
HAL Id: hal-00319634
https://hal.science/hal-00319634v1

Submitted on 9 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiresolution morphing for planar curves
Stefanie Hahmann, Georges-Pierre Bonneau, Baptiste Caramiaux, Mélanie

Cornillac

To cite this version:
Stefanie Hahmann, Georges-Pierre Bonneau, Baptiste Caramiaux, Mélanie Cornillac. Multiresolution
morphing for planar curves. Computing, 2007, 79 (2-4), pp.197-209. �10.1007/s00607-006-0198-7�.
�hal-00319634�

https://hal.science/hal-00319634v1
https://hal.archives-ouvertes.fr


Multiresolution Morphing for Planar Curves

Stefanie Hahmann∗

Laboratoire Jean Kuntzmann,

University of Grenoble

Georges-Pierre Bonneau†

Laboratoire Jean Kuntzmann / INRIA-EVASION,

University of Grenoble

Baptiste Caramiaux∗

Laboratoire Jean Kuntzmann,

University of Grenoble

Melanie Cornillac∗

Laboratoire Jean Kuntzmann,

University of Grenoble

Abstract

We present a multiresolution morphing algorithm using ”as-rigid-
as-possible” shape interpolation combined with an angle-length
based multiresolution decomposition of simple 2D piecewise
curves. This novel multiresolution representation is defined intrin-
sically and has the advantage that the details’ orientation follows
any deformation naturally. The multiresolution morphing algorithm
consists of transforming separately the coarse and detail coefficients
of the multiresolution decomposition. Thus all LoD (level of detail)
applications like LoD display, compression, LoD editing etc. can be
applied directly to all morphs without any extra computation. Fur-
thermore, the algorithm can robustly morph between very large size
polygons with many local details as illustrated in numerous figures.
The intermediate morphs behave natural and least-distorting due to
the particular intrinsic multiresolution representation.

1 Introduction

In computer graphics, morphing (or metamorphosis) is known as
the smooth and progressive transformation of one shape into an-
other. The shape can be an image or a planar curve in 2-D space,
or it can be a surface or a volume in 3-D space. The problem is
to create an aesthetic and intuitive transition between two shapes.
The intermediate shapes should preserve the appearance and the
properties of the input shapes. A trivial linear interpolation is often
not appropriate, since the intermediate shapes tend to vary a lot in
their volume or they loose the proportions of their shape features.
Another negative effect is that the geometric details can disappear
and re-appear later during the transition. The morphing process
consists of solving two problems: the vertex correspondence prob-
lem (finding the correspondence between the geometric features of
the source and target object) and the vertex path problem (finding
the trajectory two corresponding elements follow during the mor-
phing). Both problems still attract much attention in research, since
no formal definition of a successful solution exits. In this work we
assume that the correspondence is given and only the vertex path
problem is to be solved for 2-D polygonal shapes.

Good results are generally achieved not by interpolating the po-
sitions of the boundary representation but by interpolating elements
of alternative representations. In the case of 2-D polygonal shapes,
Sederberg et al. [16] represent polygons by at set of lengths and
angles. Shapira and Rappoport [18] use a star-skeleton represen-
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tation. Goldstein and Gotsman [10] use a multiresolution repre-
sentation based on curve evolution. Morphing is also performed
on elements describing the interior of a 2-D shape like triangles.
Herein Floater and Gotsman [9] have used barycentric coordinates
to morph compatible triangulations and Surazhsky and Gotsman
[20] furthermore interpolate intrinsic components of these coordi-
nates. Alexa et al. [3] morph compatible triangulations by locally
least-distorting maps. Let us also mention one multiresolution mesh
morphing technique by Lee et al. [12]. For the 3-D mesh morphing
techniques a survey is given by Alexa [2]. The key to a successful
method thus seems to be the use of a representation based on intrin-
sic properties of the object geometry such that interpolation of its
elements achieves automatically pleasing morphs.

