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The relaxation of a quantum field stored in a high-Q superconducting cavity is monitored by non-
resonant Rydberg atoms. The field, subjected to repetitive quantum non-demolition (QND) photon
counting, undergoes jumps between photon number states. We select ensembles of field realizations
evolving from a given Fock state and reconstruct the subsequent evolution of their photon number
distributions. We realize in this way a tomography of the photon number relaxation process yielding
all the jump rates between Fock states. The damping rates of the n photon states (0 ≤ n ≤ 7) are
found to increase linearly with n. The results are in excellent agreement with theory including a
small thermal contribution.

PACS numbers: 03.65.Ta, 42.50.Pq

The goal of quantum process tomography is to deter-
mine experimentally the matrix elements of the super-
operator describing the evolution of a quantum system’s
density matrix [1]. This information is acquired by
preparing a set of test states and monitoring their subse-
quent evolution. The method has been applied so far to
spins in NMR experiments [2], to solid state qubits [3],
to vibrational states of atoms [4] and to quantum gate
operations [5, 6]. We describe here process tomography
applied to the photon number distribution of a relaxing
field stored in a high-Q superconducting cavity, in which
Fock states are used as test states.

Cavity field relaxation is described by a rate equa-
tion which, restricted to the photon number distribution
P (n, t), is [7]

dP (n, t)

dt
=

∑

n′

Kn,n′P (n′, t). (1)

Quantum electrodynamics predicts Kn,n = −κ[(1 +
nb)n + nb(n + 1)], Kn,n+1 = κ(1 + nb)(n + 1), Kn,n−1 =
κnbn, all the other coefficients being 0. Here, κ is the
damping rate of the field energy and nb the mean num-
ber of blackbody photons at temperature T . The time
constant −1/Kn,n is the lifetime of the n-Fock state. In
this Letter, we report a complete experimental determi-
nation of the Kn,n′ coefficients.

Our experiment relies on a QND procedure [8] to count
the number n of photons stored in a cavity. It is based
on the measurement of cavity-field-induced light-shifts on
Rydberg atoms crossing the cavity one by one. It projects
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FIG. 1: (a) Scheme of experimental set-up. (b) Histogram
of the transverse atomic pseudo-spin after interaction with a
coherent field in C (initial mean photon number 4.4). Photon
numbers associated to each peak are given. (c) Spin histogram
after selection of the n = 3 Fock state. The n = 2 peak
is due to photon loss between selection and measurement.
(d) Same histogram as in (c) conditioned to a post-selection
measurement excluding events in which a photon is lost.

the field onto Fock states with high fidelity. By detecting
long sequences of QND probe atoms along single field re-
alizations, we follow the field evolution and observe the
jumps between Fock states due to cavity damping [9, 10].
By analyzing a large ensemble of field trajectories, we
now partially reconstruct the super-operator describing
the field relaxation process in the cavity and measure the
lifetimes of individual Fock states which scale as 1/n at
zero temperature [11]. This study provides insights into
the physics of these highly non-classical states whose pro-
duction by random [9, 10] or deterministic [12] processes
has recently been demonstrated.

Our setup [9, 13] is depicted on Fig. 1a. The high-Q
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superconducting cavity C, operating at 51 GHz, has a
damping time Tc = 1/κ = 0.130 s [14]. A pulsed mi-
crowave source S, coupled by diffraction on the mirrors’
edges, can inject into C a coherent field. The cavity field
is probed by a pulsed monokinetic stream (v=250 m/s)
of Rubidium atoms excited in box B to the circular Ry-
dberg state g (principal quantum number 50). Before
C, the atoms experience in the low-Q cavity R1 a π/2
pulse resonant on the transition to level e (circular state
with principal quantum number 51). The atoms enter C

in the superposition (|e〉 + |g〉)/
√

2. They undergo non-
resonant light shifts in C, resulting in a phase-shift Φ(n)
of the atomic superposition which is, to first order, linear
in n. The phase-shift per photon is set to Φ0 ∼ π/4.

