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Abstract. Triangular Bézier patches are an important tool for defining

smooth surfaces over arbitrary triangular meshes. The previously intro-

duced 4-split method interpolates the vertices of a 2-manifold triangle

mesh by a set of tangent plane continuous triangular Bézier patches of

degree five. The resulting surface has an explicit closed form represen-

tation and is defined locally. In this paper, we introduce a new method

for visually smooth interpolation of arbitrary triangle meshes based on

a regular 4-split of the domain triangles. Ensuring tangent plane con-

tinuity of the surface is not enough for producing an overall fair shape.

Interpolation of irregular control-polygons, be that in 1D or in 2D, often

yields unwanted undulations. Note that this undulation problem is not

particular to parametric interpolation, but also occur with interpolatory

subdivision surfaces. Our new method avoids unwanted undulations by

relaxing the constraint of the first derivatives at the input mesh vertices:

the tangent directions of the boundary curves at the mesh vertices are

now completely free. Irregular triangulations can be handled much bet-

ter in the sense that unwanted undulations due to flat triangles in the

mesh are now avoided.

Keywords. triangulation, irregular 3D meshes, arbitrary topology, modeling, surfaces,

triangular patches, piecewise polynomial patches, interpolation, arbitrary tangent vectors,

reconstruction.
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1. INTRODUCTION

The easiest way of modeling free-form surfaces is to use tensor-product Bézier/BSpline or

NURBS patches. Tensor-product Nurbs patches have long ago become a de-facto stan-

dard in CAD/CAM industry. But tensor-product patches are able to model only a very

restricted type of surfaces, those which topological type is the same as that of a square.

Unfortunately 2-manifold surfaces with arbitrary topological type are very common in ev-

eryday life. For example a cup of coffee has the topological type of a torus. Modeling

the skin of a cup of coffee as a single smooth surface is not an easy task. If you are re-

stricted to tensor-product patches, most probably you would use two pieces: one for the

container and one for the handle. You would then trim the container along the joint be-

tween the two pieces. You would carefully modify the control points of the handle in order

to blend as smoothly as possible the two pieces. Trimming is the common method used for

modeling surfaces of arbitrary topological type with tensor-product patches. But dealing

with trimmed models is rather cumbersome. These reasons explain why researchers have

tried to develop mathematical models that can deal with control-polygons of arbitrary

topological type, not only tensor-product control-polygons.

Two different research directions have been pursued. One is based on subdivision

surfaces, that recursively subdivide the control-mesh. The other direction consists in

building a patchwork of smoothly joined parametric patches, with the same topology as the

control-polygon. The present paper deals with this last kind of surfaces. Not surprisingly

the two directions have encountered the same main difficulty: dealing with the smoothness

of the surface. Here we ensure tangent-plane continuity of the resulting surface. Our

method builds a network of triangular Bézier patches that interpolates a given 2-manifold

triangular mesh with arbitrary topological type. Interpolation is a very useful and intuitive

feature in modeling. But unfortunately it is also quite tricky to find smooth curves or

surfaces that interpolate a given control-polygon. In particular if the control-polygon has

non-regular features, one small edge joined to a long edge in the 1D case, or one very flat

triangle joined with a big triangle in the 2D case, then most probably the interpolating

curve or surface will suffer from severe undulations in this area. Note that this problem

is not particular to the parametric methods. The methods based on subdivision surfaces

have exactly the same problem when it comes to interpolating control-polygons.

In this paper we introduce a new interpolation method that avoids undulations, even

when interpolating irregular triangulations. Each input triangle is regularly subdivided

into 4 sub-triangles, and one degree 5 Bézier patch is associated to each of the sub-triangles.

These 4 Bézier patches are referred to as a macro-patch. Inside a macro-patch, the 4 Bézier

patches are connected with C1 continuity. The macro-patches are themselves connected

with G1 continuity. The key difference with our previously introduced 4-split [12] method

lies in the fact that our new interpolant allows free choice of all first derivatives at each

input vertex, along each input edge. Whereas the previous method was restricted to having

first derivatives that form an affine transformation of a regular n-gone, this new method
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does not impose any constraint on the first derivatives. This allows to avoid any unwanted

undulations when interpolating irregular triangulations.

