 ; 1 ; 2 ) i s a vailable. As mentioned above, controls the magnitude of the tangents and 1 2 the second derivatives and therefore the shape of the curves, see also section 9.

CROSS BOUNDARY TANGENTS

Once C 2 -consistent boundary curves have been found, the second step in constructing a network of G 1 continuous patches is to de ne the cross-boundary tangents M i u i+1 (u i 0) and M i;1 u i;1 (0 u i ) for each boundary curve of the curve n e t work. The conditions on them are three -satisfy the G 1 condition (II C ) along the boundary curve, -satisfy the twist constraint at the end points, -be consistent to the curve network.

With the curve n e t work, the values of the cross-boundary tangent functions at the corners are already xed, see g. 6.

where

V 0 ij = 6 n sin ; 2 (j ; i) n i j = 1 : : : n V 1 ij = 1 0 i h (6 1 ; 48 0 + 2 4 0 ) tan( n ) ; 6 1 i i n sin ; 2 (j ; i) n + 4 0 i 2 0 1 if j = i + 1 ;1 if j = i ; 1 :
As written above, V i is only required to be C 0 -continuous, and therefore the value of v i 2 is free. Nevertheless, in the example shown in section 9, we h a ve c hosen C 1 -continuous V i functions by taking v i 2 = 1

2 v i 1 + 1 2 v k
1 , where v k 1 is known from the opposite vertex p i . Piecewise cubic cross-boundary tangents have been constructed in this section. However, the surface will only be piecewise quintic, because up to now, it is an open question how t o use the degrees of freedoms in order to obtain a piecewise quartic surface. This is subject of current research.

MACRO-PATCHES IN B EZIER FORM

From now up, the macro-patches are considered individually. The domain 4-split leads to the construction of 4 triangular patches per macro-patch for which t h e B ezier control points will be given in this section. The border and rst inner row of control points of the macro-patch can be found from the boundary curves (sect. 6) and the cross-boundary tangents (sect. 7). They ensure the G 1 -join to the neighboring macro-patches. In order to have a n o verall visually smooth surface, the remaining inner control points are used to join the 4 sub-patches C 1 -continuously. Six control points per macro-patch remain free for local shape control. The B ezier control points of M are therefore denoted resp. by s 1 (i j l) , s2 (i j l) , s 3 (i j l) , s m (i j l) ,

where i+j +l = 5 . u k = a k+1 ;a k are vectors between the domain vertices and de ne the directional derivatives D u k M](u v w) o f M. F urthermore, let E k (u) = a k (1;u)+a k+1 u, for u 2 0 1], de ne an edge function and let n k be the order of the mesh vertex which i s interpolated by M(E k (0)).

8.2 Finding boundary and rst (row) derivative control points of M Let denote the piecewise cubic boundary curve b y

M(E k (u)) = 8 < : P 3 i=0 b L i B 3 i (2u) for u 2 0 1 2 ] P 3 i=0 b R i B 3 i (2u ; 1) for u 2 1 2 1] k = 1 2 3 ( 24 
)
where b L i b R i are the control points of the two curve pieces, computed in sect. 6. The cross-boundary tangent M i u i+1 (u i 0) of sect. 7 is here given by

;D u k+2 M](E k (u) ) = k (u) D u k M](E k (u)) + k (u)V k (u)
(25) where

D u k M](E k (u)) = 8 < : 6 P 2 i=0 (b L i+1 ; b L i )B 2 i (2u) for u 2 0 1 2 ] 6 P 2 i=0 (b R i+1 ; b R i )B 2 i (2u ; 1) for u 2 1 2 1] k = 1 2 3 (26) is the derivative o f M(E k (u)) along the edge u k , V k (u) = 8 < : P 2 i=0 v L i B 2 i (2u) for u 2 0 1 2 ] P 2 i=0 v R i B 2 i (2u ; 1) for u 2 1 2 1] k = 1 2 3 ( 27 
)
is the cross-derivative function of sect. 

Let us now consider the boundary of M corresponding to u 1 which is common to the patches S 1 and S 2 . The control points are labeled as in g. 8. 

(5;i i 0) , i = 0 : : : 5 are found analogously from b R j , j = 0 : : : 5.

