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Abstract1: We show that certain integral positive definite symmetric

tridiagonal matrices of determinant n are in one to one correspondence with

elements of (Z/nZ)∗. We study some properties of this correspondence.

In a somewhat unrelated second part we discuss a construction which

associates a sequence of integral polytopes to every integral symmetric ma-

trix.

1 Introduction

Let α1, . . . , αn be a finite sequence of elements in a commutative ring. We
denote by T (α1, . . . , αn) the symmetric tridiagonal matrix























α1 1 0 . . . 0 0 0
1 α2 1 0 0 0
0 1 α3 0 0 0
...

. . .
...

0 0 0 αn−2 1 0
0 0 0 1 αn−1 1
0 0 0 . . . 0 1 αn























of size n × n with diagonal entries α1, . . . , αn and sub and super diagonals
consisting only of ones.

Leighton and Newman discovered in [2] the remarkable fact that the
number of such matrices of size n × n which are unimodular, integral and
positive definite is given by the n−th Catalan number

(

2n
n

)

/(1+ n), see also
Exercice 6.19 nnn in [5] and [4]. One should mention that this result was
already implicitely contained in [1], see the solution to problem (18).

In the present paper, we are interested in the number of such matrices
of arbitrary size and determinant N which are integral and have diagonal
entries in {2, 3, 4, . . . }. Such matrices are always positive definite, the case
α1 = α2 = · · · = αn = 2 defining the root lattice of type An.

1Keywords: Tridiagonal matrix, symmetric positive definite matrix, Catalan number,
Euler totient function, Euclid’s algorithm, SL2(Z), root system, integral polytope, finite
simple graph. Math. class: 11A05, 11A55, 11AC20, 15A48,52B20
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Theorem 1.1. The number of finite symmetric tridiagonal integral matrices
of the form T (α1, α2, . . . ) with diagonal entries ≥ 2 and determinant N is
given by Euler’s totient function

Φ(N) = N
∏

p|N

(

1 −
1

p

)

(where the product is over all prime divisors of N) counting the number
♯((Z/NZ)∗) of invertible elements of the ring Z/NZ.

The proof is bijective: Given (a,N) for a in {1, 2, . . . , N − 1} invertible
modulo N , we construct a finite sequence (α1, α2, . . . ) giving rise to a matrix
T (α1, α2, . . . ) with the desired properties. This construction is based on
properties of SL2(Z) related to Euclid’s algorithm.

The organisation of the paper is as follows:
The next section exposes a few useful (and probably well-known) facts

concerning SL2(Z).
The proof of Theorem 1.1 is contained in Section 3.
Section 4 discusses some algorithmic aspects of the construction wich

associates to an element a ∈ (Z/NZ)∗ the corresponding tridiagonal matrix
of the form T (α1, . . . ).

Section 5 describes properties of the function a 7−→ tr(T ) − dim(T ) for
a ∈ (Z/NZ)∗.

All matrices described by Theorem 1.1 are definite positive. Section 6
discusses briefly Euclidean lattices admitting the matrices of Theorem 1.1
as Gram matrices.

The final Section 7 is not closely related to the rest of the paper. It
describes a construction of a sequence of integral polytopes associated to a
symmetric integral matrix and discusses some easy properties of this con-
struction. The first polytope obtained by applying this construction to tridi-
agonal matrices with 1′s on the sub and super diagonal end zeros elsewhere
yields for instance integral polytopes with vertices enumerated by Catalan
numbers. These polytopes are however distinct from associahedrons (or
Stasheff polytopes).

2 SL2 and the determinant of T (α1, . . . , αn)

We consider the map

α 7−→ M(α) =

(

0 −1
1 α

)

extended to finite sequences by setting

M(α1, α2, . . . , αn) = M(α1)M(α2) · · ·M(αn) .
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Denoting by
|T (α1, . . . , αn)| = det(T (α1, . . . , αn))

the determinant of T (α1, . . . , αn) we have the following result:

Proposition 2.1. We have for all n ≥ 2 the identity

M(α1, . . . , αn) =

(

−|T (α2, . . . , αn−1)| −|T (α2, . . . , αn)|
|T (α1, . . . , αn−1)| |T (α1, . . . , αn)|

)

where we use the convention |T (α2, . . . , αn−1)| = 1 for n = 2.