The paper is organized as follows. After some notations and some basics about tangent

plane continuity, the presentation of previous related works will then outline the main

difference to our method which we believe is able to increase the general quality of such

interpolating spline surfaces. Then starts the description of the algorithm (sect. 3) which

is mainly composed of thee steps. The first two steps (sect. 3.2 - 3.4) are coupled. They

consist of constructing a curve network interpolating the mesh vertices and of constructing

the tangent ribbons along that curves in order to satisfy the G1 conditions between adjacent

patches. Step 3 (sect. 3.5) finally counts the remaining Bézier control points of the patches

and explains how to calculate them. We then go into the detail of some design and

computational aspects (sect. 4) of that method. Sect. 5 will present results and compare

them to earlier works. The concluding remarks finally indicate some directions for further

research.

2. BASICS AND RELATED WORKS

2.1 Notations

The problem we address is to find a parametric polynomial surface which interpolates a

given triangulated surface mesh M with tangent plane continuity. The triangle mesh can

be of arbitrary topology but should be 2-manifold. There is no restriction on the valence

of its vertices. It can be an open or a closed mesh. The requirements on the surface are to

· be polynomial of as low degree as possible,

· interpolate the mesh vertices,

· be defined locally and

· be smooth in the sense of having a pleasing shape.

The smoothness requirement is a global one, and it conflicts therefore with a local definition

of the surface. We therefore try to get an overall well shaped surface only by doing local

operations.

The general procedure consists of constructing parametric patches in one-to-one corre-

spondence to the mesh faces. Each patch boundary curve corresponds to an edge of M

and interpolates both end points. Each patch is in our case a polynomial image of the

unit domain triangle. The polynomial patches and curves are represented in Bernstein-

Bézier basis. A curve of degree n with control-points b0, · · · , bn has the parametric equa-

tion B(t) =
∑n

i=0 bit
i(1 − t)n−i. A triangular patch of degree n with control-points

b(i,j,k),i+j+k=n has the parametric equation S(s, t) =
∑

(i,j,k),i+j+k=n b(i,j,k)s
itj(1−s−t)k.
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Figure 2: parameterization.

The patches of the surface we aim to construct are defined locally around the vertices which

they interpolate. We adopt therefore the following parameterization. Let us consider a

mesh vertex p ∈ IR3 and its neighborhood points p1, . . . ,pn ordered in a trigonometric

sense. The integer n is called valence of p. The patches around the vertex are numbered

S1 to Sn. Let ui ∈ [0, 1] be the parameter corresponding to the curve between p and pi,

the patch Si is then parametrized as shown in fig. 2. In the following we denote Γi(ui) the

patch boundary curve joining p to pi:

Γi(ui) := Si(ui, 0) = Si−1(0, ui) ui ∈ [0, 1].

2.2 Tangent plane continuity

We require our interpolating surface to be tangent plane - e.g. G1 - continuous. Tangent

plane continuity doesn’t depend on parameterization as C1 continuity does. Tangent plane

continuity is the mostly used definition of first order continuity for free-form parametric

surfaces in CAGD. In addition to being parameter-independent, it also allows more free

parameters in comparison to the C1 continuity.

The surface should be G1 continuous which means to have continuously varying tangent

planes between the patches. The G1 conditions are at the origin of every step in the

surface construction algorithm. They have to be satisfied between adjacent patches and at

the mesh vertices where an arbitrary number of patches meet. They therefore have to be

satisfied by the boundary curves at the mesh vertices and by the cross-boundary tangents.

Let Si and Si−1 be two adjacent patches sharing a common boundary curve Γi(ui).

They meet with tangent plane continuity if there exist three scalar functions Φi, µi, νi

such that

Φi(ui)
∂Si

∂ui

(ui, 0) = µi(ui)
∂Si

∂ui+1
(ui, 0) + νi(ui)

∂Si−1

∂ui−1
(0, ui), (1)

where µi(ui)νi(ui) > 0 (preservation of orientation) and ∂Si

∂ui+1
(ui, 0) × ∂Si−1

∂ui−1
(0, ui) 6= 0

(well defined normal vectors). This formula means that the three partial derivatives along

the boundary curve Γi are always coplanar, see fig. 3.
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Figure 3: Tangent plane continuity.

The goal is now to determine for each mesh vertex of valence n the scalar valued functions

Φi, µi, νi and the patches Si, i = 1, . . . , n. Of course there is an infinite number of

solutions. We require the patches to be polynomial with all advantages they have with

respect to rational patches. Also we require them to be of minimal possible degree and to

be defined explicitly and locally, meaning that we don’t want to have to solve any global

linear system in order to compute them.

2.3 Related works

The earliest interpolation schemes are due to Piper [22], Shirman, Séquin [24] and some

others [14, 17] which are all based on the same idea using a Clough-Tocher domain split.

