
HAL Id: hal-00319636
https://hal.science/hal-00319636v1

Submitted on 8 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detail Preserving Deformation of B-spline Surfaces with
Volume Constraint

Basile Sauvage, Stefanie Hahmann, Georges-Pierre Bonneau, Gershon Elber

To cite this version:
Basile Sauvage, Stefanie Hahmann, Georges-Pierre Bonneau, Gershon Elber. Detail Preserving De-
formation of B-spline Surfaces with Volume Constraint. Computer Aided Geometric Design, 2008, 25
(8), pp.678-696. �10.1016/j.cagd.2007.10.004�. �hal-00319636�

https://hal.science/hal-00319636v1
https://hal.archives-ouvertes.fr

Detail Preserving Deformation of B-spline Surfaces

with Volume Constraint

Basile Sauvage1∗, Stefanie Hahmann2, Georges-Pierre Bonneau2, Gershon Elber3

July 11, 2007

1 LSIIT, Louis Pasteur University, Strasbourg, France
2 Laboratoire Jean Kuntzmann, University of Grenoble, France
3 CGGC, Technion, Haifa, Israel

Abstract

Geometric constraints have proved to be helpful for shape modeling. More-
over, they are efficient aids in controlling deformations and enhancing animation
realism.
The present paper addresses the deformation of B-spline surfaces while con-
straining the volume enclosed by the surface. Both uniform and non-uniform
frameworks are considered. The use of level-of-detail (LoD) editing allows the
preservation of fine details during coarse deformations of the shape. The key
contribution of this paper is the computation of the volume with respect to the
appropriate basis for LoD editing: the volume is expressed through all levels of
resolution as a trilinear form and recursive formulas are developed to make the
computation efficient. The volume constrained is maintained through a mini-
mization process for which we develop closed solutions. Real-time deformations
are reached thanks to sparse data structures and efficient algorithms.

keywords: B-spline surfaces, constrained deformation, volume preserving, level-
of-detail editing, multiresolution analysis.

1 Introduction

Level-of-detail (LoD) editing of free form curves and surfaces is now established
as a valuable modeling tool [FS94, SDD95, SDS96]. It is an attractive application
of multiresolution methods, because it allows modification of the overall shape
of a geometric model at any scale while automatically preserving all fine details.

∗corresponding author: sauvage@dpt-info.u-strasbg.fr;
Phone (+33) 390 24 45 67; fax (+33) 390 24 44 55;
LSIIT, Pole API, Boulevard Sebastien Brant, BP 10413, 67412 ILLKIRCH, France.

1

In contrast to classical control-point-based editing methods where complex de-
tail preserving deformations need to manipulate a large set of control points,
multiresolution methods can achieve the same effect by manipulating only a few
control points of some low resolution representation.

Nonetheless, there are application areas, including CAGD and computer ani-
mation, where constrained deformations are required. Obviously, the constraints
offer additional and finer control over the deformations applied to curves and
surfaces. In the past many researchers have explored constrained deformations
of free form curves and surfaces. Linear constraints such as position, tangency,
orthogonality, and symmetry [BB89, Fow92, Gle92, WW92, FB93] are gener-
ally related to direct shape manipulation. These constraints offer the advantage
of efficient processing, allowing for interactive manipulation of the free form
geometry. Non-linear constraints that are commonly considered are the area
[Elb01, HSB05], the volume [RSB95], second order differential constraints such
as convexity [KS95, PE98], curve constraints [CW92, GL96, PGL+02], and first
and second order fairing functionals such as the bending energy of a thin plate
[CG91, GC95, FRSW87, HS92, BH94, Hah98]. Satisfying non-linear constraints,
however, requires intense computational effort, so that their use for interactive
shape manipulation is generally very limited.

In the context of multiresolution, detail preserving editing with only linear
and area constraints has been studied for planar curves. [Elb01] showed that
the enclosed area can be viewed as a linear constraint. Incorporated into a mul-
tiresolution free form editing environment, the method allows the manipulation
of non-uniform B-spline curves at different scales. In [HSB05], a wavelet-based
multiresolution formula of the area constraint has been developed for uniform B-
spline curves. Both methods are designed for real-time deformations with up to
a few thousand control points. Yet, a direct generalization to three-dimensional
surfaces is not obvious because the growth of the complexity in the volume com-
putations would make it unusable for any interactive manipulation. The latter,
however, is essential for any surface editing method. The volume constraint is
important for many applications — for example, when one designs an airplane’s
fuselage that is assumed to hold a fixed volume. Volume constraint also be-
longs to Lasseter’s principles of animations [Las87], which states that volume
preservation enhances the realism when deforming characters, in computer ani-
mations. Volume preserving shape deformation has been considered for free form
solids [RSB95], FFD [HML99], space deformation [vFTS06], meshes [LCOGL07],
and multiresolution meshes [BK03, SHB07]. The volume preservation of smooth
spline surfaces in a multiresolution basis has not been considered before.

This paper presents a method for interactive detail-preserving editing of B-
spline surfaces with volume constraint. Both uniform and non-uniform B-spline
basis functions are addressed. It makes the following three main contributions:

• It generalizes [Elb01, HSB05] to three-dimensional B-spline surfaces with
volume preservation. The appearance of the deformation is intuitively con-
trolled by two settings: the scale and the extent of the deformation. The
scale defines a threshold: if the details are finer than this threshold, they
are preserved during the deformation process. The extent defines a portion

2

of the surface that is involved in the deformation: beyond this extent the
surface does not change.

• It develops volume formulas that are consistent with the LoD editing of
B-spline surfaces. A so-called two-scale basis is used for non-uniform B-
spline. A wavelet based multiresolution (MR) basis is used for uniform
B-splines. First, the volume is expressed in trilinear form in the coefficients
describing the surface with respect to these bases. Then, recursive formulas
are developed to efficiently compute the trilinear forms.

• The volume computations and constraint solvings are presented as closed-
form solutions, which allow interactive editing. It is supported by a precise
analysis of the algorithmic issues.

The paper is organized as follows. Section 2 describes our approach. In Sec-
tion 3 we give the basics on B-spline surfaces and we specify the interaction with
uniform and non-uniform MR representations. Section 4 presents the volume
computations and explains how to preserve the volume during the deformation
process. Finally, we present some results in Section 5 and conclude in Section 6.

In order to make this paper concise and chronological, both uniform and non-
uniform frameworks are treated at the same time. Skipping the sections 3.3 and
4.4 at first reading would lead the reader through the non-uniform setting only.

2 Overview

This paper aims to provide a robust model for real-time MR volume preserving
deformation of B-spline surfaces. The problem can be stated as follows.
Given two pieces of information:

• An initial surface S enclosing a volume Θref ,

• The displacement of a point on the surface or a control point,

we seek to define a deformation ∆ satisfying two constraints:

• The volume enclosed by the deformed surface S + ∆ equals Θref ,

• The displacement of the point,

while two settings control the appearance of the deformation:

• The scale below which the details of the shape are preserved,

• The extent defines the portion of the surface involved in the deformation.

This problem is generally under-constrained since there are only one scalar
constraint and one vector constraint versus many degrees of freedom (the position
of the control points). Among the infinitely many possible solutions, the proposed
process tend to minimize the impact of the volume constraint: the key step solves
the minimum change of control points.

