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Introduction

F. Campana has introduced in [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF] orbifold structures, namely pairs (X/∆) with X a complex manifold and a divisor ∆ = i (1 -1 m i )Z i where the Z i are distinct irreducible divisors and m i ∈ N ∪ {∞}, as a new frame for the classification of compact Kähler manifolds. These structures appeared naturally for fibrations f : X → Y . Indeed the multiple fibres of f lead to the definition of the orbifold base of f , (Y /∆(f )) where

∆(f ) := D⊂Y 1 - 1 m(f, D) D m(f, D
) being the multiplicity of the fiber of f above the generic point of D. A new class of varieties was then introduced, the special varieties, as the varieties which do not admit fibrations of general type i.e with an orbifold base of general type. Campana [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF] proves the existence for every complex algebraic manifold X of a fibration c X : X → C(X), the core of X, such that its general fibers are special and if X is not special, c X is of general type. These geometric orbifolds should be considered as true geometric objects as one can define for them differential forms, fundamental groups, Kobayashi pseudo-distance... Here we study the hyperbolic aspects of these objects. An important conjecture of Campana [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF] is that X is special if and only if the Kobayashi pseudo-distance d X vanishes identically on X × X. This is known only for curves, projective surfaces not of general type and rationally connected manifolds.

This conjecture then implies that d X should be the pull-back by c X of the Kobayashi pseudo-distance δ X of the orbifold base of the core.

The study of the hyperbolic aspects of one-dimensional orbifolds has been done in [START_REF] Campana | A Brody theorem for orbifolds[END_REF]. Here we study hyperbolicity of higher dimensional orbifolds following the philosophy of Campana that one should study these objects generalizing the tools we use for manifolds without orbifold structures or logarithmic manifolds. The paper is organized as follows.

In section 2, we recall the basic facts on geometric orbifolds following [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF] and [START_REF] Campana | Orbifoldes spéciales et classification biméromorphe des variétés kählériennes compactes[END_REF].

In section 3, we recall the definitions of classical and non-classical Kobayashi hyperbolicity for orbifolds. Then we illustrate these notions in the case of orbifold curves. We compute explicitly the orbifold Kobyashi pseudo-distance for

(X/∆) = (D/(1 - 1 n ){0}), 0 < n ∈ N ∪ {∞},
where D is the unit disk. This answers a question of Campana and Winkelmann (see [START_REF] Campana | A Brody theorem for orbifolds[END_REF]) and enables us to recover as a corollary the equivalence of classical and non-classical hyperbolicity for orbifold curves. Finally, we show that this is not the case in higher dimension giving an example of an orbifold surface which is classically hyperbolic but not hyperbolic.

In section 4, we define and study algebraic hyperbolicity in the orbifold setting. We prove that (P n /∆) is algebraically hyperbolic where ∆ = 1≤i≤q (1 -1 m i )H i for H 1 , . . . , H q very generic hypersurfaces and deg ∆ > 2n.

In section 5, we discuss an orbifold Kobayashi's conjecture motivated by the results of the preceding section.

In section 6, we define and use orbifold jet differentials. The main applications are algebraic degeneracy statements for entire curves with ramification in situations where no Second Main Theorem is known from value distribution theory. Namely, we prove Theorem 1.1. Let (X/∆) be a smooth projective orbifold surface of general type where ∆ has the following decomposition into irreducible components, ∆ = n i=1 (1 -1 m i )C i . Suppose that g i := g(C i ) ≥ 2, h 0 (C i , O C i (C i )) = 0 for all i and that the logarithmic Chern classes of (X, ⌈∆⌉) verify

(1.1) c 1 2 -c 2 - n i=1 1 m i (2g i -2 + j =i C i C j ) > 0,
then there exists a proper subvariety Y X such that every entire curve f : C → X which is an orbifold morphism, i.e ramified over C i with multiplicity at least m i , verifies f (C) ⊂ Y . [START_REF] Mcquillan | Diophantine approximations and foliations[END_REF] (see also [START_REF] Mcquillan | Rational criteria for hyperbolicity[END_REF] and [START_REF] Goul | Logarithmic jets and hyperbolicity[END_REF] for the logarithmic case) on the Green-Griffiths-Lang conjecture which can be generalized to the orbifold setting Conjecture 1.2. Let (X/∆) be a smooth projective orbifold of general type. Then there exists a proper subvariety Y X such that every orbifold morphism f : C → (X/∆) verifies f (C) ⊂ Y .