The initial work to that can be found in [6]. They all apply to arbitrary triangle meshes and

result in three polynomial patches of degree four per mesh face. The problem of polynomial

G1 interpolation is, that the surfaces have to be twist compatible at the vertices. The

problem is solved by splitting the domain triangle Clough-Tocher like into three triangles

by introducing a new point at the interior. Due to the very low degree only few degrees of

freedom are available for shape control. This can be the reason for that what Mann et al.

found out in their survey paper [17]. They compared polynomial and rational triangular

interpolation schemes and conclude, that all of them suffer from shape defects.

Then Loop [15] developed another polynomial scheme which results in only one patch for

a mesh face. Its low degree six is obtained by choosing a special setting for the scalar

functions Φi, µi, νi in equation (1), namely

Loop’94: Φi function of degree 2

µi = νi ≡
1
2

in order to solve the twist problem. This particular choice fixes entirely the patch boundary

curves up to a scalar degree of freedom per vertex. He obtains however quite fair surfaces

by relaxing the interpolation condition. It belongs therefore not really to the class of

schemes we consider here, but the way he solved the twist problem, motivated our work.

A third type of methods is the basic 4-split method [12].
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Hahmann/Bonneau’00: Φi piecewise function of degree 1

µi = νi ≡
1
2 .

By taking Loop’s low degree setting for the scalar functions µi, νi and by lowering the

degree of Φi by one and by introducing piecewise polynomial boundary curves and cross-

boundary tangents, we obtained enough degrees of freedom for the curve network con-

struction. The four patches (due to the domain triangle 4-split) are of degree five and

interpolate the mesh vertices.

It turns out that this particular setting of µi = νi = const can lead to “misbehavior”

of the surface, to unpleasant shapes if the input mesh contains irregularities. Irregularities

mean for example that very short and very long edges meet at the same vertex, or that

small flat triangles are joint to more equiangular triangles. All these situations in an

input mesh make it extremely difficult to find an interpolating smooth surface. The same

problem occurs also for interpolatory subdivision surfaces, they also are not able to result

in a fair interpolating surface in that case.

One solution to that problem can consist in a kind of preprocessing step of the in-

put mesh by trying to optimize the mesh with respect to one well chosen cost function.

However, in this case interpolation doesn’t make sense anymore.

What we want to develop in the present paper is a new mesh interpolation method

which allows for arbitrary values of the scalar functions around a vertex, while maintaining

at the same time the interpolation scheme polynomial of degree five. The functions will be

linear. What really is the difference between using constant or arbitrary linear functions

will be explained in detail in the following section.

Other triangular interpolants exist including the convex combination schemes [8, 9,

11, 19], boundary curve schemes [21], algebraic methods [2], singular parameterization [18],

quasi G1 surfaces [16], and methods for meshes with restricted vertex valences [25].

3. THE G1 INTERPOLATION SCHEME

The algorithm of the present method consists mainly of three constructive steps:

(1) boundary curve network,

(2) cross-boundary tangents,

(3) fill-in patches.

The first two steps are linked together because of the G1 conditions. First we examine

in detail the G1 conditions at a mesh vertex. We get first and second derivatives of the

patch boundary curves at the vertices. These data are then used to find a curve network

interpolating these data and which is therefore G1 compatible.
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3.1 Tangent plane continuity at mesh vertices

The tangent plane continuity conditions at a mesh vertex of valence n consist of the n

equations (1) between the n patches meeting at that vertex evaluated at the parameters

ui = 0:

Φi(0) Γ′

i(0) = µi(0) Γ′

i+1(0) + νi(0) Γ′

i−1(0), i = 1, . . . , n. (2)

The indices are taken modulo n. It turns out that at the vertex, the three partial derivatives

in (1) are identical to the first derivatives of the three boundary curves Γi−1, Γi, and Γi+1,

see fig. 4.

Γ’ (0)i
Γ’   (0)i+1

Γ’   (0)i−1

Figure 4: Tangent plane continuity at mesh vertex.