We consider fields with a negligible probability of hav-
ing n > 7. In the Bloch pseudo-spin representation, the
atomic state at the exit of C points along one out of 8
directions equally distributed in the equatorial plane of
the Bloch sphere, corresponding to values of n varying
from 0 (axis Ox) to 7. After leaving C, the atoms are
submitted to a second π/2 pulse in R2 with an adjustable
phase φ with respect to that of R1. The atoms are de-
tected by the field ionization counter D discriminating
the states e and g. Measuring the atomic energy after
R2 amounts to detecting the atomic spin at the exit of C
in the direction at an angle φ with Ox in the equatorial
plane of the Bloch sphere. On average, we detect one
atom every 0.24 ms (∼ 500 atoms detected during Tc).

Figure 1b shows a 3D histogram of the transverse
atomic spin (components σx and σy) after interaction
with a coherent field in C. Each point in the Bloch sphere
equatorial plane is obtained by measuring the average
value of spin projections, on a sample of 110 consecutive
atoms crossing C in a 26 ms time interval, much shorter
than Tc. About 700 atoms are sent across C, out of
which we extract ∼ 600 atomic samples of 110 consecu-
tive atoms. The procedure is repeated 2000 times, yield-
ing about 106 spin measurements. The histogram clearly
shows that the direction of the atomic spin is quantized.

After a measurement indicating a spin pointing to-
wards a peak of this histogram, the field is projected onto
the corresponding Fock state. This is checked by corre-
lating two independent successive samples of 110 atoms
along a single field realization. The first pins down n and
the second remeasures it. Figure 1c shows the histogram
of second measurements after selection of n = 3. It ex-
hibits a main n = 3 peak with an n = 2 satellite due
to field relaxation during the 26 ms time delay between
the two measurements. This satellite can be suppressed
by post-selection. Figure 1d displays the histogram of
the intermediate results in sequences of 3 measurements
for which the first and the last yield n = 3. The single
peak reveals that, at the intermediate measurement time,
the field contains exactly 3 photons. We use such single
photon number peaks to calibrate the phase-shifts Φ(n).

Although the above method allows us to prepare Fock
states and to observe qualitatively their evolution, it
lacks the resolution required for a precise time analyzis.

The interval between two measurements (26 ms) is longer
than the lifetime of n = 7 (18 ms). We can however an-
alyze the data in a more efficient way, making better use
of our atomic detection rate. On a single field realization,
each atom detected along direction φ provides one bit of
information j (j = 0 for e and j = 1 for g). After de-
tecting N atoms, our knowledge of the field is described
by an inferred photon number probability distribution
pi

N (n) linked to the initial distribution P0(n) by Bayes
law: pi

N (n) = P0(n)ΠN (n)/Z where Z is a normalization
and ΠN (n) is the product of N functions p(j, φ|n), each
describing the information provided by one atomic de-
tection: p(j, φ|n) = 1/2[1 + (−1)j(A + B cos[Φ(n) + φ])]
[10, 15]. For successive atoms, we use four different values
of φ (-1.74, -0.87, 0 and 0.54 rad) chosen so that p(j, φ|n)
is nearly maximal for n =6, 7, 0 or 1, respectively. The
values of A and B, ideally 0 and 1, become -0.1 and 0.7,
respectively, because of experimental imperfections. For
N ∼ 100, pi

N (n) converges to a Dirac peak corresponding
to the photon number given by the atomic spin analysis.

Let us call PN (n) the ensemble average 〈pi
N (n)〉 over

many realizations in which the field is initially described
by P0(n). As the detection process is QND, we have
P0(n) = PN (n) for any N . In other terms, P0(n) is a
fixed point of the transform P0(n) → 〈P0(n)ΠN (n)/Z〉.
This property allows us to determine P0(n) by iteration
of this transform starting with any initial non-vanishing
distribution, for instance the flat one Pfl(n) = 1/8. This
method can be applied for determining P (n, t) at any
time t by selecting in each sequence the sample of N
detected probe atoms starting at this time.