The rst row of inner control points s 1 (4;i i 0) s 2 (4;i i 0) , i = 0 : : : 4, of M can be found by the cross-boundary derivatives ;D u 3 M](E 1 (u)) = 

The left hand-side of (31) can be found by combining (25) with (26), ( 27), (28), (29). It is piecewise cubic and must be degree elevated, before rearranging of (31) nally leads to s 1 (4 0 1) =s 1 (5 0 0) ; 3c 1

5 b L 0 + 3c 1 5 b L 1 + s 1 10 v L 0 s 1 (3 1 1) =s 1 (4 1 0) ; 6c 1 + 3 40 b L 0 + 3 ; 6c 1 40 b L 1 + 3c 1 10 b L 2 + 3s 1 + s 2 80 v L 0 + s 1 20 v L 1 s 1 (2 2 1) =s 1 (3 2 0) ; 1 20 b L 0 ; 1 + 4 c 1 20 b L 1 + c 1 + 1 10 b L 2 + c 1 10 b L 3 + s 1 + s 2 120 v L 0 + 3s 1 + s 2 60 v L 1 + s 1 60 v L 2 s 1 (1 3 1) =s 1 (2 3 0) ; 3 20 b L 1 + 3 ; 6c 1 40 b L 2 + 6c 1 + 3 40 b L 3 + s 1 + s 2 40 v L 1 + 3s 1 + s 2 80 v L 2 s 1 (0 4 1) =s 1 (1 4 0) ; 3 10 b L 2 + 3 10 b L 3 + s 1 + s 2 20 v L 2 (32) and s 2 
(4 0 1) =s 2 (5 0 0) ; 3 The control points corresponding to the boundaries u 2 and u 3 are obtained by shifting the indices in (30) and ( 32), (33) once and twice to the left.

10 b R 0 + 3 10 b R 1 + s 1 + s 2 20 v R 0 s 2 (3 1 1) =s 2 (4 1 0) ; 9 ; 6c 2 40 b R 0 + 3 ; 6c 2 40 b R 1 + 3 20 b R 2 + s 1 + 3 s 2 80 v R 0 + s 1 + s 2 40 v R 1 s 2 (2 2 1) =s 2 (3 2 0) ; 1 20 b R 0 ; 2 ; c 2 10 b R 1 + 5 ; 4c 2 20 b R 2 + 1 20 b R 3 + s 2 60 v R 0 + s 1 + 3 s 2 60 v R 1 + s 1 + s 2 120 v R 2 s 2 (1 3 

Filling-in the macro-patches by piecewise quintic B ezier triangles

All control points, which a r e i n volved in joining the macro-patches pairwise G 1 are highlighted in g. 9. In this section, it will be shown that it is possible to join the 4 sub-patches S 1 S 2 S 3 S m with C 1 continuity and how the remaining control points are used for that. Figure 12: C 1 -conditions between two adjacent q u i n tic B ezier patches inside one macro-patch.

From the previous proof, we know that the rst and last pairs of adjacent triangles in g. 12 already form parallelograms. It remains to compute the free B ezier points such that the other three pair of triangles along each edge inside on macro-patch also form parallelograms. This is be done in four steps: choose the three twists points of the internal B ezier patch arbitrarily, these are free shape parameters (see g. 13.a), compute the third and fourth B ezier points along each i n ternal curve joining two B ezier patches using the second and fourth parallelogram conditions (see g. 13.b), choose the remaining three unknown B ezier points of the central patches arbitrarily, these are free shape parameters (see g. 13.c), compute the three remaining unknown B ezier points of the outer patches using the third parallelogram condition along each edge (see g. 13.d).

RESULTS

Interpolation as in 10],

= 1 , = 0 :1

Interpolation with the new method, = 1 , = 0 :1, 0 = ;3:7, 1 = 4 :6, 2 = 0 :1 The rst example shows how the new shape parameters 0 1 ( 2 = 1 ; 0 ; 1 ) can be used to remove u n wanted undulations in the curve n e t work interpolating the input triangular mesh. The left part of g. 14 shows the result from 10] when interpolating an icosahedron by c hoosing = 1 :0. The value of is 0:1. The right part shows the curve n e t work from the new interpolant presented in this paper, with the same values for and , but with the new shape parameters 0 = ;3:7, 1 = 4 :6, 2 = 0 :1. The boundary curves are blue and the control-polygons are red. The bottom part of g. 14 shows one of the boundary curve in blue, with its control-polygon in red. The method in 10] yields a single quartic control-polygon (bottom left), while our method yields two cubic control-polygons joining C 1 -continuously (bottom right). Since the same value was chosen in both methods, the rst and second control-points at each end of the boundary curves are the same in both results. Choosing negative v alues for the new shape parameter 0 enables to smooth out the control-polygon and the associated boundary curve. The color plate shows the interpolation of a deformed icosahedron ((a) and (b)) and of a triangular mesh with vertices of various orders ((c) and (d), vertices of orders 3, 4, 5, 6, and 8 are visible on these views). For the surfaces shown in the color plate, the six free controlpoints mentioned in section 8 were computed automatically based on the minimization of an local energy functional. More details on this automatic choice will be the subject of a future publication.