The morphing method we introduce in the present paper is based
on a new multiresolution representation. When modeling complex
shapes with many geometric details which are difficult to manipu-
late efficiently, a multiresolution analysis provides a powerful tool
for efficiently representing and deforming objects at multiple lev-
els of resolution. Herein, a complex shape is decomposed into a
”coarser” low resolution part, together with a collection of detail
coefficients, necessary to recover the original shape. Deformation
of complex objects with a lot of detail can be tricky and expensive to
compute. In a multiresolution setting however complex objects can
be edited at a chosen scale with mainly two effects: First, modify-
ing some low-resolution control points and adding back the details
modifies the overall shape of the object. Second, modifying a set of
fine detail coefficients modifies the character of the object without
affecting its overall shape.

Multiresolution morphing thus decomposes the source and the
target shape into a coarse approximation and a set of detail coeffi-
cients, it computes separately the sequence of coarse intermediate
shapes and details, and then reconstructs all intermediate shapes.
The choice of the multiresolution representation is crucial for the
quality of the resulting shapes. For example a wavelet based mul-
tiresolution analysis would not preserve the orientation of the de-
tails during deformation. In fact, the details here are encoded in a
global coordinate system. A multiresolution representation that en-
codes the details using local frames similar to [8] solves this prob-
lem, but is not appropriate for morphing. In fact, while the coarse
polygon can make profit from Sederberg’s intrinsic morphing, the
detail coefficients can’t. Thus the morph of the details would suffer
from the same lack of realism as linear vertex morphs do.



In the present paper we introduce a curvature based multiresolu-
tion representation for 2-D polygonal curves. All detail coefficients
will be represented intrinsically by lengths and angles. We show
that similar to local frames, the multiresolution representation pre-
serves the orientation of the details during deformation. Further-
more we investigate its use in morphing by combining it with the
”as-rigid-as-possible” morphing technique of Alexa et al. [3] which
has been proven to provide good quality morphs. We therefore
present an as-rigid-as-possible intrinsic multiresolution morphing
algorithm.

2 Angle-length based multiresolution anal-

ysis

Multiresolution (MR) analysis is a process of splitting a vector of
coefficients cn into a set of a low-resolution part cn−1 and a de-
tail part dn−1, which can be applied recursively to the new vector
cn−1. Thus, the original vector of coefficients can be decomposed
into a hierarchy of lower-resolution vectors cn−1

, . . . ,c0 and detail
coefficients dn−1

, . . . ,d0. This process is called analysis or decom-
position. The original vector of coefficients can be recovered from
any sequence c j

,d j
,d j+1

, . . . ,dn, j = 0, . . . ,n− 1. This process is
called synthesis or reconstruction. More details and mathematical
fundamentals on multiresolution analysis can be found in the orig-
inal work of Mallat [14]. An overview of applications in computer
graphics is given in [19].

Most existing MR representations for curves in CAGD or com-
puter graphics are based on B-splines [8, 6, 7, 4, 11] and are de-
signed for particular applications. In the case of deformation, and
morphing belongs to this application, the orientation of the details
is an important issue. As we have explained in the introduction,
deformations of wavelet-based MR representations generally suffer
from the lack of realism, since the orientation of the details keeps
fixed during deformation.

Therefore we introduce here another MR analysis for piecewise
linear planar curves (2-D polygons), which has the following two
important properties regarding its use for morphing : the orientation
of details follows the deformation naturally and the MR represen-
tation is defined intrinsically.

From differential geometry it is known that the curvature func-
tion of a parametric curve determines the curve uniquely up to an
isometry [5]. The curvature is an intrinsic property of a curve. In
the case of piecewise linear planar curves, angles and lengths define
a curve intrinsically up to an isometry [1, 16]. We will use these in-
trinsic quantities to define the coarse coefficients and details of a
MR analysis now.