This result can be seen as an orbifold version of results of McQuillan

The methods used also enable us to generalize a result of Campana and Paun on weaklyspecial manifolds [START_REF] Campana | Variétés faiblement spéciales à courbes entières dégénérees[END_REF].

In section 7, we study measure hyperbolicity of orbifolds.

Acknowledgements. We would like to thank Frédéric Campana and Michael McQuillan for their suggestions and their interests in this work.

Geometric orbifolds, special varieties and hyperbolicity

2.1. Geometric orbifolds. Let X be a complex manifold. Following F. Campana (see [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF], [START_REF] Campana | Orbifoldes spéciales et classification biméromorphe des variétés kählériennes compactes[END_REF]) we recall the basic facts on orbifolds and why these structures should be useful to describe the hyperbolic aspects of projective manifolds. Definition 2.1. A (geometric) orbifold (X/∆) is a pair consisting of X with a Q-divisor ∆ on X for which the decomposition in reduced irreducible divisors is of the form

∆ = i 1 - 1 m i Z i ,
where 0 < m i ∈ N ∪ {∞}.

These structures appear naturally in the case of fibrations.

Definition 2.2. Let f : X → Y be a fibration between complex compact manifolds. For every irreducible divisor D ⊂ Y :

f * (D) = j m j D j + R
where R denotes the f -exceptional part. Then the multiplicity of D is defined by

m(f, D) = inf j {m j }.
Definition 2.3. The orbifold base (Y /∆(f )) is then defined by

∆(f ) = D⊂Y 1 - 1 m(f, D) D.
Remark 2.4. This can also be defined for meromorphic fibrations, resolving indeterminacies. As we will work up to bimeromorphic equivalence, we will not specify when a fibration is meromorphic.

Definition 2.5.

(1) The canonical line bundle of (X/∆) is defined by

K (X/∆) := K X + ∆. (2) The Kodaira dimension of (X/∆) is κ(X/∆) := κ(K (X/∆) ) (3) Let f : X → Y be a fibration between complex compact manifolds. Then its Kodaira dimension is κ(f ) = inf f ′ ∼f {κ(Y ′ /∆(f ′ ))},
where f ′ ∼ f iff there exists a commutative diagramm

X ′ w / / f ′ X f Y ′ v / / Y
with w and v bimeromorphic. Now, one can introduce the special geometry.

2.2. Special varieties and hyperbolicity. Let X, Y be projective manifolds.

Definition 2.6.

(1) A fibration f :

X → Y is of general type if κ(f ) = dim Y > 0. (2) X is special if there is no fibration f : X → Y of general type. (3) f : X → Y is special if its general fiber is special.
Example 2.7. Rationnally connected manifolds and manifolds with Kodaira dimension 0 are two important examples of special varieties (see [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF]).

The following theorem makes clear why orbifold structures are useful for hyperbolicity.

Theorem 2.8 (Campana [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF]). Let X be a projective manifold. Then there exists a unique (up to equivalence) fibration

c X : X → C (X) called the core of X such that (1) c X is special. (2) c X is of general type or constant (iff X is special).
In other words, one can decompose a projective manifold into its "hyperbolic" part, the orbifold base of the core, and its "non-hyperbolic" part. Indeed, special varieties should be characterized by the following conjecture: Conjecture 2.9 (Campana [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF]). X is special iff d X ≡ 0, where d X denotes the Kobayashi pseudo-distance.

Remark 2.10. It is only known to be true for curves, projective surfaces not of general type, rationally connected manifolds.

As a consequence, one should have the following description of the Kobayashi pseudodistance:

Conjecture 2.11 (Campana [5]). d X = c * X δ X where δ X is a pseudo-distance on C (X). We will give some precisions to what that pseudo-distance δ X should be in the next section.