Equation (2) relates therefore the values of the scalar functions around a vertex to the first

derivatives of the boundary curves. From the general G1 condition we already know that

the degree of the patches is related to the degree of the scalar functions. If one wants to

get patches of as low degree as possible, one has to keep the degree of these functions as

low as possible. This was done in [15, 12], where µi = νi = const. It was shown in these

papers that in the case of µi = νi = const the first derivatives in terms of Bézier control

points always form an affine transformation of a regular planar n-gon. This leads to very

restricted positions of the derivative vectors around a vertex. There is not enough freedom

for choosing the derivatives of the curves at the vertex. Indeed, in order to get smooth

surfaces it is very important first to build smooth boundary curves, as it was pointed

out by S. Mann in [17], and hence to be able to choose the first derivatives with as most

freedom as possible. Fig. 5 (left) shows a top-view zoom on the real example given later in

fig. 15, 16 and 17 (right), centered on the order six vertex. The tangents corresponding to

µi = νi ≡ const are shown in fig. 5 (right). Because of the restriction on their choice, these

tangents lead to boundary curves with undulations, and thus to unpleasant shapes as can

been seen in fig. 16 right. On the contrary, our new method enables to choose arbitrary

tangents, as shown in fig. 5 (middle), and thus to remove boundary curve undulations, as

shown in fig. 17 (right).

Conclusion:

The setting of µi = νi ≡ const doesn’t allow for an arbitrary choice of the boundary

curve’s derivatives at the mesh vertices. However, it works well if the input mesh is almost
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regular in the sense of almost equiangular triangles. A preprocessing mesh optimization

would make sense if interpolation of the control mesh is not required.

3.2 Collecting data ensuring G1 continuity at mesh vertices

Tangents

For simplification, let us first introduce the following notation for the tangents (first deriva-

tives) of the boundary curves at a mesh vertex:

d
1
i := Γ′

i(0) =
∂Si

∂ui

(0, 0).

Let us now explain how to determine the quantities which are related by equation (2),

namely µi(0), νi(0), Φi(0) and the curve’s tangents d
1
i , i = 1, . . . , n.

If one multiplies (cross product) for each index i the G1 equation Φi(0)d1
i − µi(0)d1

i+1 −

νi(0)d1
i−1 = 0 by the vectors d

1
i−1, d

1
i , d

1
i+1 resp., one gets three vector valued equations

which are then multiplied (dot product) each by the vector n (normal to the d
1
i ) one gets

a (3 × 3) linear system of equations of rank 2. Doing so for each index i, one gets the

following formulas

µi(0) =
|di, di+1, n|

|di−1, di+1, n|
Φi(0) , νi(0) =

|di−1,di, n|

|di−1, di+1, n|
Φi(0), i = 1, . . . , n. (3)

The tangents of the boundary curves can therefore be chosen arbitrarily in length and

direction as long as they belong to the same plane, namely the tangent plane. Then the

scalar values µi(0) and νi(0) are also fixed up to a scalar factor Φi(0) by equations (3).

Similar formulas have been developed by W. Du in [4], but his G1 surface is then composed

of rational patches.

In practice we choose the normalization factor Φi(0) such that µi(0) · νi(0) = 1
4 . This

choice is motivated by the need of a normalization that generalizes the regular case where

µi(0) = νi(0) = 1/2. And it will simplify the computation of the boundary curves where

this product occurs??.

Fig. 5 (left) shows a zoom on a real example of a vertex with six common edges. An

arbitrary choice of the curves’ tangents leads to the Bézier control points of the boundary

curves as shown in fig. 5 (middle). They are obtained by the new method which is described

in section 4. The tangent control points corresponding to constant scalar functions, µi(0) =

νi(0) ≡ 1
2 , are shown in fig. 5 (right). The edges in the background show the deviation in

that case.
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Figure 5: Left: zoom on a 3D vertex configuration with six common edges. Middle:

Arbitrary tangents at mesh vertex. The vertex together with the curves’ Bézier control

points build the polygons. Right: tangent Bézier control points corresponding to a constant

value of the scalar functions, in particular µi(0) = νi(0) ≡ 1
2 .

Geometrical interpretation:

Formulas (3) have the following geometrical meaning: for each triple of tangents {d1
i−1, d

1
i ,

d
1
i+1} the value of µi(0) is proportional to the area of the triangle ∆(p, p + d

1
i ,p + d

1
i+1)

and νi(0) is proportional to the area of the triangle ∆(p,p + d
1
i−1,p + d

1
i ), see fig. 6.
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Figure 6: Geometrical meaning of scalar functions. The values of µi(0), νi(0) are propor-

tional to the area of the shaded triangles.

Scalar functions:

Once the values (3) are determined for each mesh vertex, the scalar functions can be taken

(piecewise) linear along the domain triangle edges where they are defined on:

(piecewise) linear functions: µi, νi, Φi : [0, 1] → IR.