Let denote the vertices of a polygon to be MR-analyzed by Pi =
(xi,yi), i = 0, . . . ,N−1. The initial polygon needs to be transformed
from (x,y)-coordinates into so-called (θ , l)-coordinates, where θi =
6 (Pi−1Pi,PiPi+1) is the counterclockwise angle of the two consecu-
tive polygon segments at Pi and li = ‖PiPi+1‖, i = 0, . . . ,N −2, see
Figure 1. The (x,y)-coordinates of the control points Pi can be re-
covered directly using for example P0 as anchor point and P0P1 as
anchor line (determining the translation and rotation).

pi

pi-1

pi+1

l i

l i-1

θ i

Figure 1: From (x,y)-coordinates to (θ , l)-coordinates (li, θi function of

Pi−1,Pi , Pi+1)

The angle-length MR representation we introduce now, exclu-
sively works with (θ , l)-coordinates. Similar to lazy wavelets [21]

we choose to coarsen the polygons by subsampling half of the con-
trol points at each analysis step.

2.1 Analysis

Analysis (decomposition) is the recursive procedure of splitting the
vector of coefficients of a polygon (θ n+1

, ln+1) into a vector of
coarse coefficients of a lower-resolution polygon (θ n

, ln) and a vec-
tor of detail coefficients. Let the upper index n denote the level of
resolution. Both, coarse and detail coefficients of level n must be
computed directly from (θ n+1

, ln+1) and vice-versa.
Using basic trigonometric rules for triangles, we get the

following analysis formulas, illustrated in Figure 2:

coarse coefficients

θ n
i = θ n+1

2i +θ n+1
2i−1 +αn

i −αn
i−1 −π , for i = 0, . . . ,2n −1.

ln
i =

√

(

ln+1
2i+1

)2
+

(

ln+1
2i

)2
−2 · ln+1

2i+1 · l
n+1
2i cos

(

θ n+1
2i+1

)

,

(1)

detail coefficients

αn
i = arccos

(

ln+1
2i −ln+1

2i+1 cos(θ n+1
2i+1)

ln
i

)

,

β n
i = θ n+1

2i+1 −αn
i −π, for i = 0, . . . ,2n −1.

(2)
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Figure 2: The analysis. The dotted polygon belongs to resolution level

n+1, the fat polygon belongs to level n.

From a polygon with 2n+1 segments, one analysis step creates
a polygon with 2n segments and 2n detail coefficients, which are
represented by two-dimensional vectors of the form :

(θ n+1
, ln+1) → (θ n

, ln)
ց

(αn
,β n),

where θ n = (θ n
0 , . . . ,θ n

2n−1) and analogous for ln,αn
,β n.

2.2 Synthesis

The analysis provides a coarse polygon (θ 0
, l0) (simple geometric

shape) and a set of detail coefficients (α0
,β 0), . . . ,(αn

,β n).
The synthesis will reconstruct the original polygon. We are still
working with the (θ , l)-coordinates. Therefore, the algorithm



consists in calculating the lengths ln+1
2i , ln+1

2i+1 and the angles θ n+1
2i ,

θ n+1
2i+1 of level n + 1 from the coarse coefficients and the details of

level n. The process corresponds to one synthesis step. We can
then iterate the algorithm on the reconstructed shape with details.

reconstruction of lengths

ln+1
2i = ln

i .

sin(βi)
sin(αi+βi)

ln+1
2i+1 = ln

i .

sin(αi)
sin(αi+βi)

.

(3)

reconstruction of angles

θ n+1
2i = θ n

i −αn
i −β n

i−1

θ n+1
2i+1 = π +αn

i +β n
i .

(4)

Figure 3: (a) initial curve with 256 control points. (b) deformation of

coarse polygon at level 6. (c) deformation of coarse polygon at level 8.

The orientation of the details follows naturally the orientation of the coarse

polygon during deformation.