We first reconstruct in this way the evolution of P (n, t)
for a coherent field injected by S at t = 0 and relaxing
in C. A measurement sequence, involving about 2750
atoms detected in 650 ms, is repeated 2000 times. We
reconstruct P (n, t) with the above procedure using N =
25 atoms and 20 iterations. At each time t, we start the
iteration with Pfl(n). The temporal resolution is ∼ 6 ms,
much shorter than Tc/7.

Figure 2a presents P (n, t) versus t for n = 0 to 7 and
Fig. 2b the time evolution of the average photon number
〈n〉 =

∑
n nP (n, t). According to theory, 〈n〉 is expo-

nentially damped towards an offset corresponding to the
blackbody background. The experimental decay (solid
line) is indistinguishable from an exponential fit (red
line), which yields Tc = 132 ms in agreement with the
independently determined value of the cavity damping
time. The offset yields nb = 0.06, close to the theoretical
value (0.05) of the blackbody field at the cavity tem-
perature, 0.8 K. The insets in Fig. 2b present snapshots
of P (n, t) at three different times with the correspond-
ing Poisson fits. These histograms show, as theoretically
predicted [7], that the field remains coherent under the
effect of damping (at the limit where blackbody effects
are negligible). The dotted line in Fig. 2a presents a nu-
merical solution of the theoretical rate equation using the
above determined values for Tc, nb and 〈n〉 at t = 0. It
is in excellent agreement with the data (solid lines).
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FIG. 2: Relaxation of a coherent state. (a) Evolution of the
photon number probabilities P (n, t) (n = 0 . . . 7 according
to the colour code defined in the inset). Black dotted lines
are theoretical. (b) Average photon number versus t (solid
black line) and exponential fit (thin red line). Insets show
the photon number distributions (red histogram) and their
Poisson fit (blue lines) at the three times shown by arrows.

We go now one step further. By monitoring the decay
of selected Fock states, we determine the Kn,n′ coeffi-
cients without any a priori assumption about their values.
The same experimental data is processed in two steps.
First, we analyse separately the 2000 realizations of the
experiment in order to select individual Fock states. For
each sequence, we compute, after each atom detection,
the new inferred photon number distribution pi(n, t) ac-
cording to Bayes law [10]. We start the analyzis of each
sequence with the Poisson distribution determined above.
Between atoms, we evolve the estimated pi(n, t) accord-
ing to the theoretical rate equation. This method gives,
at each time, the best estimate of the actual photon num-
ber distribution in each realization. Except around quan-
tum jumps, pi(n, t) is generaly peaked at a single photon
number value n0. Whenever pi(n0, t) > 0.7 we assume
that, within a good approximation, the n0 Fock state is
present in C at this time, which we take as origin (t = 0)
for subsequent analysis of this Fock state decay.

In a second step, we gather all atomic data following
the selection of a given n0, obtaining thus ensembles of
Fock state-selected field realizations. We apply to each
ensemble the iterative analysis described above, recon-
structing for each value of n0 the subsequent Pn0

(n, t)
distributions. As in the case of a coherent state, we use
N = 25 atoms and 20 iterations starting with a flat initial
distribution. Let us stress that this reconstruction proce-
dure does not rely on any theoretical assumption about
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FIG. 3: Relaxation of Fock states. (a) to (h) Evolution of the
photon number distributions Pn0

(n, t) starting from the Fock
states with n0 = 0 . . . 7 respectively. Same color code as in
Fig. 2a. Dotted black lines are theoretical.

the form of the relaxation process. We made use of our
theoretical knowledge of the Kn,n′ coefficients only in the
first step of the data processing, in order to optimize the
selection of the initial Fock states.