The solution proposed in this paper has been validated by an interactive
editing process illustrated in Figure 1. It states the essential issues. Steps i to iν
(Figure 1) gather the pre-processing and the adjustment of the settings. Steps ν
and νi constitute the core of the deformation process where efficiency is decisive:

3

load
the surface

define
a displacement

compute
the deformationthe extent

set

volume coeff.
& store the
pre−computei ii iii iv v vi

the scale
set

Figure 1: Volume preserving editing process. Expensive steps are shaded.

the backwards arrow νi → ν means that these two steps are looped during
interactive editing. The computational effort due to the volume preserving is
divided between the shaded steps and meets two requirements: The data storage
limitation (step iii, Figure 1) and the interactivity (step νi, Figure 1). Let us
now explain the function of each step:

Step i. The preliminary step consists of loading the surface and building the
appropriate data structures.

Step ii. The scale of the deformation is set: the geometric information at finer
scales (i.e., the details) will be preserved during the deformation process.
Accordingly, the following steps depend on this specified scale. The way of
specifying it depends on the surface model. As explained in Section 3, this
is done by choosing either some knot sub-sequences (non-uniform B-splines)
or an MR level (uniform B-splines).

Step iii. At this stage some coefficients that are used for the volume computa-
tion (during step νi) are pre-computed and stored. As shown in Figure 1,
this step has to be processed again only if one desires a new deformation
scale. Hence, interactivity is not required at this stage and preferably, as
much of the whole computation effort as possible should be invested here.
This step is discussed in detail in Section 4.

Step iv. In order to control the portion of the surface involved in the editing
process, the user sets the extent of the deformation. Our model needs no
assumption about the way this is chosen (see discussion Section 4.2).

Step v. The surface is manipulated. Regardless of the surface interaction medium
(drag-and-drop, skinning, collision detection), the outcome can be formu-
lated as positional constraints. Denote this interaction outcome as a “dis-
placement”: either a control point or a point on the surface is displaced
(see Section 3.4).

Step vi. The volume-preserving deformation is computed. It respects the target
deformation (step ν) while modifying the surface at the specified scale (step
ii) and in the specified extent (Step iν) as well as preserving the volume.
We justify and explain, in Section 4, the explicit solution as a constrained
minimization problem.

4

3 Multiresolution deformation for B-spline

surfaces

In this section, the framework for the B-spline surfaces’ manipulation is pre-
sented. In Section 3.1, the basics are reviewed and the notations for patched
surfaces are set up. It defines the fine or detailed surfaces. Since the main issue
is to define detail-preserving deformations, two different models are proposed:

• A multiresolution (MR) analysis for uniform patches (Section 3.3). This is
a uniform B-spline wavelet scheme [SDS96]. As explained in Section 3.3,
it provides a unified basis for the surface and the deformation. Then the
shape can be intuitively manipulated through an approximating control
polyhedron. Moreover, the basis changes using linear filters are efficient. In
the ensuing discussion, a superscript e denotes the coarse level of resolution
of all the variables.

• A two-scale analysis for non-uniform patches (Section 3.2). Two basis (fine
and coarse) are defined. This is a simpler but less convenient framework
based on knot insertions and removals. This choice is motivated by two
factors: non-uniform B-spline wavelet schemes are more complex and less
efficient than uniform ones. The advantage of the non-uniform setting lies
in its ability to handle more general shapes than the uniform setting, i.e.
possibly C1 discontinuities. In the ensuing discussion, all the variables
relative to the coarse basis are denoted with a covering tilde (’̃ ’).

Eventually, we define how the surface is manipulated (Section 3.4). Following
the application we propose to manipulate either the control points or a point on
the surface.

In the following bold indices denote double indices, bold letters denote points
or vectors in the embedding space R

3, and covering arrows denote high-dimen-
sional vectors.

3.1 Tensor-product B-spline surfaces

A surface S is given by a set {Sq}q of tensor-product B-spline patches. Each
patch Sq is defined as an element of a functional space V by

Sq(u, v) =

(mu−1,mv−1)∑

i=(0,0)

pi ϕi(u, v) , (u, v) ∈ [0, 1]2, (1)

where i = (iu, iv) are double indices and where ϕiu,iv(u, v) = Biu(u)Biv(v) are the
tensor-product B-spline functions of degree d×d defined over the knot sequences

U = {u0, u1, . . . , umu+d}

and V = {v0, v1, . . . , vmv+d}.

These basis functions are piecewise polynomial with global Cd−1 continuity
and they span V . With respect to this basis, the coefficients pi = (xi, yi, zi) ∈ R

3

5

are called control points. Our model remains valid if the degree d differs following
the directions u and v but for brevity we assume it does not.

Since we need the surface S to be a priori closed, manifold and orientable,
we assume the patches are joined along their boundaries. In order to easily man-
age C0 continuity between patches, we add the following boundary-interpolating
conditions that fix (clamp) the so-called boundary-knots:

u0 = u1 = . . . = ud = 0 = v0 = . . . = vd

and umu
= umu+1 = . . . = umu+d = 1 = vmv

= . . . = vmv+d.

This implies that the boundary curves only depend on the boundary control
points (e.g., Sq(0, v) is completely defined by (p0,iv)0≤iv<mv

). Moreover, we as-
sume that the degrees and the knot sequences of both patches correspond along
their common boundary. Hence, the C0 continuity between two neighboring
patches is ensured by only equating the boundary control points.

3.2 Two-scale editing for non-uniform B-splines

The main objective is to define an arbitrary coarse deformation ∆ for some patch
Sq in order to compute a deformed surface Sq + ∆. The coarser ∆ is, the larger
is the scale of the deformation. “Two-scale editing” means that a “fine-scale”
basis is used for defining the surface Sq while a “coarse-scale” basis is used for
defining the deformation ∆. The coarse B-spline basis is defined from the fine
one by removing knots in the sequences U and V.

Following [Elb01], we define ∆ as an element of some approximation space
Ṽ ⊂ V . It is a spline space based on knot sub-sequences Ũ = {ũ0, . . . , ũemu+d} ⊂

U and Ṽ = {ṽ0, . . . , ṽemv+d} ⊂ V, such that:

• The boundary knots are preserved. Thus, the boundary-interpolating prop-
erty is preserved.

• Some interior knots are removed in order to enlarge the scale of the defor-
mation.

Hence, Ṽ is spanned by a set of coarse B-splines ϕ̃j of degree d × d. The

deformation ∆ ∈ Ṽ is written as

∆(u, v) =

(emu−1, emv−1)∑

j=(0,0)

δ̃j ϕ̃j(u, v) with δ̃j ∈ R
3. (2)

By selecting the knots to be removed, the user chooses the deformation scale
(Step ii, Figure 1): the more knots s/he removes, the larger is the support of ϕ̃j,
and the coarser is the deformation. Note that

• The coarse basis is used to define the deformation – i.e., (δ̃j)j are the un-
knowns, but

• The fine basis is required to apply the deformation to the surface – (i.e., to
compute Sq + ∆) since Sq /∈ Ṽ .

6

Therefore, ∆ is expressed in the fine basis as

∆(u, v) =
∑

i

δi ϕi(u, v) with (0, 0) ≤ i ≤ (mu − 1,mv − 1),

where δi ∈ R
3 are computed from the δ̃j, using knot-insertions [Far01].