Twists

The second derivatives of the patch boundary curves are also involved when establishing

G1 continuity at a mesh vertex. This can be seen when differentiating (1) with respect to

ui and evaluating it at ui = 0, i = 1, . . . , n. One obtains the following necessary system of

conditions of G1 continuity at the mesh vertices:

Φi(0)d2
i = µ′

i(0)d1
i−1 − Φ′

i(0)d1
i + ν′

i(0)d1
i+1 + µi(0)ti−1 + νi(0)ti , i = 1, . . . , n, (4)
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where d
2
i := Γ′′

i (0) = ∂2Si

∂u2
i

(0, 0) denote the second boundary curves derivatives at the

vertex, and ti := ∂2Si

∂ui∂ui+1
(0, 0) denote the twist vector of patch Si at the vertex. The

twists and the second derivatives are the unknowns in these equations. The best way

to proceed is to choose all the twists t1, . . . , tn and then simply evaluate the equations

separately from each other in order to get values for the second derivative d
2
i . No linear

system has to be solved for that. How the twists are chosen will be explained in section 4.

Conclusion:

At each mesh vertex we now have fixed the data which is necessary to satisfy G1 continuity

there:

- the position (interpolation of mesh vertices),

- the tangents,

- the second derivatives of the patch boundary curves,

- the twists of the patches surrounding that vertex.

One is therefore tempted to believe that a curve network composed of quintic Hermite

curves between two neighboring vertices which interpolates these data could be chosen.

Unfortunately this would generally lead to rational patches, as we will explain in the next

section.

3.3 Curves and tangent ribbons are linked

What we call tangent ribbons are the cross-boundary derivatives along the macro-patch

boundary curves. They ensure the G1 continuity between adjacent patches. An equivalent

condition to (1) of G1 continuity is used for their construction.

tangent ribbons:

The patches Si and Si−1 meet with G1 continuity along the common boundary, if there

exist three scalar functions Φi, µi, νi and a vector valued function in IR3 Vi such that the

following two equations hold:

2 µi(ui)
∂Si

∂ui+1
(ui, 0) = Φi(ui) Γ′

i(ui) + Vi(ui) (5)

2 νi(ui)
∂Si−1

∂ui−1
(0, ui) = Φi(ui) Γ′

i(ui) − Vi(ui). (6)

The equivalence between (5), (6) and (1) can be seen by adding up equations (5), (6).

From section 3.2 it is known that µi and νi are linear functions in order to guarantee an

arbitrary choice of the tangents at the vertices. This implies however that the tangent

ribbons ∂Si

∂ui+1
(ui, 0) and ∂Si−1

∂ui−1
(0, ui) defined by eq. (5), (6) between Si and Si−1 would be

in general rational. Therefore the patches would all be rational in contradiction with our

main requirement: the interpolation surface must be polynomial.
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boundary curves:

In order to keep in the class of polynomial patches the boundary curves Γi common to

a mesh vertex are chosen such that they satisfy the following condition: their derivatives

Γ′

i(ui) = ∂Si

∂ui

(ui, 0) are defined as a product of the linear scalar functions µi, νi and a vector

valued piecewise polynomial function Hi, i.e.

Γ′

i(ui) := µi(ui) · νi(ui) · Hi(ui) , i = 1, . . . , n. (7)

The choice (7) is the only possibility that yields a polynomial solution of (5) and (6). Now,

an explicit formula of the boundary curves can be given by assembling the results about

the tangents and second derivatives at each vertex from sect. 3.2 subject to the polynomial

condition (7) between two neighboring vertices. Each boundary curve is finally a uniquely

defined piecewise C1 quintic Bézier curve Γi(ui), ui ∈ [0, 1], composed of two pieces.

The two sets of control points {bL
k }

5
k=0 and {bR

5−k}
0
k=5 are shown in fig. 7.

b  = 0 p
i

b  = 0 p
L

b 1
L

b 2
L

b 2
R b 1

R

Figure 7: Bézier control points of boundary curves.

The control points b
L
0 , bL

1 , bL
2 and b

R
0 , bR

1 , bR
2 are determined by interpolating the position,

tangent and second derivative known at the end points pk,pi (mesh vertices).

The function Hi defines the curve’s derivative by (7). It can be chosen piecewise quadratic.