The proof is a straightforward computation left to the reader.
Proposition 2.1 implies easily the identity

|T ((α1, . . . , αn+1)| |T (α2, . . . , αn−1)| = |T (α1, . . . , αn)| |T (α2, . . . , αn+1)|−1

which is a particular case of Dodgon’s condensation formula.
Another useful result is the following “symmetry”.

Proposition 2.2. If

M(α1, α2, . . . , αn) =

(

−a −b
c d

)

then

M(αn, . . . , α2, α1) =

(

−a −c
b d

)

.

Proof Introducing the involution V =

(

0 1
1 0

)

, a short computation

shows V M(α)V = M(α)−1. This yields

V M(α1, . . . , αn)−1V = M(αn, . . . , α1)

which establishes the result by computing
(

0 1
1 0

)(

d b
−c −a

)(

0 1
1 0

)

.

2

The easy identity

M(x)M(y) = M(x + 1)M(1)M(y + 1) =

(

−1 −y
x xy − 1

)

shows that the set of integral positive definite matrices of the form T (α1, α2, . . . )
with given determinant is infinite without further conditions.

Leighton and Newman consider matrices of the form T (α1, . . . , αn) which
are integral, positive definite and have fixed size n× n in order to get finite
sets. In the present paper, the size of the matrices T (α1, α2, . . . ) is arbitrary
but the diagonal coefficients α1, α2, . . . are restricted to the set {2, 3, 4, . . . }
of natural integers ≥ 2. This restriction is motivated by the following result.
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Proposition 2.3. Let α1, α2, . . . , αl be a sequence of l ≥ 1 real numbers
ai ≥ 2 for i = 1, . . . , l. Consider

M(α1, α2, · · · , αl) =

(

−a −b
c d

)

.

We have then the inequalities

0 ≤ a < min(b, c), max(b, c) < d and c − a ≤ d − b .

Corollary 2.4. We have

det(T (α1, α2, . . . , αl−1)) < det(T (α1, α2, . . . , αl−1, αl))

if α1, . . . , αl are real numbers ≥ 2.
In particular, the number of matrices of the form T (α1, α2, . . . ) with

determinant N and integral diagonal coefficients α1, α2, · · · ⊂ {2, 3, 4, . . . }
is finite.

Proof The first part follows by applying Proposition 2.1 and the in-
equality c < d of Proposition 2.3 to the matrix M(α1, . . . , αl).

The second part follows also from Proposition 2.1 and from the obser-
vation that the number of integral matrices satisfying the inequalities of
Proposition 2.3 with d = N is finite. 2

Corollary 2.5. A matrix of the form T (α1, α2, . . . , αl) with αi ≥ 2 for
i = 1, 2, . . . , l is positive definite.

Remark 2.6. Corollary 2.5 follows of course also from the well-known ob-
servation that T (2, 2, . . . , 2) is a Gram matrix for a root lattice of type A
and from the fact that real symmetric positive matrices form a convex cone.

Proof of Proposition 2.3 By induction on l. The results hold obviously
for l = 1 since

M(α1) =

(

0 −1
1 α1

)

satisfies all inequalites for α1 ≥ 2.
For the induction step we consider

(

−a −b
c d

)(

0 −1
1 x

)

=

(

−b a − xb
d −c + xd

)

.

We have obviously 0 < b, d and d > b by induction. Since 0 ≤ a < b we
have

−a + xb > (x − 1)b ≥ b > 0

for x ≥ 2.
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The inequalities 0 < c < d show similarly

−c + xd > (x − 1)d ≥ d > 0 .