CONCLUSIONS

This paper has introduced a new piecewise quintic G 1 spline surface interpolating an input triangular surface mesh with arbitrary topological type. This interpolant is local. It is based on the 4-split of the input mesh triangles. Shape parameters are available for controlling locally the boundary curves. Furthermore six free control-points per input triangle can be chosen for additional shape control. Future work will focus on the proper handling of open triangular meshes, and on the automatic choice of the shape parameters and of the free control-points.

Figure 1 :

 1 Figure 1: parameterization of macro-patches around a vertex

Figure 2 :

 2 Figure 2: A t ypical case where undulations in the curve n e t work happen, when interpolating with Loop's patches. The top shows the interpolation case, = 1 . T o remove the oscillations, a

Figure 3 : 4 -

 34 Figure 3: 4-split of all domain triangles

Figure 4 :

 4 Figure 4: scalar valued function i (u i ), piecewise linear

Figure 5 :

 5 Figure 5: control points of the boundary curves at vertex v For simpli cation it is convenient to adopt a matrix notation:

2 :

 2 i+1 (0 0) i = 1 : : : n by observing that the control points (10), (13),[START_REF] Peters | Local cubic and bicubic C 1 surface interpolation with linearly varying boundary normal[END_REF] are constructed such that they lie in the image space of T , i.e. there exist some points e Due to the simple structure of the matrix T , i t i s e a s y t o v erify that e

8. 1

 1 NotationsA triangular B ezier patch of degree d is given byB(u v w) = X i+j+l=d i j l 0 b (i j l) B d i j l (u v w) u + v + w = 1where u v w 2 0 1] are the barycentric coordinates of a point inside the domain triangle, and b i are the B ezier control points. The basis functions B d i j l (u v w) = i!j!l! d! u i v j w l are known as generalized Bernstein polynomials. For more details about triangular B ezier patches, see[START_REF] Farin | Curves and Surfaces for Computer Aided Geometric Design[END_REF][START_REF] Hoschek | Fundamentals of Computer Aided Geometric Design[END_REF]. The 4 triangular B ezier patches of degree 5 which compose the macro-patch M are denoted by S 1 S 2 S 3 S m and are parameterized as in g. 7.

Figure 7 :

 7 Figure 7: Parameterization of the macro-patch M, labeling of sub-patches and derivative directions.

Figure 8 : 1 A

 81 Figure 8: boundary and rst derivative c o n trol points of M corresponding to boundary u 1A double degree elevation of (24) results in the control points of the piecewise C 1 quintic B ezier curve, which is the boundary curve o f M corresponding to direction u 1 :

Figure 13 :

 13 Figure13: Four steps for lling-in the macro-patch M with C 1 -continuity: (a) choose the three twists of S m , w h i c h are free for local shape control. (b) compute the third and fourth B ezier points along each edge using the C 1 -continuity conditions, (c) choose the three last free B ezier points of S m , which are also free shape parameters, (d) compute the remaining three B ezier points using the C 1 -continuity conditions.

Figure 14 :

 14 Figure 14: Removing unwanted undulations in the interpolating curve n e t work. The left part shows the interpolation of an icosahedron with the method of 10]. The right part shows the interpolation with the new method presented in this article. The new shape parameters enable to remove the undulations. The control-polygons are in red, and the boundary curves are in blue.

  [START_REF] Herron | Smooth closed surfaces with discrete triangular interpolants[END_REF], and k k are the scalar functions de ned resp.

	k (u) = s i n ; 2 n k	(1 ; u) + s i n ; 2 n k+1	u u 2 0 1]:
	in sections 3 and 7 by		
	k (u) =	8 < :	cos 2 n k (1 ; 2u) + u (1 ; u) + ( 1 ; cos 2 n k+1 )(2u ; 1) for u 2 1 for u 2 0 1 2 ]

, i.e. the midpoint o f a n e d g e o f M, where the 4-

1] (28)

A c o n venient w ay to de ne cross-boundary tangents that ensure G 1 continuity is the following:

where i is some scalar function and V i some vector function.