3.3 Multiresolution editing for uniform B-splines

Let Sq be a tensor-product patch as defined by Equation (1), with uniform knot
sequences. The uniform framework is nothing but a particular case of the non-
uniform one. Hence, the coarse deformation ∆ could be defined the same way.
Uniform B-spline basis functions, however, are more amendable to wavelet-based
MR schemes [FS94]. Therefore, we choose to define ∆ in a B-spline wavelet basis
because this approach is both more efficient and more convenient:

• Translation-invariant and level-invariant MR filters make the basis changes
easy and efficient.

• Sq and ∆ lie in the same space. Hence, the deformed surface Sq + ∆ is
instantly computed in the MR basis.

• MR analysis provides a meaningful coarse approximation of the shape
(namely the control polyhedron, see Figure 6 left), whose manipulation
is convenient.

• A single parameter (the MR level) controls the scale of the deformation.

This section is not intended to give a complete presentation of MR surfaces.
One-dimensional B-spline wavelets are detailed in [FS94, SDS96] and a tensor-
product example is shown in [SDS96].

Building an MR surface analysis with n levels requires the knot sequences to
be uniform and the number of intervals to be multiples of 2n as well:

ui+1 − ui = 1
pu2n

, d ≤ i < pu2n + d = mu ,

and vi+1 − vi = 1
pv2n

, d ≤ i < pv2
n + d = mv,

where pu and pv are arbitrary integer values.

The MR analysis is based on a sequence of nested approximation spaces V 0 ⊂
V 1 ⊂ · · · ⊂ V n. Each space V j is spanned by some scaling functions (ϕj

i)i
with respect to which the coefficients p

j
i ∈ R

3 are called control points. For

each multiresolution level j three detail spaces W j−1
0 , W j−1

1 and W j−1
2 make the

complement of V j−1 in V j :

V j = V j−1 ⊕W j−1
0 ⊕W j−1

1 ⊕W j−1
2 .

The spaces are spanned by the wavelets ψj
0,i, ψ

j
1,i and ψj

2,i. The coefficients d
j
0,i,

d
j
1,i and d

j
2,i are called detail coefficients. Notations and properties are collected

in Table 1.

7

Space Dimension Basis functions Coefficients

V j (pu2
j + d)× (pv2

j + d)
(
ϕ

j
i (u, v)

)
i

(
p

j
i

)
i
= ~pj

W
j
0 pu2

j × (pv2
j + d)

(
ψ

j
0,i(u, v)

)
i

(
d

j
0,i

)
i
= ~d

j
0

W
j
1 (pu2

j + d)× pv2
j

(
ψ

j
1,i(u, v)

)
i

(
d

j
1,i

)
i
= ~d

j
1

W
j
2 pu2

j × pv2
j

(
ψ

j
2,i(u, v)

)
i

(
d

j
2,i

)
i
= ~d

j
2

Table 1: Multiresolution spaces.

Figure 2: Tensor-product filter bank. From left to right: decomposition process (using
filters A and B); From right to left: reconstruction process (using filters P and Q).

The fine space V n = V contains the detailed patch Sq. Its basis functions
ϕn

i = ϕi are the tensor-product B-spline functions and the coefficients pn
i =

pi are the B-spline control points. Given the fine control points pn
i defining

Sq(u, v) =
∑

pn
i ϕ

n
i (u, v), the patch can be written in the MR basis at any level

e, 0 ≤ e ≤ n, as follows:

Sq(u, v) =
∑

i

pe
i ϕ

e
i (u, v)

+
n−1∑

j=e

(∑

i

d
j
0,i ψ

j
0,i(u, v) +

∑

i

d
j
1,i ψ

j
1,i(u, v) +

∑

i

d
j
2,i ψ

j
2,i(u, v)

)
. (3)

The coarse control points pe
i encode an approximation of the shape (low

frequency). They are the vertices of a coarse polyhedron controlling the surface
(see Figure 6 left). The details d

j
k,i encode higher frequencies: the larger j, the

higher the frequency and the finer the details.
The main advantage with regard to our objectives is the ability to manipulate

the global shape at an arbitrary level e through the control points ~pe while
preserving the finer details: e sets the scale of the deformation (Step ii, Figure 1)
– i.e., the lower e is, the coarser the deformation. The deformation ∆ lies in the
approximation space V e and is defined by

∆(u, v) =
∑

i

δ
e
iϕ

e
i (u, v). (4)

8

Hence, computing Sq + ∆ amounts to adding ~pe + ~δ
e
, both of them being vec-

tors of coefficients in R
3 for the scaling functions in V e (see equations (3) and (4)).

The MR coefficients in (3) are computed thanks to the filterbank algorithm
[Mal99]. It is a linear, recursive and invertible process computing the change of
basis illustrated in Figure 2. It is based on two decomposition filters Aj and Bj ,
and two reconstruction filters P j and Qj for each level j, which are applied in a
tensor-product manner on the matrices of coefficients. Given these filters in the
shape of sparse matrices, the decomposition step at level j consists of computing
the control points and the details at level j−1 from the control points at level j:

~pj−1 = Aj ~pj (Aj)T ,

~dj−1
0 = Bj ~pj (Aj)T ,

~dj−1
1 = Aj ~pj (Bj)T ,

~dj−1
2 = Bj ~pj (Bj)T ;

the reverse process is called reconstruction step:

~pj = P j ~pj−1 (P j)T + Qj ~dj−1
0 (P j)T + P j ~dj−1

1 (Qj)T + Qj ~dj−1
2 (Qj)T .

Note that the deformation (4) could be exactly computed in the non-uniform
framework by repeatedly removing every second knot from U (once for each level
of resolution from n to e). Then Ṽ = V e and equations (2) and (4) are equivalent.
This shows that the non-uniform model is more general. In compensation the
uniform model provides the convenient decomposition (3) and the ensuing control
polyhedron.

3.4 Surface manipulation

The present method is independent of the surface manipulating tool. The de-
formation may be driven either by direct user interaction in a modeler (e.g., the
mouse’s displacement in a drag-and-drop operation), by skinning, or via collision
detection, etc. Therefore, we propose to formalize it by fixing a displacement t

for either a control-point or a point on the surface.

A simple surface manipulation scheme is the direct displacement of control
point ı̄ and is equivalent to fixing one coefficient of the deformation:

• set δ̃ı̄ = t in the non-uniform framework;

• set δ
e
ı̄ = t in the uniform framework.

This simple scheme is especially convenient in the uniform framework because the
surface may be manipulated through the control polyhedron whose vertices are
{pe

i }. Hence, δ
e
ı̄ is meaningful: it corresponds to the displacement of the vertex ı̄.

Alternatively, displacing a point on the surface with parameter (ū, v̄), i.e.
moving S(ū, v̄) to a new location S(ū, v̄)+∆(ū, v̄), is equivalent to fixing ∆(ū, v̄)
to a given value t (e.g. obtained through a click-and-drag operation):

9

• Constrain
∑

j δ̃j ϕ̃j(ū, v̄) = t in the non-uniform framework;

• Constrain
∑

j δ
e
j ϕ

e
j (ū, v̄) = t in the uniform framework.

The advantage of this alternative is found in the direct manipulation of the
surface. It is more intuitive in the non-uniform framework since there is no control
polyhedron. Moreover it allows the enforcement of exact positional constraints
on the surface.

4 Volume preserving deformation

This section details the key contributions of our method to maintaining the vol-
ume while preserving the details during the surface deformation process. The
first contribution is formulas for volume preservation that are consistent with
the LoD editing frameworks (see Section 3). The second contribution is effi-
cient algorithms for these formulas and for constraining the surface during the
deformation process.