Kobayashi hyperbolicity of orbifolds

3.1. Orbifold Kobayashi pseudo-distance. First, let us recall following [START_REF] Campana | A Brody theorem for orbifolds[END_REF] the definition of classical and non-classical orbifold morphisms from the unit disk to an orbifold. Definition 3.1. Let (X/∆) be an orbifold with

∆ = i (1 -1 m i )Z i , D = {z ∈ C/|z| < 1}
the unit disk and h a holomorphic map from D to X.

(1) h is a (non-classical) orbifold morphism from D to (X/∆) if h(D) supp(∆) and mult x (h * Z i ) m i for all i and x ∈ D with h

(x) ∈ supp(Z i ). If m i = ∞ we require h(D) ∩ Z i = ∅. (2) h is a classical orbifold morphism from D to (X/∆) if h(D) supp(∆) and mult x (h * Z i ) is a multiple of m i for all i and x ∈ D with h(x) ∈ supp(Z i ). If m i = ∞ we require h(D) ∩ Z i = ∅.
Then we can define classical and non-classical orbifold morphisms between orbifolds.

Definition 3.2. Let (X/∆) and (X ′ /∆ ′ ) be orbifolds and f : X → X ′ a holomorphic map.

f is an orbifold morphism (resp. classical orbifold morphism) from

(X/∆) to (X ′ /∆ ′ ) if (1) f (X) supp(∆ ′ ). (2) f • g : D → (X ′ /∆ ′ ) is an orbifold morphism (resp. classical orbifold morphism) for all orbifold morphism (resp. classical orbifold morphism) g : D → (X/∆) such that g(D) f -1 (supp(∆ ′ )).
Let (X/∆) be an orbifold with ∆ = i a i Z i and ∆ 1 the union of all Z i with a i = 1.

Definition 3.3.

(1) The orbifold Kobayashi pseudo-distance d (X/∆) on (X/∆) is the largest pseudo-distance on X \ ∆ 1 such that g * d (X/∆) d P for every orbifold morphism g : D → (X/∆), where d P denotes the Poincaré distance on D.

(2) The classical orbifold Kobayashi pseudo-distance d * (X/∆) on (X/∆) is the largest pseudodistance on X \ ∆ 1 such that g * d (X/∆) d P for every classical orbifold morphism g : D → (X/∆), where d P denotes the Poincaré distance on D.

As an immediate consequence of the definition we have Proposition 3.4. Let f : (X/∆) → (X ′ /∆ ′ ) be an orbifold morphism (resp. classical orbifold morphism). Then

f * d (X ′ /∆ ′ ) ≤ d (X/∆) (resp. f * d * (X ′ /∆ ′ ) ≤ d * (X/∆) ). Definition 3.5. An orbifold (X/∆) is hyperbolic (resp. classically hyperbolic) if d (X/∆) (resp. d * (X/∆) ) is a distance on X \ ∆ 1 .
A corollary of proposition 3.4 is Corollary 3.6. Let (X/∆) be a hyperbolic (resp. classically hyperbolic) orbifold. Then every orbifold morphism (resp. classical orbifold morphism) f : C → (X/∆) is constant.

In the compact and logarithmic setting, Brody-type theorem turn out to be very useful to characterize hyperbolicity as converse of corollary 3.6. This is done in [START_REF] Campana | A Brody theorem for orbifolds[END_REF] with the following theorem Theorem 3.7. Let (X/∆) be a non hyperbolic (resp. non classically hyperbolic) compact orbifold. Then there exists either a non constant orbifold morphism (resp. classical orbifold morphism) f : C → (X/∆) or a non-constant holomorphic map f : C → supp(∆).

Then we can refine conjecture 2.11 Conjecture 3.8 (Campana [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF]). d X = c * X δ X where δ X = d (C (X)/∆(c X )) . 3.2. Hyperbolicity of orbifold curves. Let us illustrate orbifold hyperbolicity in dimension 1. This has been studied in [START_REF] Campana | A Brody theorem for orbifolds[END_REF]. We give here a different approach. The following result gives a concrete example where one can compute the (non-classical) orbifold Kobayashi pseudo-distance, answering a question of [START_REF] Campana | A Brody theorem for orbifolds[END_REF].