2.3 Special cases

Three special cases occur which need an extra treatment. They cor-
respond to the cases where the detail coefficients (αi, βi) admit the
values (0,0), (0,π) and (π,0). Geometrically these cases corre-

spond to degenerated triangles i.e. where pn+1
2i , pn+1

2i+1 and pn+1
2i+2 are

collinear. When storing these detail values as usual during analysis,

one would not be able to recover correctly the lengths ln+1
2i , ln+1

2i+1
during synthesis since these values reported in the previous formu-

las (3) involve divisions by 0. Thus ln+1
2i = ∞ and ln+1

2i+1 = ∞. When

these cases occur we proceed as follows: βi will be set to a specific
value corresponding to one of the three cases. This value will allow
us to know if a special treatment is needed during the synthesis, and
αi will be set to the ratio of lengths, so that the reconstruction can
be performed without the numerical aberrations mentioned above.

• (αi, βi) = (0,0)

the analysis gives us the ratio r =
ln+1
2i

ln+1
2i+1+ln+1

2i

and ln
i = ln+1

2i+1 +

ln+1
2i

the synthesis gives: =⇒ ln+1
2i = ln

i × r and ln+1
2i+1 =

ln
i .(1− r)

• (αi, βi) = (0,π)

the analysis gives us the ratio r =
ln+1
2i

ln+1
2i −ln+1

2i+1

and ln
i = ln+1

2i −

ln+1
2i+1

the synthesis gives: =⇒ ln+1
2i = ln

i × r and ln+1
2i+1 =

ln
i .(r−1)

• (αi, βi) = (π,0)

the analysis gives us the ratio r =
ln+1
2i

ln+1
2i+1−ln+1

2i

and ln
i = ln+1

2i+1 −

ln+1
2i

the synthesis gives: =⇒ ln+1
2i = ln

i × r and ln+1
2i+1 =

ln
i .(1+ r).

3 Multiresolution morphing

Given two polygons with the same number of corresponding con-
trol points PS and PT , called source and target polygons. We aim to
construct in-between polygons Pt which gradually change PS into
PT for t ∈ [0,1], where PS = P0 and PT = P1. There exist many pos-
sible interpolants for Pt and it is particularly difficult to characterize
mathematically ”good” morphing algorithms, since the judgment
depends on both, the application area and the human perception of
geometry.

The most trivial method consists in interpolating along a straight
line between corresponding vertex positions. This vertex interpola-
tion is known to change inconsistently many geometric properties,
such as lengths, angles and area during the morph. Sederberg et
al. [16] presented an improved interpolation method. Instead of
interpolating between vertex positions, the algorithm interpolates
between entities of an intrinsic polygon definition: angles and edge
lengths. Such a polygon representation is rigid-motion invariant.
The advantage is that the morphing of two characters behave natu-
rally. It turns out that the proportions of all geometric features are
preserved.

The work of Lipman et al. [13] can be seen as a kind of gener-
alization of Sederberg’s 2-D interpolation technique to 3-D mesh
interpolation. They introduce a rigid-motion invariant representa-
tion of surfaces based on intrinsic discrete fundamental forms, and
propose to interpolate the coefficients of these forms.

The approach of interpolating between intrinsic entities has
further been employed by Surazshky and Gotsman [20]. They
first compute compatible triangulations of the source and target
polygons and then interpolate the mean value barycentric coor-
dinates of the triangles by using a lengths and angle description.
The advantage of morphing compatible triangulations is that
self-intersecting morphs can generally be avoided. However, the
computation of compatible triangulations and other representations
of the interiour of polygons [18] are generally difficult and very
time consuming.

The algorithm we present in this section belongs to the class of
algorithms based on intrinsic boundary representations. The input
polygons are represented by the intrinsic multiresolution represen-
tation we introduced in Section 2. The multiresolution nature of this
representation has the advantage to generate the in-between poly-
gons directly at many levels of detail without computing a MR-
analysis for them. The following features characterize our intrinsic
MR algorithm and make it particularly appropriate for morphing:

• The orientation of details follows the deformation naturally.

• The MR representation is defined intrinsically.

• The intermediate morphs interpolate the source and target
curves ”as-rigid-as-possible” similar to [3].

• The intermediate morphs can be visualized at any level of res-
olution due to the MR morphing which applies the interpola-
tion separately to the coarse and detail coefficients.

• In the case of closed curves, the non-closure problem of
Sederberg’s method [16] doesn’t occur.