In Section 4.1, the computation of the enclosed volume as a trilinear form
is presented. In section 4.2, we define volume-preservation as a constrained
minimization problem. In Sections 4.3 and 4.4, efficient solutions are proposed
(for one single patch) and the algorithmic issues are discussed. Both surface
models (non-uniform and uniform) and both displacements (either a control point
or a point on the surface) are considered. Eventually, in Section 4.5, we extend
the results to several patches with C0 continuity.

4.1 Volume enclosed by a fine surface

The signed volume enclosed by a parametric surface may be written as an integral
over the domain [GOMP98, Elb01]. The (signed) volume enclosed by a patched
surface S equals the sum over the patches:

Θ (S) =
∑

patches q

Θ (Sq) , (5)

where

Θ(Sq) =

∫ 1

v=0

∫ 1

u=0
z

(
∂x

∂u

∂y

∂v
−
∂x

∂v

∂y

∂u

)
du dv, (6)

for each patch Sq(u, v) =

x(u, v)
y(u, v)
z(u, v)

. By substituting Formula (1) into (6) the

volume becomes a trilinear form with respect to the control points’ coordinates:

Θ(Sq) =
∑

i,j,k

xi yj zk

∫∫

[0,1]2
ϕk

(
∂ϕi

∂u

∂ϕj

∂v
−
∂ϕi

∂v

∂ϕj

∂u

)
du dv (7)

where the sum runs over (0, 0) ≤ i, j,k ≤ (mu− 1,mv − 1). The integrals cannot
be computed on-the-fly (i.e., during step νi, Figure 1), for efficiency reasons;
nor can they be pre-computed and stored because of the expected memory size

10

(m3
um

3
v integrals per patch). Hence, we propose to separate the parameters u

and v:
∫∫

ϕk

(
∂ϕi

∂u

∂ϕj

∂v
−
∂ϕi

∂v

∂ϕj

∂u

)
du dv = θu

jukuiu
θv
ivkvjv

− θu
iukuju

θv
jvkviv

, (8)

where

θu
ijk =

∫ 1

0
Bi(u)Bj(u)B

′
k(u) du, (9)

θv
ijk =

∫ 1

0
Bi(v)Bj(v)B

′
k(v) dv . (10)

It is now possible to pre-compute and store m3
u values θu

ijk and m3
v values θv

ijk

during the initialization step i (Figure 1). Moreover, the B-spline functions have
local support (containing d+1 intervals). Hence, these values are stored in sparse
data structures with size O(mud

2) and O(mvd
2). The computation through (9)

and (10) may be either analytical or via a numerical approximation.

4.2 Problem statement

We now propose a mathematical statement of the problem sketched in Section 2:
how to define a relevant deformation that fits the constraints and the settings?

Since we have only two constraints, displacement and volume, we propose
to solve a constrained minimization problem. We minimize the L2 norm of the
deformation’s coefficients (δ̃i or δ

e
i). The displacement constraint was discussed

in Section 3.4. The volume constraint is Θ(Sq +∆) = Θ(Sq). The first challenge
is to write this constraint as a function of the free variables (δ̃i or δ

e
i), i.e., finding

formulas that fit, respectively, the two-scale basis or the MR basis. The second
challenge is to build an algorithm that satisfies both the memory and interactivity
requirements. In other words, the pre-computation (Step iii, Figure 1) and the
on-line processing (Step νi, Figure 1) must be carefully balanced.

Above, we mentioned two settings. Scale control was discussed in Sections
3.2 and 3.3. In order to control the extent of the deformation, the user chooses
a set F of “free” control points that will be modified in order to preserve the
volume. In our editing tool, F is a neighborhood of the displaced point whose
size is specified by the user.

While the setting of this ”active domain” that can undergo deformation is or-
thogonal to the work presented here, it is a crucial step in any MR/LOD editing
environment. The specification of this active domain should be interactive while
hiding the internal representation (i.e. parametric domain) as much as possible
from the end user. One such possibility will allow the user to sketch a closed
region on the surface, region that will be employed internally, in the parametric
domain of the surface, to identify all control points (i.e. degrees of freedom) that
affects this region.

Volume is a non-linear constraint. For efficiency purposes and in order to
avoid the use of non-linear optimizations, linearization techniques will be used
but without loosening mathematical exactness. Following [Elb01] the volume

11

constraint is linearized by separating the deformation according to the x, y and
z-axes. This makes the processing more efficient. In the following sections we
detail only the x-axis deformation. Symmetric formulas are obtained for the y
and z-axes.

An alternative linearization of the volume constraint is a first-order Taylor
expansion, as proposed in [HSB05]. One single minimization is needed (instead of
three in the present method) but the volume is just approximated. Both methods
differ in some specific geometric configurations. Most of our tests, however, show
very similar results.

4.3 Non-uniform B-splines

4.3.1 Volume constraint in the two-scale basis

In order to define ∆ such that the volume is preserved we regard the volume
Θ(Sq + ∆) as a function of the variables δ̃i. Since the function Θ(.) is trilinear,
separating the deformation by axes makes it linear in each axis and hence much
easier to manage. Consider the case δ̃i = (δ̃xi, 0, 0) and t = (tx, 0, 0). Other axes
are deduced by symmetry. By substituting Formulas (1) and (2) into Equation
(6), we get

Θ(Sq + ∆) = Θ(Sq) +
∑

i

Θ̃Y Z(i) δ̃xi, (0, 0) ≤ ∀ i ≤ (m̃u − 1, m̃v − 1),

where

Θ̃Y Z(i) =
∑

j,k

yjzk

∫∫
ϕk

(∂ϕ̃i

∂u

∂ϕj

∂v
−
∂ϕ̃i

∂v

∂ϕj

∂u

)
du dv. (11)

Then, the volume constraint Θ(Sq + ∆) = Θ(Sq) for the x-axis becomes
∑

i

Θ̃Y Z(i) δ̃xi = 0, (12)

where the sum is in fact limited to the specified extent i.e. it runs over i ∈ F .

Thanks to the linearity of the integral and the sum operators, one can use
the pre-computed θu and θv to compute the coefficients Θ̃Y Z(i): Firstly compute

ΘY Z(i) =
∑

j,k

yjzk
(
θu
jukuiu

θv
ivkvjv

− θu
iukuju

θv
jvkviv

)
(13)

for (0, 0) ≤ i ≤ (mu − 1,mv − 1), from which the Θ̃Y Z(i) are then computed,
using a knot-removal algorithm based on Boehm’s recurrence. The details are
given in Appendix A.

4.3.2 Solving the minimization problem

All the terms of the minimization problem are now known. One has to solve
it for both manipulation models discussed in Section 3.4: Displacing a control
point or displacing a point on the surface. In both cases a closed form of the
resulting deformation {δ̃xi} is derived.

12

Displacing a control point

When displacing the point ı̄, one fixes δ̃xı̄ = tx. Excluding ı̄ from the set F of
free control points, the volume constraint (12) becomes:

Θ̃Y Z(ı̄) tx+
∑

i∈F

Θ̃Y Z(i) δ̃xi = 0.

Hence, the minimization is

min
{eδxi}

∑

i∈F

|δ̃xi|
2 subject to Θ̃Y Z(ı̄) tx+

∑

i∈F

Θ̃Y Z(i) δ̃xi = 0.