The inequalities c − a ≤ d − b and d > b imply

(xd − c) − (xb − a) = x(d − b) − (c − a) ≥ (x − 1)(d − b) ≥ d − b > 0

for x ≥ 2. 2

3 Proof of Theorem 1.1

Theorem 3.1. For every integral unimodular matrix

A =

(

−a −b
c d

)

such that
0 ≤ min(a, b, c, d) and max(b, c) < d

there exists a unique integer l ≥ 1 and a unique finite sequence (α1, . . . , αl) ∈
{2, 3, 4, . . . }l such that

A = M(α1)M(α2) · · ·M(αl) .

Theorem 1.1 is now implied by the following result.

Proposition 3.2. Integral matrices of the form T (α1, . . . , αn) with deter-
minant N and diagonal coefficients ≥ 2 are in bijection with the subset of
integers in {1, . . . , N} which are invertible modulo N .

Proof of Proposition 3.2 Given a pair (a,N) of natural integers with
a ∈ {1, . . . , N − 1} such that a is invertible modulo N , we consider b ∈
{1, . . . , N − 1} such that ab ≡ 1 (mod N) and we set k = ab−1

N ∈ N. The

matrix A =

(

−k −b
a N

)

satisfies the hyptheses of Theorem 3.1 and has

thus a unique factorisation of the form

A = M(α1)M(α2) · · ·M(αl)

for some integer l ≥ 1 and α1, α2, · · · ∈ {2, 3, . . . }l.
Proposition 2.1 shows thus that the matrix T (α1, . . . , αl) has determi-

nant N .
This construction yields an injective map from (Z/NZ)∗ into integral

matrices of the form T (α1, α2, . . . ) with determinant N and diagonal coef-
ficients αi ≥ 2.
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The fact that this map is onto follows by applying the unicity result of
Theorem 3.1 to the matrix

(

−|T (α2, . . . , αn−1)| −|T (α2, . . . , αn)|
|T (α1, . . . , αn−1)| |T (α1, . . . , αn)|

)

= M(α1) · · ·M(αl)

associated to a suitable tridiagonal matrix T (α1, α2, . . . ). 2

Proof of Theorem 3.1 If a = 0 then unimodularity of A implies b =
c = 1 and A = M(d) for some integer d ≥ 2 > 1 = b = c. Otherwise, the
identity

bc = ad + 1

implies bc ≡ 1 (mod d). This shows that the integers c, d are coprime and
determine a, b uniquely by considering the unique integer b ∈ {1, . . . , d− 1}
such that bc ≡ 1 (mod d) and by setting a = bc−1

d ≥ 1. Unimodularity
of A and strict positivity of a imply that Defining t ∈ {1, . . . , b − 1} as
the unique integer satisfying the congruence t ≡ −d (mod b), the equality
det(A) = −ad + bd = 1 implies at ≡ 1 (mod b) and we can thus consider
the natural integer s = at−1

b ≥ 0. The computation

(

−a −b
c d

)(

b t
−a −s

)

=

(

0 −1
1 ct − sd

)

and the inequality

b

(

ct −
at − 1

b
d

)

= bct − adt + d = t + d > b

show thus
(

−a −b
c d

)

=

(

0 −1
1 ct − sd

) (

−s −t
a b

)

where ct − sd ≥ 2. Since a = bc−1
d < b, the integral unimodular matrix

(

−s −t
a b

)

satisfies again the hypotheses of Theorem 3.1. Induction on d > b establishes
the existence of a sequence (α1, α2, . . . , αl) in {2, 3, 4, . . . }l such that A =
M(α1)M(α2) · · ·M(αl).