3.1 Algorithm

Once angle-length MR representations of PS and PT have been
computed one disposes of two sets of coarse coefficients (θ 0

S , l0S),

(θ 0
T , l0T ) and of two sets of detail coefficients (α0

S ,β 0
S ), . . . ,(αn

S ,β n
S ),

and (α0
T ,β 0

T ), . . . ,(αn
T ,β n

T ). In principle, the in-between morphs are
now generated by interpolating the coefficients of this intrinsic rep-
resentation. But special attention has to be paid to the coefficients
of the coarse polygon. When interpolating the (θ , l)-coordinates
of the coarse polygon, this would mean that we apply Serderberg’s
algorithm [16] to the coarse polygon. But in this case we would
inheritate the problem of non-closing intermediate polygons in
cases where PS and PT are closed. And thus some extraneous
optimization would be necessary. Instead, we propose a solution
where this problem doesn’t occur.

Interpolation of coarse coefficients ”as-rigid-as-possible”: In
the case of closed polygons with 3 ·2n vertices, the coarse polygons
after n analysis steps P0

S and P0
T consist of a triangle. In this case

we interpolate between these two triangles with Alexa’s ”as-rigid-
as-possible” interpolation [3]. The unique affine transformation A
between P0

S and P0
T is decomposed into a rotation matrix Rγ and a

symmetric matrix S using SVD: A = Rγ S. The intermediate morphs
of both triangles are then obtained by interpolating the components
of this decomposition: Aγ (t) = Rtγ ((1− t)I + tS). This interpo-
lation between two triangles is said to be ”as-rigid-as-possible”
since the angles vary close to linear path. In any other case, we can
resample the original curve in order to have D · 2n points, where
D is the small number of coarse control points. A coarse polygon
with only a few vertices can easily be triangulated and interpolated
by Alexa’s locally least distorsion interpolation method.

Interpolation of detail coefficients: The detail coefficients in-
trinsingly represent triangles which are added to the coarse polygon
in order to bring it to a higher resolution level. Intermediate detail
coefficients of level j are obtained by interpolating

α
j

t = (1− t)α
j

S + tα
j

T

β
j

t = (1− t)β
j

S + tβ
j

T , for 0 ≤ j ≤ n and t ∈ [0,1].
(5)

The intermediate shapes are the ”as-rigid-as-possible” deforma-
tions of the source and target shape. In fact, the reconstruction of
all morphs works through adding triangles to the lower-resolution
polygons at each resolution level. Furthermore, these triangles are
obtained by linearly interpolating the angles, see equation 5. Our
method can thus be regarded as an ”as-rigid-as-possible” morphing
of multiresolution curves, following Alexa’s definition.

Another advantage of our method is, that we have an entire MR
representation of all intermediate curves and can visualize them at
different resolution levels.

3.2 Results and discussion

In contrast to most existing morphing algorithms, our method is
designed for very large size polygons with a lot of local details.
However, it can handle all other simple and smooth polygons as
well. Therefore we only selected examples with a lot of fine de-
tails, which are difficult to morph. Most of them are generated by
extracting a contour of an image.

Vertex correspondence

It is well known that the correspondence of several vertices can
significantly increase the quality of the morphing [17]. Most mor-
phing algorithms thus enforce manually the correspondence of a

Figure 4: 2 successive morphs: crocodile - hedgehog - sea horse (1536

points)

few selected points [3, 16, 10] or simply suppose that the prob-
lem is solved [20, 18]. In [15] the vertex correspondance problem
is solved using wavelets. For the correspondence of vertices, we
define manually a first starting point for the source and target poly-
gon. All remaining vertices correspond then automatically by their
indices. In order to avoid self-intersections of the morphs, the ver-
tices should be ordered identically, in counterclockwise order for
example. Furthermore the start vertices should either correspond
to a particular feature of the curves, or they should correspond
geographically. For example select the vertices with minimal x-
coordinate. In Figure 4 we select the nose of the animals as starting
vertex.