Its Bézier control points are denoted by h
L
k and h

R
k , k = 0, 1, 2. h

L
0 , hL

1 ,hR
0 ,hR

1 are known

from b
L
0 , bL

1 , bL
2 and b

R
0 , bR

1 , bR
2 , since position and tangent of Γ′

i are already known. A

comparison of the coefficients in (7) together with the two linear conditions expressing C1

continuity of Γi at ui = 1/2 determine exactly the remaining unknowns.

3.4 Compatible tangent ribbons

The tangent ribbons which guarantee tangent plane continuity between adjacent patches

have to satisfy conditions (5) and (6). The requirements on the unknown function Vi are

twice. Vi has to be compatible with the polynomial requirement. Therefore the same

multiplying factor as in the case of the curve derivative (see (7)) is necessary:

Vi(ui) := µi(ui) · νi(ui) · Wi(ui), ui ∈ [0, 1]. (8)
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Second, at the end points (mesh vertices) Vi has to be compatible with the boundary curve

tangents computed earlier (sect. 3.2), since the following relation holds:

∂Si

∂ui+1
(0, 0) = d

1
i+1, i = 1, . . . , n.

The same relations hold at the opposite vertex, they fix the values of Vi at the end points,

i.e. Wi(0), Wi(1). Analogously, the G1 compatible twists computed earlier (sect. 3.2) at

each vertex are related to the derivative of Vi at the end points, i.e. they fix the values of

W′

i(0), W′

i(1).
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@@@

@@@
@@@
@@@

@@@
@@@
@@@@@@
@@@
@@@

@@@
@@@
@@@
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BBBBBB
BBBBBB
BBBBBB

BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB

W(0)

W’(0)

W(1)

W’(1)

Figure 8: G1 compatible tangent ribbons at end points.

All data we need for G1 compatible tangent ribbons are fixed now. Wi can interpolate

these data if we choose it as a piecewise C0 quadratic or a cubic Hermite curve. Vi will

therefore be either piecewise C0 quartic or quintic polynomial. Finally, from equ. (5), (6)

together with (8) follows that the tangent ribbons will be either a piecewise C0 cubic or

a quartic polynomial. Both possibilities don’t increase the degree of the patches which is

equal to five because of the boundary curves. An explicit Bézier representation can be

computed directly from the preceding considerations.

3.5 Constructing Bézier patches

The third and last step of the algorithm consists of the construction of the surface patches

by determining the remaining control points. How to choose them and what kind of

conditions must they fulfill are the two questions to be answered now. Recall that we call

the group of four Bézier patches associated to an input mesh triangle as a macro-patch

(see introduction).

It turns out from sect. 3.3 that the macro patch boundary curves are piecewise quintic

curves consisting of two pieces joining with C1 continuity at the parameter value 1
2 . The

underlying parameterization for each macro patch is based on a 4-split of the domain

triangle, as shown if fig. 9.
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Figure 9: 4-split parameterization of the macro patches.

The macro patches are finally composed of four quintic triangular Bézier patches. From

sect. 3.3 and 3.4 we know the coordinates of all the boundary and the first inner row of

control points, see black dots in fig. 10 left. These data guarantee a G1 joint between all

macro patches. However the remaining 15 inner control points of each macro patch are

not free, because the joints between these four inner patches also need to be tangent plane

continuous. In [7] it is shown that two triangular Bézier patches of the same degree join

with C1 continuity along their common boundary if all pairs of sub triangles (subsets of

four control points) across the common boundary are coplanar and are an affine map of

the domain triangles. In the present method the patches are defined on the unit triangle

which implies that each pair of sub triangles of control points must be a parallelogram,

see fig. 10 right. Since this linear parallelogram equation already holds at the boundary

edge midpoints, the remaining 15 inner control points are finally related across the inner

boundaries by 9 linear parallelogram equations. Therefore 6 inner control points remain

free for shape control.

!!!!!!!!!
!!!!!!!!!
!!!!!!!!!
!!!!!!!!!
!!!!!!!!!

====
====
====

====
====
====

====
====
====

====
====
====
====a b

c d

a−b−c+d=0

Figure 10: left: schematic representation of macro patch control points that ensure the

G1 joint between all macro patches. right: C1 conditions for inner control points.

4. DESIGN ISSUES

Interpolation of arbitrary triangle meshes with the present method based on an arbitrary

choice of the curve network offers a lot of degrees of freedom. They are welcome for shape

control as well as for modeling complex shapes. Let us enumerate these degrees of freedom.