Unicity of the sequence α1, . . . is obvious for a = 0 by Proposition 2.1.
For a > 0 it follows from the observation that the inequalities 0 ≤ min(s̃, t̃)
and t̃ < b determine the integral unimodular matrix

(

−s̃ −t̃
a b

)

=

(

α̃1 1
−1 0

)(

−a −b
c d

)

= T (α̃2, α̃3, . . . )

uniquely. This shows α̃1 = α1 and by induction α̃i = αi and l′ = l for
α̃1, . . . , α̃l′ ∈ {2, 3, . . . }l′ such that M(α1, . . . , αl) = M(α̃1, . . . , α̃l′). 2
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Remark 3.3. Theorem 3.1 is equivalent to the assertion that the matrices
M(2),M(3),M(4), . . . generate a free submonoid of SL2(Z). The subgroup
generated by M(2),M(3), . . . is however not free and coincides with SL2(Z).
Indeed, the identity

M(λ)M(λ + µ)−1M(λ) = M(λ − µ)

shows that the subgroup generated by two integral matrices M(k) and M(k+
1) contains the generators

M(0) =

(

0 −1
1 0

)

and M(1) =

(

0 −1
1 1

)

of SL2(Z).

4 Algorithmic aspects

In the sequel, x (mod y) denotes always the unique natural integer in {1, . . . , y}
representing the equivalence class of x in Z/yZ for an integer x and a nat-
ural integer y ≥ 2. Similarly, if x is invertible modulo y, then x−1 (mod y)
denotes the unique integer in {1, . . . , y − 1} such that x(x−1 (mod y)) ≡ 1
(mod y).

Given a natural integer N ≥ 2 and an integer a ∈ {1, . . . , N − 1} which
is invertible modulo N , we denote by

W (a,N) = α1, . . . , αl

the unique finite sequence of natural integers αi ≥ 2 such that

M(α1 . . . αl) =

(

−x −y
a N

)

∈ SL2(Z)

where y ≡ a−1 (mod N) and x = ay−1
N , cf Theorem 3.1.

We denote by l(a,N) = l the length of the word W (a,N) and by
W (a,N)i = αi the i−th element (for i = 1, . . . , l) of the sequence W (a,N).
We have thus

W (a,N) = W (a,N)1,W (a,N)2, . . . ,W (a,N)l(a,N) .

We have obviously

W (1, N) = W (1, N)1 = N, l(1, N) = 1 .

If a, b ∈ {1, . . . , N−1} are invertible elements modulo N such that ab ≡ 1
(mod N), Proposition 2.2 shows that we have

l(a,N) = l(b,N)
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and
W (a,N)i = W (b,N)l(a,N)+1−i .

Otherwise stated, the matrices T (W (a,N)) and T (W (b,N)) are related to
each other by conjugation with the antidiagonal involution of size l(a,N)×
l(a,N).

We denote by ⌋x⌊ the integral part of a real number x defined as the
unique integer satisfying

x − 1 < ⌊x⌋ ≤ x .

The following result allows computations:

Theorem 4.1. For every integer N ≥ 2 we have

W (1, N) = N .

For an integer a ∈ {2, . . . , N −1} invertible modulo N (with N a natural
integer ≥ 3) we have

W (a,N) = W ((−N) (mod a), a) ,

(

1 +

⌊

N

a

⌋)

or equivalently

W (a,N) =

(

1 +

⌊

N

b

⌋)

,W
(

(−N)−1 (mod b), b
)

where b = (a−1 (mod N)) ∈ {1, . . . , N − 1}.

Remark 4.2. The map (a,N) 7−→ ((−N (mod a)), a) involved in the first
equality for W (a,N) for a ≥ 2 coincides (up to the − sign) with Euclid’s
celebrated algorithm for computing the greatest common divisor of a and N .

Proof of Theorem 4.1 The assertion concerning W (1, N) is obvious.
Set k = ab−1

N ≥ 1 where b = a−1 (mod N) is the inverse of a modulo N
in {2, . . . , N − 1}. Computing

(

−k −b
a N

)(

1 + ⌊N/a⌋ 1
−1 0

)

=

(

−k(1 + ⌊N/a)⌋ + b −k
a(1 + ⌊N/a⌋) − N a

)

,

the lower left coefficient of the last matrix is given by

a

(

1 +
N − (N (mod a))

a

)

−N = a+N−(N (mod a))−N = (−N) (mod a)

and is thus a strictly positive natural integer < a. Since

k(a(1 + ⌊N/a⌋) − N) ≡ −kN ≡ 1 (mod a) ,

8



positivity of k, a(1 + ⌊N/a⌋) − N , the obvious inequality k < a and uni-
modularity of all involved matrices imply that the last matrix satisfies the
conditions of Theorem 4.1. This implies the first equality for a ≥ 2 by
induction on N .