Using the Lagrange multiplier λ [Cia88], the minimization problem is equivalent
to solving the unconstrained min-max problem of

max
λ

min
{eδxi}

∑

i∈F

|δ̃xi|
2 + λ

(
Θ̃Y Z(ı̄) tx+

∑

i∈F

Θ̃Y Z(i) δ̃xi

)

⇔
−→
▽

(
∑

i∈F

|δ̃xi|
2 + λ

(
Θ̃Y Z(ı̄) tx+

∑

i∈F

Θ̃Y Z(i) δ̃xi

))
= ~0

⇔

2δ̃xi + λΘ̃Y Z(i) = 0, ∀i ∈ F ,

Θ̃Y Z(ı̄) tx+
∑

Θ̃Y Z(i) δ̃xi = 0.

Having ∑

j∈F

|Θ̃Y Z(j)|2 6= 0, (14)

the system has a full-rank and the unique solution is

λ =
2 tx Θ̃Y Z(ı̄)

∑
j∈F |Θ̃Y Z(j)|2

,

and

δ̃xi =
−tx Θ̃Y Z(ı̄)
∑

j∈F |Θ̃Y Z(j)|2
Θ̃Y Z(i), ∀i ∈ F . (15)

Equation (14) approaches zero in the singular case where the set of support
functions, in F , all provide vanishing volumetric values to the total volume and
hence can clearly have no affect on the final shape’s volume, not to say preserve
it.

Displacing a point on the surface

When displacing a point with parameter (ū, v̄), the minimization is subject to
the volume (12) and position constraints (see Section 3.4):

min
{eδxi}

∑

i∈F

|δ̃xi|
2 subject to

{ ∑
Θ̃Y Z(i) δ̃xi = 0

∑
ϕ̃i(ū, v̄) δ̃xi = tx

.

13

Using, once again, the Lagrange multipliers (λ and µ), the problem is reduced to

max
λ,µ

min
{eδxi}

∑

i∈F

|δ̃xi|
2 + λ

∑

i∈F

Θ̃Y Z(i) δ̃xi + µ

(
∑

i∈F

ϕ̃i(ū, v̄) δ̃xi − tx

)

⇔
−→
▽

(
∑

i∈F

|δ̃xi|
2 + λ

∑

i∈F

Θ̃Y Z(i) δ̃xi + µ

(
∑

i∈F

ϕ̃i(ū, v̄) δ̃xi − tx

))
= ~0

⇔

2δ̃xi + λΘ̃Y Z(i) + µϕ̃i(ū, v̄) = 0, ∀i ∈ F ,
∑

Θ̃Y Z(i) δ̃xi = 0,

∑
ϕ̃i(ū, v̄) δ̃xi = tx.

Let

α =
∑

j∈F

|ϕ̃j(ū, v̄)|
2
∑

j∈F

|Θ̃Y Z(j)|2 −

∑

j∈F

ϕ̃j(ū, v̄) Θ̃Y Z(j)

2

.

The system has a unique full-rank solution when α 6= 0, a solution that is equal
to

λ =
2 tx

α

∑

j∈F

ϕ̃j(ū, v̄) Θ̃Y Z(j) ,

µ =
−2 tx

α

∑

j∈F

|Θ̃Y Z(j)|2 ,

and

δ̃xi =
−λ

2
Θ̃Y Z(i)−

µ

2
ϕ̃i(ū, v̄), ∀i ∈ F . (16)

α can vanish in three different case:

1. when ϕ̃j(ū, v̄) vanish for all j,

2. when Θ̃Y Z(j) vanish for all j, or

3. when ϕ̃j(ū, v̄), ∀j and Θ̃Y Z(j), ∀j, seen as two vectors of size |F|, are colinear
vectors.

In case 1, clearly the selection of the functions in F cannot support the displace-
ment constraint. Similarly, in case 2, the selection of the functions in F cannot
support the volume constraint. In case 3, these two sets of support functions
are linearly dependent and hence cannot simultaneously support the two linearly
independent constraints of the displacement and volume.

4.3.3 Algorithmic issues

Here we list the successive computations done during interactive Step νi (Figure
1) and discuss the complexity. We go into details for the x-axis only. The
complete algorithm successively treats the x, y and z coordinates. The costs are
expressed with respect to the degree d of the surface, the total number mumv of
control points and the number #F of free control points.

14

• Computing {ΘY Z(i)} costs O(mumvd
2) using Formula (13). This low cost

is due to the sparsity of θu and θv.

• Computing {Θ̃Y Z(i)} from {ΘY Z(i)} costs O(mumvd) using the knots-
removal algorithm (see Appendix A). This is due to the efficiency of the
knots-removal step.

• Computing {δ̃xi}i∈F costs O(#F) through Formula (15) or (16). Having
closed forms (15) and (16) solving the minimization problem is decisive here
for efficiency.

• Computing {δxi} from {δ̃xi} using the knots-insertion algorithm costs
O(mumvd).

• Adding the deformation to the surface xi ← xi + δxi costs O(mumv).

Moreover, #F ≤ mumv and we can assume that degree d is bounded (in
most cases d ≤ 5 is sufficient). Hence, the global complexity of Step νi (Fig-
ure 1) is O(mumv). In other words, it is linear with respect to the number of
control points. This is essential for interactivity. In a typical drag-and-drop
operation every small displacement of the mouse (step ν, Figure 1) implies the
computation of a new volume preserving deformation (Step νi, Figure 1). Three
key points allow the linear cost during the interaction: sparse data structures,
closed forms solution to the minimization problems, and the ability to conduct
the pre-computations.

Pre-computing {ϕ̃i(ū, v̄)}i∈F is also needed when displacing a point on the
surface. It costs O(m̃ud

2 + m̃vd
2 + #F), during Step iii (Figure 1):

• Computing {B̃iu(ū)}iu and {B̃iv(v̄)}iv with the one-dimensional De Boor
algorithm costs O(m̃ud

2 + m̃vd
2).

• Computing ϕ̃i(ū, v̄) = B̃iu(ū)B̃iv(v̄) for i ∈ F costs O(#F).

4.4 Uniform B-splines

Uniform B-splines are a less general framework than non-uniform ones, for surface
design (e.g., sharp features are not possible). However, it enables the use of
efficient MR schemes based on wavelets. This section shows that the MR basis is
both efficient and convenient for defining and controlling the volume preserving
deformation. The values needed for the volume constraint can be pre-computed
through a recursive process using the reconstruction filters P and Q.

4.4.1 Volume constraint in the MR basis

In the uniform framework, ∆ and Sq are written in the same MR basis. Rewriting
Equations (7) and (8) with superscripts denoting the level of resolution (see
Section 3.3), the volume in the fine basis of V n is given by

Θ(Sq) =
∑

i,j,k

xn
i y

n
j z

n
k

(
θn,u
jukuiu

θn,v
ivkvjv

− θn,u
iukuju

θn,v
jvkviv

)
. (17)

15

Assume the surface is decomposed at some fixed level e. A similar formula exists:

Θ(Sq) =
∑

i,j,k

xe
i y

e
j z

e
k

(
θe,u
jukuiu

θe,v
ivkvjv

− θe,u
iukuju

θe,v
jvkviv

)
, (18)

where ~xe, ~ye and ~ze are the coordinates of all the MR coefficients, i.e., of
~pe, ~de, ~de+1, . . . , ~dn−1. This formula is obtained by substituting the MR rep-
resentation (3) of Sq into Equation (7).