For each mesh vertex of order n, there is one control point, there are n tangents, and n

twists which are free. Then for each macro patch corresponding to a mesh face, there are

six control points free. These degrees of freedom have two main advantages: First, almost

all of them offer an intuitive geometrical way to fix them. Second, they are numerous

enough to allow construction of globally smooth surfaces.
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Some rules for fixing the degrees of freedom

It is obvious that one input mesh can have quite different interpolating surfaces. Ideally,

the surface can be seen as an enveloping skin of the mesh vertices which is more or less

tight. This is equal to say that one wants a globally smooth surface. From the survey of

Mann et al. [17] it is known that the globally smoothness is the most difficult challenge

for all mesh interpolation schemes. Other particular design features like flat points, sharp

points or corners, can of course be obtained by acting locally on the degrees of freedom.

In figs. 11, 12 from left to right, three surfaces are shown which all interpolate the same

input mesh (fig. 11 right).

Figure 11: three interpolating surfaces — input ’cube’ mesh.

Figure 12: three interpolating surfaces with boundary curves.

All the degrees of freedom listed above can be set up by using some heuristic but geomet-

rically based rules, such that the resulting surface generally suffices the user.

• For each mesh vertex, there is a theoretical free point, corresponding to the patch corners

and the boundary curve’s end points. It is set up equal to the mesh vertex in order to make

the surface interpolating the mesh. However, it is always possible to fix them otherwise.

• At each vertex of valence n, there are n tangents free to choose. Together with the

second derivatives, they entirely determine the boundary curves coming in to that ver-

tex. The curve network which is interpolated by the patches is the most important step

toward a globally smooth and well pleasing surface. Since the curves are constructed in

correspondence to the mesh edges, we choose the following geometrically intuitive rule to

fix the tangent: as tangent vector for the edge between the vertex p and pi take the unit

vector in the intersection of the tangent plane at p and the plane spanned by the edge and

the normal vector at pi and which is scaled by an appropriate factor. The default scaling

factor for each tangent is taken as proposed in [22], i.e. 4
9‖p− pi‖ for a tangent of a cubic
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curve. This scaling factor can furthermore be used as an intuitive design handle, which

can easily be modified in a 3D graphics program. It is geometrically very intuitive because

it governs the flatness of the surface at the vertices. The surfaces in figs. 11, 12 from left

to right are obtained by simply increasing this scalar factor simultaneously for all vertices.

• At each vertex, there are n twists free. They determine entirely the n second derivatives

of the boundary curves around the vertices, see equ. (4). The question of how to choose

twists of polynomial patches has driven to a lot of publications [1, 23, 20, 10, 3]. Zero

twists are always an easy solution, but in [7] it is shown that they never lead to satisfactory

results. This can be confirmed in the present case. The lack of an intuitive heuristic rule

for these values leads us to use a linear least squares minimization in order to choose them.

More specifically, we minimize the following energy integral, a linearized version of a thin

plate’s bending energy:
∫

Suu + 2Suv + Svvdudv.

All the degrees of freedom which are fixed up to now, allow for the construction of

uniquely defined patch boundary curves and G1 compatible cross boundary tangents (sect.

3.2-3.4).

• At the interior of each macro patch there are 6 inner control points free for shape

control (sect. 3.5). This doesn’t differ from the previously developed method [12]. We

generally use the same least square energy minimization as for the computation of the

twists. This is explained in more detail in [13].

5. RESULTS

We begin this section with examples of familiar shapes. These examples allow some com-

parison with earlier related works based on Clough-Tocher splitting, because these works

were tested in S. Mann’s state-of-the-art paper [17] using similar familiar shapes. The

methods using a Clough-Tocher split [22, 24, 14] have the advantage to yield degree four

polynomial patches and only three patches per macro-patch. Together with [21] they also

allow for arbitrary tangents. However, the sphere and torus examples of fig. 13 and 14

compared with the results shown in Mann’s paper clearly show that our method yields

better results. We believe that this is mainly due to the parameterization of the surface

which is smoother because of the 4-split of the triangles. This improved behaviour of the

iso-parametric lines is illustrated in fig. 13 in comparison with fig. 8.8 in [17].
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Figure 13: Icosahedron example. from left to right: boundary curves, surface with bound-

ary curves, surface with iso-parametric lines, surface with isophotes.

Figure 14: Torus example. from left to right: input mesh, surface with interpolated

vertices, zoom with boundary curve’s control polygons.

In the rest of this section we show the results of our new interpolation method on several

triangular meshes with irregular features, like small and long edges joining at a common

vertex, or ”dirty” and equilateral triangles joining along a common edge. These features

are known for causing unfair surfaces. For each mesh we compare the results of our new

method with those obtained by the earlier methods based on a regular n-gone choice of

the tangents around the interpolated vertices.