The second equality can be proven similary. It follows also from the first
equality and from Proposition 2.2. 2

For computing W (a,N) with a ∈ {1, . . . , N − 1} invertible modulo N
and very close to a huge integer N the following result is useful:

Proposition 4.3. The sequence W (N − 1, N) is the constant sequence
2, 2, . . . , 2 of length N − 1.

We have for a ∈ {2, . . . , N − 2} invertible modulo N the equality

W (a,N) = W ((λ + 1)a − λN, λa − (λ − 1)N), 2, 2, 2, . . . , 2

where λ = ⌊a/(N − a)⌋ and where 2, 2, 2, . . . , 2 is the constant sequence of
length λ.

Proof The assertion for the sequence W (N −1, N) follows from the case
k = N − 1 of the identity

(

0 −1
1 2

)k

=

(

1 − k −k
k k + 1

)

which is easily established.
For a ≥ 2 such that a < N/2 we have a/(N − a) < 1 yielding λ = 0 and

the formula is trivial.
The case a = N/2 implies (a,N) = (1, 2) corresponding to the case

(N − 1, N) for N = 2.
The proof in the case a > N/2 is by induction on λ. If λ = 1 we have to

prove
W (a,N) = W (2a − N, a), 2

where 1
2N < a < 2

3N . This boils down to the identity W (a,N) = W ((−N)
(mod a), a), (1 + ⌊N/a⌋) of Theorem 4.1.

For 2
3N ≤ a < N − 1 we have as above W (a,N) = W (2a − N, a), 2 by

Theorem 4.1. The trivial identities

2a − N

a − (2a − N)
=

a

N − a
− 1

and
k(2a − N) − (k − 1)a = (k + 1)a − kN

and induction on λ end the proof. 2

Theorem 4.1 and Proposition 4.3 give a fast algorithm for computing

l(a,N)
∑

i=1

(W (a,N)i)
e
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for arbitrary e ∈ N (or e ∈ C). The case e = 0 corresponds to the length
l(a,N) of the sequence W (a,N) and the case e = 1 yields the trace of the
tridiagonal matrix T associated to W (a,N). The details are as follows:

INPUT: (a,N) with a ∈ {1, . . . , N −1} invertible modulo N (for N ≥ 2)
and an integer e.

Set r = 0.
LOOP:
IF a = 1, OUTPUT: (r + N e) and STOP ENDIF.
IF a < (N/2), replace r by r + (1 + ⌊N/a⌋)e and (a,N) by ((−N)

(mod a), a) where (−N) (mod a) is the choosen in {1, . . . , a − 1}) ENDIF.
IF a = N − 1, OUTPUT: r + (N − 1)2e and STOP ENDIF.
IF a > N/2, set λ = ⌊a/(N − a)⌋, replace r by r + λ2e and (a,N) by

((λ + 1)a − λN, λa − (λ − 1)N) ENDIF.
END OF LOOP.

5 A function with an additional symmetry

Set σ(a,N) =
∑l(a,N)

k=1 (W (a,N)k −1) = tr(T (W (a,N)))−dim(T (W (a,N)))
for a ∈ {1, . . . , N − 1} invertible modulo N .

Proposition 2.2 shows that the function σ satisfies σ(a,N) = σ((a−1

(mod N)), N).
The following result shows that σ satifies an additional symmetry.

Theorem 5.1. We have

σ(a,N) = σ(N − a,N)

for every a ∈ {1, . . . , N − 1} which is invertible modulo N .