The selection of more than one corresponding vertex is possi-
ble with our method by selecting the vertices of the coarse polygon
in the following way. Before morphing between source and target
polygon, a multiresolution analysis is performed following the al-
gorithms described in Section 3.1. Since the MR analysis is based
on subsampling, the vertices of the coarse polygon belong to the
fine polygon and 2n − 1 vertices ly in between. These particular
relations between the fine and coarse polygons can now be used to
fix manually all the vertices of the coarse source and target curves
as corresponding points for the morphing. Once the user has man-
ually selected three or four vertex indices destined to construct the
coarse polygon, the fine polygons are resampled so that a power of
two number of vertices are lying between them. This is the way
we proceed for Figures 4, 8. For the other Figures 5, 6, and 7 we
simply fixed the vertex with minimal x-coordinate as starting point.

Multiresolution representation of all curves

The morphing algorithm interpolates between intrinsic representa-
tions of the coarse polygon and of the detail coefficients. As result
an entire multiresolution representation of each in between curve is
provided. Thus all LoD (level of detail) applications like LoD dis-
play, compression, LoD editing etc. can be applied directly on all
morphs without any extra computation. Figure 5 shows in the first
row the MR morphing between the maps of France and Germany
together with the morphs of the coarse polygons. The full resolu-
tion curves (8192 vertices) are obtained after a complete synthesis
(section 2.2). The other four rows correspond to lower resolution
morphs obtained by partial synthesis.



Figure 5: France - Germany (8192 points) at 5 resolution levels n=13

(finest level), 10, 8, 6, 4

As-rigid-as-possible MR morphing

It can be observed in all tests we did, that the morphs behave natu-
ral and that the transformations are least-distorting. In fact, the way
we interpolate the coarse polygons and detail coefficients make our
shape interpolation method to be ”as-rigid-as-possible”. For the in-
terpolation of the coarse polygons we use Alexa’s method [3] which
approximates optimal least-distorting interpolation by some opti-
mization. This method generally requires computing compatible
triangulations between the source and target objects. This some-
times difficult and time consuming step is omitted in our case, since
the coarse polygons are quite trivial (consisting of 1-3 triangle max-
imum). Furthermore, the details are transformed by linearly inter-
polating their intrinsic representations. Here also, the interpolation
is least-distorting, since the angles vary linearly. In summary, our
MR morphing method behaves ”as-rigid-as-possible”. All figures
testify this important property. In particular, a comparison between
MR morphing and classical intrinsic morphing [16] shown in Fig-
ure 6 clearly supports our claim.

Figure 6: Comparison MR morphing (upper row) - intrinsic morphing

without MR (513 points) (lower row)

Figure 7: pelican (2048 points)

A tricky example

Although the method doesn’t prevent explicitly self-intersections,
it is nevertheless rare to observe self-intersections. In fact, the way
we interpolate the coarse polygons guarantees self-intersection free
transformations, but only of the coarse polygons. However, to test
the robustness of our method with respect to this aspect, we use a
very tricky example shown in Figure 8. No self-intersections occur

Figure 8: Christmas tree - Flower tree (2048 points)

in contrast to intrinsic morphing without multiresolution, see Fig-
ure 9. Another problem of intrinsic morphing is the non-closure
of the intermediate polygons. In [16] it has been stated, that the
intermediate polyons always come near together. This might be
true for morphs between similar shapes as illustrated in [16]. But
in cases where the shapes are very different and complicate with a
lot of details, the non-closure is a real problem since large parts of
the morphs need to be corrected, see Figure 9. Our method doesn’t
present this problem at all, since the polygons at the coarsest level
are interpolated using a decomposition into triangles following [3].

Figure 9: Comparison of 4 intrinsic morphing methods: first row: MR

morphing. second row: intrinsic morphing of (θ , l)-coordinates of the fine

polygons without MR decomposition. The polygons of the last two rows are

obtained by closing the polygons of row two with two differents methods.

third row: affine closing. fourth row: edge-tweaking following [16].
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