Figure 3: Recursive processing of the tensors.
From left to right: θn,u, θn−1,u and θn−2,u (or θn,v, θn−1,v and θn−2,v).

The sets θe,u = (θe,u
iu,ju,ku

)iu,ju,ku
and θe,v = (θe,v

iv ,jv ,kv

)iv ,jv ,kv
are rank 3 tensors,

and can represented by three-dimensional arrays (see Figure 3). The fine level
tensors θn,u and θn,v (see Figure 3 left) have been pre-computed through Formulas
(9) and (10), and stored during initialization (Step i, Figure 1). Then, θe,u and
θe,v are computed through a recursive process (from left to right). The transposed
filter (P j)T and (Qj)T are applied in a tensor product manner:

• Following the 3 axes on the yellow (light) block,
• following the 2 axes on the red (mid grey) blocks,
• following the 1 axis on the blue (dark) blocks,
• and green blocks (on the right, down and below) are invariant.

Proving that this process makes Equations (17) and (18) identical is simple
but tedious. An intuitive explanation considers the transition from Equation
(17) to Equation (18):

• ~xe, ~ye and ~ze are obtained from ~xn, ~yn and ~zn through the filterbank algo-
rithm (using filters Aj and Bj),

• θe,u and θe,v are obtained from θn,u and θn,v through this process (using
filters (P j)T and (Qj)T),

• and the filters are related by

[
Aj

Bj

]
=
[
P j Qj

]−1
.

Computing θe,u and θe,v through this process is quite expensive but it is made
only once during Step iii (Figure 1, pre-computation and storage).

16

Consider an x-axis deformation δ
e
i = (δxe

i , 0, 0). By combining Equations
(18) and (4), the volume constraint Θ(Sq + ∆) = Θ(Sq) becomes

∑

i

δxe
i Θe

Y Z(i) = 0, (19)

where for (0, 0) ≤ i ≤ (pu2e + d− 1, pv2
e + d− 1)

Θe
Y Z(i) =

∑

j,k

ye
j z

e
k

(
θe,u
jukuiu

θe,v
ivkvjv

− θe,u
iukuju

θe,v
jvkviv

)
. (20)

4.4.2 Solving the minimization problem

The solutions in the present uniform framework are close to the previous non-
uniform framework. Hence, we do not detail the calculations.

Displacing a control point

Displacing the point ı̄ fixes δxe
ı̄ = tx. Excluding ı̄ from F , the volume constraint

(19) becomes:

Θe
Y Z(ı̄) tx+

∑

i∈F

Θe
Y Z(i) δxe

i = 0.

Hence, the minimization is

min
{eδxi}

∑

i∈F

|δxe
i |

2 subject to Θe
Y Z(ı̄) tx+

∑

i∈F

Θe
Y Z(i) δxe

i = 0,

and the solution is

δ̃xi =
−tx Θe

Y Z(ı̄)∑
|Θe

Y Z(j)|2
Θe

Y Z(i), ∀i ∈ F , (21)

where the sum runs over j ∈ F and it is assumed not to equal zero.

Displacing a point on the surface

Including the position constraint (Section 3.4) and the volume constraint (19),
one gets

min
{eδxi}

∑

i∈F

|δxe
i |

2 subject to

{ ∑
Θe

Y Z(i) δxe
i = 0,

∑
ϕe

i (ū, v̄) δ̃xi = tx.

Having

α =
∑

j∈F

|ϕe
j (ū, v̄)|

2
∑

j∈F

|Θe
Y Z(j)|2 −

∑

j∈F

ϕe
j (ū, v̄)Θe

Y Z(j)

2

,

never vanish, the unique solution is ∀i ∈ F ,

δxe
i =

tx

α

∑

j∈F

|Θe
Y Z(j)|2

ϕe

i (ū, v̄)−

∑

j∈F

ϕe
j (ū, v̄)Θe

Y Z(j)

Θe

Y Z(i)

. (22)

17

4.4.3 Algorithmic issues

The pre-processing (Step iii, Figure 1) includes the computation of θe,u and θe,v

and of {ϕ̃i(ū, v̄)}i∈F (when displacing a point on the surface).
Interactive Step νi (Figure 1) treats the x, y and z-axes successively. Treating

the x-axis involves:

• Computing {Θe
Y Z(i)} that costs O(mumv#F) through Formula (20).

• Computing {δxe
i }i∈F that costs O(#F) through Formula (21) or (22).

• Adding the deformation to the surface xe
i ← xe

i + δxe
i that costs O(#F).

Hence, the global cost is O(mumv#F). However, it is not an optimal bound
because the computation of {Θe

Y Z(i)} depends on the level e and on the sparsity
of θe,u and θe,v. If e = n it costs O(#F) only.

4.5 Multi-patched surfaces

Modeling a closed surface with a single tensor-product patch restricts the topol-
ogy. Let {Sq}q be a set of patches modeling a closed surface. We extended the
previous results while preserving C0 continuity between the patches. For exam-
ple, in the uniform setting one has to just modify the volume constraint (19) in
the following way. If the control point i belongs to more than one patch, i.e.,
it is a boundary or a corner point, the coefficient Θe

Y Z(i) is replaced by the sum
over the patches to which the points belongs:

∑

patches q

Θe
Y Z(iq, q),

where iq is the index of the control point with respect to the patch q, and
Θe

Y Z(iq, q) is computed through Formula (20). The deformation δxe
i is then

applied on both sides of the join. The complexity of the resulting algorithm
remains the same. Figures 5 and 6 for instance involve 3 patches.

While the presented scheme handles only linear constraints that preserve
C0 continuity across surfaces, additional linear constraints could be added to
preserve higher order continuity across the surfaces. The problem of posing the
necessary constraints to preserve G1 or C1 (or even higher order) continuity is
beyond this work and was addressed by many, including the authors [Pet95,
HB00, HB03]. We foresee no major obstacle to overcome in supporting higher
order continuity across surfaces, once these additional constraints are imposed,
or any other additional linear constraints.

5 Results

Figure 4 shows the deformation of a unit cube (6 bi-cubic patches). The surface
on the left illustrates the selection of the extent of the deformation (red/dark
region) as a neighborhood of the displaced point across the joins. The point’s
parameter in the upper patch is (ū, v̄) = (0.7, 0.8) and the displacement vector
is ~d = (0.2, 0.2, 0.9)T . The two views of the deformed surface (middle and right)

18

illustrate the linearization by separating the 3 axis: the added volume caused by
the bump displacement is balanced by a cavity in the opposite direction.

Figure 4: Deformation of the unit cube. Each of the six faces is a 15 × 15 uniform
bi-cubic patch. Left: initial surface with the extent (red/dark region) and the dis-
placement (arrow). Middle and right: two views after volume preserving deformation.
Wireframe shows the initial position.

We now compare the different methods presented in the previous section by
deforming surfaces representing knight chess pieces. The surfaces are composed
of three bi-quadratic patches (the front, back and bottom of the knight).

Figure 5: Deformation of a non-uniform B-spline surface.
Left: Initial surface. Middle: The volume is free. Right: The volume is preserved.

Figure 5 shows the deformation of a non-uniform B-spline surface. The ini-
tial surface (left) is deformed by pulling a point on the surface (on the back of
the neck). When the volume is unconstrained (middle), the result lacks realism
if we expect the knight to be made of some soft non-stretch material. Volume

19

preserving (right) provides a more intuitive behavior.