Figure 3 shows in solid lines the reconstructed Pn0
(n, t)

distributions versus time for n0 = 0 to 7 (a to h). In each
frame, Pn0

(n0, t) is, as expected, maximum at t = 0, its
value giving the fidelity of the Fock state selection pro-
cedure. The other Pn0

(n, 0) values are small. At long
time (400 ms) the most probable photon number is al-
ways n = 0, reflecting the irreversible evolution of the
field toward the thermal background close to vacuum.
For n0 = 0 (Fig. 3a) P0(0, t) decreases slightly below
1, while P0(1, t) reaches an equilibrium value close to
0.06. This describes the thermalization of the initially
empty cavity. For n0 = 1 (Fig. 3b) we observe the ex-
ponential decay of P1(1, t), together with the increase of
P1(0, t), which describes the damping of a single photon
into vacuum [9]. For n0 > 1 (Fig. 3c to h), Pn0

(n0, t) de-
creases exponentially at a rate increasing with n0 (damp-
ing of the initial Fock state). The Pn0

(n, t) functions with
n = n0 − 1, n0 − 2, ..., 1 exhibit bell-shaped variations.
They peak successively, reflecting the cascade of the pho-
ton number from n0 down to vacuum.
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FIG. 4: Measurement of the photon number probability
damping matrix elements Kn,n′ . (a) Fock state damping rate
−Kn,n versus n. Circles with error bars are experimental.
The solid line gives the theoretical values for nb = 0.06, the
dotted line the expected rates for nb = 0. (b) 3D plot of
the measured non-diagonal elements Kn,n′ in units of κ (log
scale). (c) Theoretical 3D plot of Kn,n′ (n 6= n′) in units of
κ for nb = 0.06 (log scale).

In order to extract the damping coefficients, we fit the
first 20 ms of these curves to a solution of Eq. (1), leav-
ing as free parameters the Kn,n′ and the initial Pn0

(n, 0)
values. The procedure is iterative. We get a first ap-
proximation of Kn,n′ with n and n′ ≤ 1 using the data of
Fig. 3a and b. We then determine the Kn,n′ with increas-
ing indices by including progressively in the fits the data
of Fig. 3c to h, optimizing at each step the previously
determined parameters.

The obtained −Kn,n values, which represent the de-
cay rates of the n-Fock states, are shown versus n in
Fig. 4a (in units of κ). As expected, they vary linearly
with n. The solid straight line corresponds to the theory
for nb = 0.06, while the dotted line shows the expected
variation of Kn,n at T = 0 K. This constitutes the first

measurement of Fock states lifetime for n > 1, exhibit-
ing clearly the expected 1/n variation [16]. Moreover,
the departure of the experimental points from the dot-
ted line shows that our procedure is precise enough to
be sensitive to the small effect of the residual nb = 0.06
photon blackbody field on the lifetime of Fock states.
The non-diagonal Kn,n′ coefficients are shown (Fig. 4b)
in a 3D plot, in logarithmic scale. The big and small
bars near the diagonal correspond to the Kn,n+1 and
Kn,n−1 coefficients, respectively. The latter, which rep-
resent the thermal rates of photon upward jumps, are
predicted to vanish for nb = 0. The logarithmic scale
is convenient to display together the Kn,n+1 and Kn,n−1

coefficients which differ by about one order of magnitude
for nb = 0.06. All other non-diagonal coefficients are 0
within noise. Figure 4c shows for comparison the corre-
sponding theoretical coefficients for nb = 0.06.

The dotted lines in Fig. 3 are the result of a numeri-
cal integration of Eq. (1) using the values of Kn,n′ and
Pn0

(n0, 0) determined by our fit. The excellent agree-
ment with the experiment over the full 400 ms time in-
terval shows the accuracy of our method.

This study demonstrates the power of QND photon
number measurements to investigate the quantum be-
havior of a field stored in a cavity. It directly probes our
theoretical understanding of field relaxation and clearly
illustrates the high sensitivity of large photon number
states to decoherence, their lifetime being (at T = 0 K)
inversely proportional to their energy. The method is
limited here to probing the rate equation for the pho-
ton number probability distribution. In order to deter-
mine the full super-operator of decoherence, we plan to
monitor the evolution of the non-diagonal elements of
the field density operator in the Fock state basis, using
a time resolved quantum state reconstruction procedure
demonstrated in Ref. [17].
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