Figure 15 shows left a mesh with regular features: it is an open symmetric mesh with

vertices of valence 4, 5, and 6; the edges common to the central vertex have all the same

length, and all triangles are more or less equiangular. The right part of figure 15 shows the

mesh resulting from the translation of the central vertex. Flat triangles appear, and short

edges join to long edges at the central vertex. Figure 16 shows the interpolating surface of

these two meshes with the previously introduced 4-split method [12]. Each surface is shown

twice: with and without the macro-patch boundary curves. While the surface obtained

for the regular mesh is acceptable (figure 16-left), the result for the irregular mesh has an

unpleasant shape (figure 16-right). Note in particular the overshooting undulations of the

surface along the short edges which are joined with the central vertex (figure 16-right).

This behavior is due to the fact that the lengths of all tangents at the central vertex are

the same. They can’t adapt to the length of the curves. Figure 17 shows the results for

the new method. For both meshes, the interpolating surface has a nice shape, unwanted
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undulations are avoided.

The next example is a closed mesh with artificially created heavy irregularities. Figure

18 shows two different views we want to focus on. The resulting interpolating surfaces

obtained with the early method, fig. 19, are then compared with the results of the new

method, fig. 20. Again, unwanted undulations are avoided with the new method and

globally fair surfaces are obtained. It is particularly remarkable how the macro-patch

boundary curves are able to smoothly follow the edges, because of the free choice of the

first derivatives and the ability to vary their lengths around a vertex. On the contrary, the

regular n-gone choice of the first derivatives in the old method is clearly the reason why

macro-patch boundary curves - and therefore the surface itself - has unwanted undulations

(see fig. 19).

In comparison to these result let us also show in fig. 21 the result obtained with one

of the two triangular interpolatory subdivision surface schemes: the butterfly subdivision

scheme [5]. Again the shape of the surface is clearly not acceptable for this input mesh.

Figure 15: left: regular mesh, right: deformed mesh.

both meshes are shown with flat shading and wire frame, they are open meshes.

Figure 16: interpolation with affine map of tangents.

Figure 17: interpolation with arbitrary choice of tangents.
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Figure 18: mesh with irregular vertices.

Figure 19: interpolation with affine map of tangents.

Figure 20: interpolation with arbitrary choice of tangents.

Figure 21: interpolation with the butterfly subdivision scheme.
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Figure 22: Mannequin, mesh left, G1 surface middle, control-polygons right.

Figure 23: Zoom of the mannequin, without and with control-polygons of boundary

curves.

Figure 22 and 23 show the result of our interpolating scheme on a more complex data set,

the mannequin data set (courtesy University of Washington). The right part of figure 22

shows the control-nets of the quintic Bézier patches. The central patch of each macro-patch

is colored in red. Figure 23 shows two details of the mannequin interpolating surface,

without and with the control-polygon of the boundary curves. Note again the overall

smoothness and how the boundary curves smoothly follow the edges of the input mesh.

This is possible only because of the free choice of the first derivatives.

6. CONCLUSION

We have introduced a new method for interpolating 2-manifold triangular meshes with a

parametric surface composed of Bézier patches of degree 5.

While previous similar schemes enforced a regular n-gone choice of the first deriva-

tives at the interpolated vertices, this new method allows a completely free choice of these

tangents vectors. We have shown how to derive first and second derivative informations

at the interpolated vertices and across the boundary curves between interpolated vertices,

such that a polynomial interpolant of low degree can be found. In comparison with pre-

vious similar schemes, this new method allows to find pleasing shapes, without unwanted
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undulations, even if the interpolated mesh has non regular features, e.g. short and long

edges joining at a common vertex, or flat and big triangles joining along a common edge.

Future work will include in particular the refinement of this interpolation scheme. Based

on the fact that our method utilized a regular 4-split of the input triangles, we will show

that our interpolation scheme is refinable: we will prove that applying our interpolation

scheme on a carefully subdivided triangulation yields the same interpolating surface, in

other words the interpolation scheme is invariant under subdivision. We will build a

multiresolution modeling scheme for the design and edition of complex shapes at different

levels of detail.
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Aided Geometric Design 4 (1987), 279–295.

[25.] Van Wijk J.J., Bicubic patches for approximating non-rectangular control meshes,

Computer Aided Geometric Design 3 (1986), 1–13.

22