Figure 6: Deformation of a uniform B-spline surface.
Frome left to right : control polyhedrons; initial surfaces; the volume is free; the

volume is preserved.

Figure 6 shows the deformation of uniform B-spline surfaces. The initial sur-
faces (left) are deformed by pushing a control point on the back of the neck.
Results without volume preserving (middle) and with volume preserving (right)
are compared. One can see that even a small deformation affects the appearance.
The bottom row presents the same deformation with some fine details added to
the surface. Since these details are basically encoded by the MR details, they
are preserved during the deformation.

Figure 7 illustrates both the detail and volume preservation for non-uniform
surfaces made up of two 14 × 15 bi-cubic patches. Three initial surfaces (left)
differ in their details only. Manipulation is processed by constraining only two
points on the surface. The same deformations (b,c) and (d,e) are applied to all of
them, without (b,d) and with (c,e) volume preservation. The preservation of the
details is convincing while the global shape is interactively modified to enforce
the volume constraint.

20

(a) (b) (c) (d) (e)

Figure 7: Column (a) shows the original shapes. In columns (b) and (d) two deforma-
tions are applied to the object in column (a) without volume preservation. Columns
(c) and (e) shows the same deformations but this time with volume preservation.

6 Conclusion and future work

A method for the precise preservation of the volume enclosed by tensor product
B-spline surfaces during an MR editing process has been presented. Both uniform
and non-uniform settings have been addressed. Volume formulas for two-scale
non-uniform B-spline deformation and for MR uniform B-spline deformation have
been developed. The portion of the surface involved in the deformation is easily
selected. Moreover, the fine details of the shape can be preserved through an
appropriate choice of basis: a two-scale basis in the non-uniform setting and an
MR basis in the uniform setting. A computation of the volume with respect to
these bases is proposed. The volume constraint is then linearized and included in
a minimization process. A closed form of the solution allows interactive editing.
It is supported by a precise analysis of the algorithmic issues. The results show
that the volume constraint is of interest in order to enhance the deformation’s
realism. This makes our method suitable for the animation of soft objects.

There are several aspects that in our opinion are worth further investigation.
We presented a volume preserving deformation method for the non-uniform case
that rests on a two-scale basis. It would be interesting to investigate the use of

21

a non-uniform B-spline wavelet basis [KE97, LM92].
Another direction for future work could be the extension of our method to

G1 continuous surfaces. It is well known that G1 continuity for surfaces of arbi-
trary topology is a quite difficult problem. In fact, at a patch corner with more
than four patches, the so-called “vertex compatibility problem” has to be solved
[Pet95, HB03]. In a classical tensor-product setting, where four patches meet at
a corner, the G1 continuity can be expressed by linear equations with respect to
the control points. In all the other cases this constraint might be non-linear.

Acknowledgments

The work was partially supported by the AIM@SHAPE Network of Excellence
(FP6 IST NoE 506766) and the IMAG project MéGA.

References

[BB89] R. Bartels and J. Beatty. A technique for the direct manipulation
of spline curves. Graphics Interface ’89, pages 33–39, 1989.

[BH94] G. P. Bonneau and H. Hagen. Variational design of rational bézier
curves and surfaces. In L. Laurent and L. Schumaker, editors,
Curves and Surfaces, volume II, pages 51–58. AK Peters, 1994.

[BK03] Mario Botsch and Leif Kobbelt. Multiresolution surface represen-
tation based on displacement volumes. Computer Graphics Forum,
22(3):483–491, 2003. (Proceedings Eurographics ’03).

[Boe80] Wolfgang Boehm. Inserting new knots into a bspline curve.
Computer-Aided Design, 12:199–201, 1980.

[CG91] G. Celniker and D. Gossard. Deformable curve and surface finite-
elements for free-form shape design. Computer Graphics (SIG-
GRAPH ’91 proceedings), 25:257–266, July 1991.

[Cia88] Philippe G. Ciarlet. Introduction to Numerical Linear Algebra and
Optimization. Cambridge University Press, 1988.

[CW92] G. Celniker and W. Welch. Linear constraints for deformable b-
spline surfaces. 1992 Symposium on Interactive 3D Graphics, pages
165–170, 1992.

[Elb01] G. Elber. Multiresolution curve editing with linear constraints. In
6th ACM/IEEE Symposium on Solid Modeling and Applications,
pages 109–119. Ann Arbor, Michigan, June 2001.

[Far01] Gerald Farin. Curves and surfaces for CAGD: a practical guide.
Morgan Kaufmann Publishers Inc., 2001.

[FB93] B. Fowler and R. Bartels. Constraint-based curve manipulation.
IEEE Computer Graphics and Applications, 13(5):43–49, 1993.

[Fow92] B. Fowler. Geometric manipulation of tensor product surfaces. In
1992 Symposium on Interactive 3D Graphics, pages 101–108, 1992.

22

[FRSW87] G. Farin, G. Rein, N. Sapidis, and A. J. Worsey. Fairing cubic b-
spline curves. Computer Aided Geometric Design, 4:91–103, 1987.

[FS94] Adam Finkelstein and David H. Salesin. Multiresolution curves.
SIGGRAPH Computer Graphics, pages 261–268, 1994.

[GC95] S. Gortler and M. Cohen. Hierarchical and variational geometric
modeling with wavelets. In 1995 Symposium on 3D Interactive
Graphics, pages 35–41, 1995.

[GL96] G. Greiner and J. Loos. Data dependent thin plate energy and
its use in interactive surface modeling. Computer Graphics Forum,
15:176–185, 1996. (Proceedings Eurographics ’96).

[Gle92] M. Gleicher. Integrating constraints and direct manipulation. In
Proceedings of the 1992 symposium on Interactive 3D graphics,
pages 171–174. ACM Press, 1992.

[GOMP98] Carlos Gonzalez-Ochoa, Scott McCammon, and Jörg Peters. Com-
puting moments of objects enclosed by piecewise polynomial sur-
faces. ACM Transactions on Graphics, 17(3):143–157, 1998.

[Hah98] S. Hahmann. Shape improvement of surfaces. Computing Suppl.,
13:135–152, 1998.

[HB00] S. Hahmann and G.-P. Bonneau. Triangular G1 interpolation by
4-splitting domain triangles. Computer-Aided Geometric Design
(CAGD), 17(8):731–757, 2000.

[HB03] Stefanie Hahmann and Georges-Pierre Bonneau. Polynomial sur-
faces interpolating arbitrary triangulations. IEEE Transactions on
Visualisation and Computer Graphics, 9(1):99–109, 2003.

[HML99] Gentaro Hirota, Renee Maheshwari, and Ming C. Lin. Fast volume-
preserving free form deformation using multi-level optimization. In
SMA ’99: Proceedings of the fifth ACM symposium on Solid mod-
eling and applications, pages 234–245, New York, NY, USA, 1999.
ACM Press.

[HS92] H. Hagen and P. Santarelli. Variational design of smooth b-spline
surfaces. In H. Hagen, editor, Topics in Geometric Modeling, pages
85–94. SIAM Philadelphia, 1992.

[HSB05] S. Hahmann, B. Sauvage, and G.-P. Bonneau. Area preserving de-
formation of multiresolution curves. Computer-Aided Geometric De-
sign (CAGD), 22(4):349–367, 2005.