Proof We have σ(1, N) = N−1 and σ(N−1, N) = (N−1)(2−1) = N−1.
Consider now a such that 2 ≤ a < N

2 . Setting λ = ⌊(N − a)/a⌋ =
N−(N (mod a))

a − 1, Proposition 4.3 shows

σ(N − a,N) = σ(N − (λ + 1)a,N − λa) + λ

implying
σ(N − a,N) = σ(a,N − λa) + λ

by induction on N . Theorem 4.1 yields thus

σ(N − a,N) = σ((−N) (mod a), a) +
N − λa − (N (mod a))

a
+ λ

= σ((−N) (mod a), a) + ⌊N/a⌋

which establishes the result since we have also

σ(a,N) = σ((−N) (mod a), a) + ⌊N/a⌋
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by Theorem 4.1. 2

A few values of σ(a,N) are given by the following Table:

a = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N = 2 : 1
N = 3 : 2 2
N = 4 : 3 3
N = 5 : 4 3 3 4
N = 6 : 5 5
N = 7 : 6 4 4 4 4 6
N = 8 : 7 4 4 7
N = 9 : 8 5 5 5 5 8
N = 10 : 9 5 5 9
N = 11 : 10 6 5 5 6 6 5 5 6 10
N = 12 : 11 5 5 11
N = 13 : 12 7 6 6 5 7 7 5 6 6 7 12
N = 14 : 13 6 6 6 6 13
N = 15 : 14 8 6 8 8 6 8 14
N = 16 : 15 7 7 6 6 7 7 15
N = 17 : 16 9 7 7 6 7 6 9 9 6 7 6 7 7 9 16

5.1 Continued fraction expansions

Let [γ1, γ2, . . . ] be the continued fraction expansion of x ∈ (0, 1) defined
recursively by x = 1

γ1+[γ2,... ] where γ1 = ⌊1/x⌋ and [γ2, . . . ] = 1/x − γ1 (and

0 = [∅] by convention).

Theorem 5.2. We have

1 + σ(a,N) =
∑

i≥1

γi

where a
N = [γ1, γ2, . . . ] is the continued fraction expansion of the reduced

rational fraction a/N in (0, 1).

Proof The result holds obviously for a = 1. For a > 1, we have

γ1 = ⌊N/a⌋

and

[γ2, . . . ] = N/a − ⌊N/a⌋ =
N − (N − (N (mod a)))

a
=

N (mod a)

a

The equality γ1 = α1 and induction on N end the proof. 2

Remark 5.3. Theorem 5.1 follows also from Theorem 5.2 together with the
easy continued fraction expansion

1 − x = [1, α1 − 1, α2, α3, . . . ]

for x = [α1, α2, α3, . . . ] in (0, 1/2).
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6 Lattices

Given d integers α1, . . . , αd ∈ {2, 3, . . . }d, we denote by Λ(α1, . . . , αd) the
Euclideean lattice of rank d with scalar product given by the Gram matrix
T (α1, . . . , αd) (which is positive definite by Corollary 2.5. We say that such
a lattice is of type T.

Proposition 6.1. A lattice Λ(α1, . . . , αd) of type T has minimal norm
min(α1, . . . , αd) ≥ 2.

Proof We work with a basis with Gram matrix T (α1, . . . , αd). Replac-
ing α1, . . . , αd by 2 yields a root lattice Λ′ of type Ad and the obvious map
sending a vector λ = (λ1, . . . , λd) of the lattice Λ(α1, . . . , αd) to the corre-
sponding vector λ′ = (λ1, . . . , λd) with the same coordinates in Λ(2, 2, . . . , 2)
is a linear map which is one-to-one and length-shrinking.