To see that [START_REF] Piper | Visually smooth interpolation with triangular B ezier patches[END_REF] implies (II c ), simply add the two equations in [START_REF] Piper | Visually smooth interpolation with triangular B ezier patches[END_REF]. To see that (II c ) implies [START_REF] Piper | Visually smooth interpolation with triangular B ezier patches[END_REF]

The degree of i and V i in ( 18) decides now about the degree of the surface S. The product i M i u i is piecewise C 0 cubic, see ( 8) and section 6. Therefore, i V i should not be of degree higher than 3. Due to the domain 4-split it will again be possible to construct these functions continuous and piecewise polynomial of degree 1 and 2. The function values i (0) and V i (0) are now determined following 10]. The crossboundary tangents have to correspond to the tangents of the boundary curve tangents at the end points. The rst equation of (18) evaluated at u i = 0 , g i v es

, r 1 i+1 = 0 r 1 i + 0 V i (0) [START_REF] Sarraga | G 1 interpolation of generally unrestricted cubic B ezier curves[END_REF] in terms of section 5, with the simplifying assumption i (0) = 0 for all i. Expanding (19) by using ( 12) and (6) results in

n sin 2 (j ; i) n p j :

An appropriate choice of 0 is therefore 0 = s i n ; 2 n :

From the opposite end point, the product i (1)V i (1) can be obtained analogously, which gives i (1) = sin 2 n i , where n i is the order of vertex p i . Hence the function i can be chosen linear, which is minimal degree:

The function V i cannot be taken linear, because it's derivative depends on the twists. When di erentiating the rst equation of [START_REF] Piper | Visually smooth interpolation with triangular B ezier patches[END_REF] with respect to u i and evaluating at u i = 0

The derivative V 0 i (0) appears in relation to the twist t i = M i u i u i+1 (0 0) = M i u i+1 u i (0 0). It explains, why the cross-boundary tangents have to be constructed subject to the twists. From (21) one gets therefore

where 1 i = 0 i (0) = sin ; 2 n i ; sin ; 2 n depends on i. V i (1) and V i 0 (1) are known from the opposite vertex p i . A Hermite interpolation of these four values V i (0) V i 0 (0) V i (1) V i 0 (1) would result in a cubic polynomial. The domain 4-split of the present method allows to lower the degree by one by taking V i as a piecewise C 0 quadratic function requiring that V i ( 1 2 ; ) = V i ( 1 2 + ). In fact, as will be shown in section 8.3, it is only required that V i is C 0 -continuous. For the quadratic piece of V i corresponding to the vertex v one gets in terms of Bernstein-B ezier representation the following control points:

In matrix form, the control points of V i are given by Vertex consistency and C 1 -continuity at the edge mid-points Two questions should be answered for the general understanding of the present triangular interpolation scheme:

-the macro-triangle edge mid-points are vertices of order 6. Why don't they present t h e vertex consistency problem ? -W h y using (the stronger) C 1 conditions for lling-in the macro-patches (instead of G 1 conditions) ? In fact, both questions can be answered simultaneously: it turns out that the crossboundary tangents constructed in section 7 already ensure continuity of the rst partial derivatives at the edge mid-points. To p r o ve this, we temporarily switch to the notations of section 7. The partial derivatives around an edge mid-point are shown in g. 10.

Figure 10: partial derivatives at the edge mid-points

We h a ve to prove that M i u i+1 ( 1

2 ) (continuity b e t ween the two macro-patches joining at the common edge). The other identities follow from the C 1 -continuity of the common boundary curve.

The continuity of the partial derivatives inside one macro-patch can easily be seen from ( 18): since i (u i ) M i u i (u i 0) i (u i ) V i (u i ) are all continuous at u i = 1 2 , t h e n M i u i+1 (u i 0) and M i;1 u i;1 (0 u i ) are also continuous at u i = 1 2 . It remains to prove the continuity of the partial derivatives between the joining macropatches. We will prove the rst identity, M i u i+1 ( 1 2 0) = M i;1 u i+1 (0 1 2 ), the second identity M i u i;1 ( 1 2 0) = M i;1 u i;1 (0 1 2 ) can be proven analogously.

Since u i+1 = u i ; u i;1 , i t f o l l o ws that M i;1 u i+1 (0 1 2 ) = M i;1 u i (0 1

2 ) ; M i;1 u i;1 (0 1 2 ). In this last identity, w e replace M i;1 u i;1 (0 1 2 ) b y its value from (18):

0) (the two macro-patches share the same common C 1 -continuous boundary curve), therefore:

0) :

Thus we h a ve s h o wn that all C 1 -continuity conditions around the edge mid-points are already ful lled by the cross-boundary tangents constructed in section 7. Therefore there is no vertex-consistency problem at these points, and it is natural to use the stronger C 1continuity conditions for lling-in the macro-patches. In other words, the 6 B ezier points around an edge mid-point form an a ne transformation of a regular 6-gon, as shown in g. 11. 

Computing the unknown B ezier points

The necessary and su cient C 1 -continuity conditions between two i n ternal B ezier patches inside one macro-patch a r e s h o wn in g. 12: all pairs of adjacent triangles in g. 12 must form a parallelogram.