[KE97] R. Kazinnik and G. Elber. Orthogonal decomposition of non-
uniform bspline spaces using wavelets. Computer Graphics Forum,
16(3):27–38, 1997. (Proceedings Eurographics ’97).

[KS95] P. D. Kaklis and N. S. Sapidis. Convexity-preserving interpolatory
parametric splines of nonuniform polynomial degree. Comput. Aided
Geom. Des., 12(1):1–26, 1995.

23

[Las87] J. Lassiter. Principles of traditional animation applied to 3d com-
puter animation. In Computer Graphics (SIGGRAPH 87 Proceed-
ings), pages 45–44, 1987.

[LCOGL07] Yaron Lipman, Daniel Cohen-Or, Ran Gal, and David Levin. Vol-
ume and shape preservation via moving frame manipulation. ACM
Transactions on Graphics, to appear, 2007.

[LM92] T. Lyche and K. Morken. Spline wavelets of minimal support. In
D. Braess and L. Schumaker, editors, Numerical Methods of Approx-
imation Theory, pages 177–194. Birkhäuser Verlag, Basel, 1992.

[Mal99] Stéphane Mallat. A wavelet Tour of Signal Processing. Academic
Press, 1999.

[PE98] M. Plavnik and G. Elber. Surface design using global constraints
on total curvature. In The VIII IMA Conference on Mathematics
of Surfaces, September 1998.

[Pet95] Jörg Peters. Biquartic c1-surface splines over irregular meshes.
Computer-Aided Design, 27(12):895–903, 1995.

[PGL+02] J. P. Pernot, S. Guillet, J. C. Leon, F. Giannini, B. Falcidieno,
and E. Catalano. A shape deformation tool to model character
lines in the early design phases. In Proceedings Shape Modeling
International 2002, Banff, Canada, 2002.

[RSB95] A. Rappoport, A. Sheffer, and M. Bercovier. Volume-preserving
free-form solids. In Proceedings of Solid Modeling 95, pages 361–
372, May 1995.

[SDD95] E. Stollnitz, T. DeRose, and D.Salesin. Wavelets for computer
graphics: A primer, part 1. IEEE Computer Graphics and Ap-
plications, 15(3):76–84, 1995.

[SDS96] Eric J. Stollnitz, Tony DeRose, and David H. Salesin. Wavelets for
Computer Graphics: Theory and Applications. Morgan Kaufmann
Publishers, San Francisco, CA, USA, 1996.

[SHB07] Basile Sauvage, Stefanie Hahmann, and Georges-Pierre Bonneau.
Volume preservation of multiresolution meshes. Computer Graphics
Forum, 26(3), to appear 2007. (Proceedings Eurographics ’07).

[vFTS06] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Vector
field based shape deformations. SIGGRAPH Computer Graphics,
pages 1118–1125, 2006.

[WW92] W. Welch and A. Witkin. Variational surface modeling. Computer
Graphics (SIGGRAPH ’92 proceedings), 26:157–166, July 1992.

A Knot removal algorithm

The volume preserving deformation of non-uniform B-spline surfaces as proposed
in Section 4.3 requires efficient computation of Θ̃Y Z(i) from ΘY Z(i). We propose

24

a recursive algorithm based on Boehm’s recurrence [Boe80, Far01] that relates
between the B-spline basis functions before and after a knot is inserted or re-
moved.

For the purpose of clarity, first assume Ṽ = V and one single knot ul is
removed from U , i.e. U = Ũ ∪ {ul}. Thus, the coarse B-splines B̃k defined over
the knot sequence Ũ are related to the fine B-splines Bk defined over U by

B̃k(u) =
ul+1 − uk

uk+d+1 − uk

Bd
k(u) +

uk+d+2 − ul+1

uk+d+2 − uk+1
Bd

k+1(u) for l − d ≤ k ≤ l,

and B̃k = Bk otherwise. Thanks to the linearity of the integral and of the sums
(Equations (11) and (13)), this relation can be transfered between Θ̃Y Z(i) and
ΘY Z(i). The integral in Equation (11) may be written as

∫∫
ϕk

(∂ϕ̃i

∂u

∂ϕj

∂v
−
∂ϕ̃i

∂v

∂ϕj

∂u

)
du dv

=

∫
Bju

Bku
B̃′

iu
du

∫
BivBkv

B′
jv

dv −

∫
B̃iuBku

B′
ju

du

∫
Bjv

Bkv
B′

iv
dv

=

(
ul+1 − uiu

uiu+d+1 − uiu

θu
ju,ku,iu

+
uiu+d+2 − ul+1

uiu+d+2 − uiu

θu
ju,ku,(iu+1)

)
θv
ivkvjv

−

(
ul+1 − uiu

uiu+d+1 − uiu

θu
iu,ku,ju

+
uiu+d+2 − ul+1

uiu+d+2 − uiu

θu
(iu+1),ku,ju

)
θv
jvkviv

=
ul+1 − uiu

uiu+d+1 − uiu

(
θu
ju,ku,iu

θv
ivkvjv

− θu
iu,ku,ju

θv
jvkviv

)

+
uiu+d+2 − ul+1

uiu+d+2 − uiu

(
θu
ju,ku,(iu+1)θ

v
ivkvjv

− θu
(iu+1),ku,ju

θv
jvkviv

)

Hence, comparing Equations (11) and (13) implies

Θ̃Y Z(iu, iv) =
ul+1 − uiu

uiu+d+1 − uiu

ΘY Z(iu, iv)+
uiu+d+2 − ul+1

uiu+d+2 − uiu+1
ΘY Z(iu+1, iv). (23)

Using formula (23) for all iv one can compute each column Θ̃Y Z(., iv) (relative
to the coarse basis) from the column ΘY Z(., iv) (relative to the fine basis).

Then assume Ṽ = V and Ũ ⊂ U . To each column Θ̃Y Z(., iv) separately one
has to apply Formula (23) for each removed knot, i.e., each knot in U \ Ũ . The
iterative Algorithm 1 is an example where no extra memory is needed.

Finally, whatever Ṽ and Ũ : i) remove the knots u ∈ U \ Ũ as explained above
and ii) remove symmetrically the knots v ∈ V \ Ṽ for each row Θ̃Y Z(iu, .).

Algorithm 1 costs O(mud). Hence, computing all the Θ̃Y Z(i) from the ΘY Z(i)
costs O(mumvd).

25

Algorithm 1 Knot removal without extra memory allocation.
Input: n = mu, vector u contains U and Θ(0 . . . n− 1) contains ΘY Z(., iv)

Output: m = m̃u, u(0 . . .m− 1) contains Ũ and Θ(0 . . .m− 1) contains Θ̃Y Z(., iv).

m← d+ 1 // boundary knots are preserved
for l = d+ 1 to n− 1 do

if u(l) is preserved then

Θ(m)← Θ(l)
u(m)← u(l)
m← m+ 1

else // u(l) is removed
for r = 0 to d− 1 do // then m− d− 1 ≤ m− d− 1 + r ≤ m− 2

Θ(m−d−1+r)←
u(l)− u(m−d−1+r)

u(l+r)− u(m−d−1+r)
Θ(m−d−1+r)+

u(l+r+1)− u(l)

u(l+r+1)− u(m−d+r)
Θ(m−d+r)

end for

// special case r = d

Θ(m−1)←
u(l)− u(m−1)

u(l+d)− u(m−1)
Θ(m−1) + Θ(l)

end if

end for

26