This proves the Proposition if min(α1, . . . , αd) = 2. In the remaining
case, apply the Proposition to the lattice Λ′ = Λ(α1 − κ, α2 − κ, . . . , αd − κ)
where κ = min(α1, . . . , αd) − 2 and observe that the obvious linear map
from Λ(α1, . . . , αd) onto Λ′ is one-to-one and diminuishes norms of non-zero
elements at least by κ. 2

Proposition 6.2. Blocks of adjacents 2′s in the sequence α1, . . . , αd are in
bijection with irreducible root-sublattices in Λ(α1, . . . , αd).

The easy proof is left to the reader.

Theorem 6.3. Two lattices Λ(α1, . . . , αd) and Λ(b1, . . . , bd) of type T are
isomorphic if and only if either αi = bi for i = 1, . . . , d or αi = bd+1−i for
i = 1, . . . , d.

Corollary 6.4. The number of isomorphism classes of Euclidean lattices
(of arbitrary dimension) of type T, determinant N ≥ 2 and containing no
elements of norm 1 is given by (Φ(N) + νN )/2 where νN equals the number
of elements of order ≤ 2 in the multiplicative group (Z/NZ)∗.

Idea for the proof of Theorem 6.3 We show by induction on the
dimension d that metric properties of a lattice Λ(α1, . . . , αd) of type T de-
termine the integer sequence α1, . . . , αd uniquely, up to reversion of the
order.

If min(α1, . . . , αd) = 2, the root system R of Λ(α1, . . . , αd) is determined
by the set of blocks of adjacent 2′s in the sequence α1, α2, . . . . The sublat-
tice Λ̃ orthogonal to the root lattice generated by R corresponds to all terms
αi such that αi−1, αi, αi+1 ≥ 2 and is an orthogonal sum of lattices of type
T . By induction on the rank, the lattice Λ̃ determines (up to reversion of
the order) disjoint subsequences αij , αij+1, αij+dj

containing no 2’s and not
adjacent to 2’s in α1, . . . , αd. Terms adjacent to irreducible root lattices can
essentially be recovered by considering minimal norms of sets of vectors not
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contained and not orthogonal to such an irreducible root lattice. Orthogo-
nality consideration allow then to glue all pieces together in an essentially
unique way.

If min(α1, . . . , αd) > 2 one can replace the root lattice by the lattice
generated by the set of minimal vectors (corresponding to basis vectors ±ei

such that αi = min(α1, . . . , αd)) and proceed as above. 2

Remark 6.5. Lattices of type T have poor densities and are thus not inter-
esting from the point of view of sphere-packings.

7 Polytopes

Let A be an integral symmetric matrix of size d × d. For every natural
integer N , we denote by LA(N) the set of integral diagonal matrices of size
d× d such that A+D is positive definite of determinant N for every matrix
D ∈ LA(N). We denote by Conv(LA(N)) ⊂ R

d the convex hull of LA(N).

Theorem 7.1. For all N , the set Conv(LA(N)) is a polytope whose set of
integral elements is contained in

∪∞
k=NLA(k)

and whose vertices are given by the the integral elements LA(N).

Proof The Brunn-Minkowski Theorem, see eg. Theorem 6.2 in [3] states
that

det(A +
∑

D∈LA(N)

λDD)1/d ≥
∑

D∈LA(N)

λD det(A + D)1/d

if
∑

D∈LA(N) λD = 1 with λD positive real numbers. This shows that we

have det(A+D′) ≥ N for all D′ ∈ Conv(LA(N)) and the inequality is strict
if D′ 6∈ LA(N). Finiteness of the set LA(N) follows from the fact that given
two elements (α1, . . . , αd) and (β1, . . . , βd) of LA(N), there exists indices
i, j ∈ {1, . . . , d} such that αi < βi and αj > βj . 2

The construction of the polytope Conv(LA(N)) has the following prop-
erties, given without proofs. (They are straightforward.)

The diagonal part of A is essentially irrelevant: If Ã = A + D where D
is integral diagonal and A is integral symmetric, then LÃ(N) = LA(N)−D.
We suppose henceforth that A has zeroes along the diagonal.

Automorphisms of A (conjugations by signed permutation matrices com-
muting with A) act on the polytopes Conv(LA(N)) in the obvious way by
permuting the coefficients according to the underlying ordinary permutation
matrix.

If A is a “direct sum” A = A1 + A2 of disjoint diagonal blocks, then

Conv(LA(1)) = Conv(LA1
(1)) × Conv(LA1

(1)) .
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More generally,
LA(N) = ∪l|NLA1

(l) × LA2
(N/l)

where the union is over all natural integers divising N .
The following construction yields a map from the permutation group

on the d indices into the set LA(1): Given a permutation matrix σ of size
d × d, we consider the unique integral diagonal matrix D = Dπ such that
the submatrix formed by the first k rows and columns of σ−1(A + Dσ)σ
is unimodular for every integer k in {1, . . . , d}. These special vertices are
invariant under automorphisms of A (and their convex hull is a polytope
contained in Conv(LA(1)) which is invariant under automorphisms of A).

If A is an adjacency matrix of a simple finite undirected graph which is
connected, the above construction can be restricted to permutations such
that the first k vertices form connected subgraphs for all k. The subset of
these vertices is still invariant under automorphisms. There exists slight
generalisations of this construction.

Examples The easiest case is given if the matrix A is the zero-matrix of
size d × d. For d ≥ 2, the polytope Conv(LA(N)) is a (d − 1)−dimensional
simplex if and only if N is a prime number. More interesting cases occur if
N is highly composite.

A probably interesting example is given by considering the symmetric
matrix A of size d × d with coefficients Ai,j = 1 if |i − j| = 0 and Ai,j = 0

otherwise. By [2], the set LA(1) contains then exactly Cd =
(2d

d

)

/(d + 1)
elements forming the vertex set of an integral polytope Pd of dimension d if
d ≥ 3. The polytope P3 for instance is the convex hull of the five vertices

v1 = (1, 2, 2)
v2 = (1, 3, 1)
v3 = (2, 1, 3)
v4 = (2, 2, 1)
v5 = (3, 1, 2)

Its faces are defined by equalities of the five inequalities

y + z ≤ 4 {v1, v2, v3}
x + y + z ≥ 5 {v1, v2, v4}
x + 2y + z ≥ 7 {v1, v3, v4, v5}
2x + 3y + 2z ≤ 13 {v2, v3, v5}
x + y ≤ 4 {v2, v4, v5}

(with vertex-sets indicated for each face) and the polytope P3 is thus a pyra-
mid with summit v2 over the planar polygone formed by the four vertices
v1, v3, v4, v5. The face {v1, v2, v4} contains all vertices associated to permu-
tation matrices of size 3× 3. (This can easily be generalised to an arbitrary
dimension d: Such special vertices are all of the form (1, 2, 2, 2, . . . , 2, 1)+ ei
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where ei = (0, . . . , 0, 1, 0, . . . , 0) denotes the i−th basis vector and form a
unique simplicial face of the of polytope Conv(LA(1)).)

It would perhaps be interesting to understand the polytopes Pd in gen-
eral, in particular eventual connections with so-called Associahedrons (or
Stasheff polytopes) whose vertices are also enumerated by Catalan numbers
and whose dimensions are in general one less.

References

[1] J.H. Conway, H.S.M. Coxeter, Triangulated polygons and frieze pat-
terns, The Math. Gaz., 87–94 and 175–183.

[2] F.T. Leighton, M. Newman, Positive definite matrices and Catalan
numbers, Proc. Amer. Math. Soc. 79 (1980), 177–180.

[3] J.R. Sangwine-Yager, Mixed Volumes, Handbook of convex geometry,
Vol. A, B, 43–71, North-Holland, Amsterdam, 1993.

[4] L. W. Shapiro Positive definite matrices and Catalan numbers, revis-
ited, Proc. Amer. Math. Soc. 90 (1984), 488–496.

[5] R.P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge Uni-
versity Press (1999).

Roland BACHER
INSTITUT FOURIER
Laboratoire de Mathématiques
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