Theorem 3.9. Let (X/∆) = (D/(1 -1 n ){0}), 0 < n ∈ N ∪ {∞}. Then d (X/∆) = d * (X/∆)
obtained as the pseudo-distance d induced by

ω = 4dzdz n 2 |z| 2-2 n (1 -|z| 2 n ) 2 . Remark 3.10. For n = ∞ we obtain ω = 4dzdz |z| 2 (log |z| 2 ) 2
, which is known to induce the Kobayashi distance on the punctured disc.

To prove this we shall need the Ahlfors-Schwarz lemma (see e.g [START_REF] Demailly | Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials[END_REF]) Lemma 3.11 (Ahlfors-Schwarz lemma). Let γ(t) = γ 0 (t)dtdt be a singular hermitian metric on D where log γ 0 is a subharmonic function such that i∂∂ log γ 0 (t) ≥ Aiγ 0 (t)dt ∧ dt in the sense of currents, for some positive constant A. Then

γ(t) ≤ 2 A dzdz (1 -|z| 2 ) 2 = 1 2A h P
where h P denotes the Poincaré metric.

Now we prove the claim of the previous theorem 3.9

Proof. As z → z n gives an unfolding D → (X/∆) (see [START_REF] Campana | A Brody theorem for orbifolds[END_REF]), the classical Kobayashi pseudodistance is the push-forward of the Poincaré metric on D which is

4dzdz n 2 |z| 2-2 n (1-|z| 2 n ) 2 . Therefore we have d (X/∆) ≤ d.
Now, let f : D → (X/∆) be an orbifold morphism. We shall apply the Ahlfors-Schwarz lemma to f * ω. We have

f * ω = γ 0 (t)dtdt := 4|f ′ (t)| 2 n 2 |f (t)| 2-2 n (1 -|f (t)| 2 n ) 2 dtdt.
We remark that

f ′ (t) f (t) 1-1 n n
is holomorphic. Indeed take t 0 such that f (t 0 ) = 0 and take local coordinate t centered at t 0 . Then f (t) = t m g(t) with m ≥ n and g(0) = 0. Therefore f ′ (t) = t m-1 h(t) and

f ′ (t) f (t) 1-1 n n = t n(m-1) h n (t) t m(n-1) g n-1 (t) = t m-n h n (t) g n-1 (t) .
So f * ω is a singular hermitian metric with log γ 0 subharmonic. Outside f -1 (0) we have

i∂∂ log γ 0 (t) = f * (-Ricci(ω)) = f * ( 1 2 ω).
Therefore by Ahlfors-Schwarz lemma

f * ω ≤ h P and finally d (X/∆) ≥ d.
Let us recall that the uniformization of orbifold curves is well known.

Theorem 3.12 (see [START_REF] Farkas | Riemann Surfaces[END_REF], p.234). Let (M/∆) be a compact orbifold curve with

∆ := i (1 - 1 ν i )x i .
If M = P 1 we exclude two cases: (i) {x 1 , x 2 , . . . } consists of one point and ν 1 = ∞.

(ii) {x 1 , x 2 , ...} consists of two points and ν 1 = ν 2 .

Let M ′ = M \ ∆ 1 .
Then there exists a simply connected Riemann surface M , a Kleinian group G of self mappings of M such that

(a) M /G ∼ = M ′ (b) the natural projection π : M → M ′ is unramified except over the points x k with ν k < ∞
where the branch numbers verify b

π ( x) = ν k -1 for all x ∈ π -1 ({x k }). Moreover, (1) M ∼ = P 1 iff deg(K (M/∆) ) < 0 (2) M ∼ = C iff deg(K (M/∆) ) = 0 (3) M ∼ = D iff deg(K (M/∆) ) > 0.
As a corollary we obtain Corollary 3.13. Let (X/∆) be a classically hyperbolic compact orbifold curve. Then the classical and non-classical Kobayashi pseudo-distances coincide and therefore (X/∆) is hyperbolic.

Proof. By theorem 3.12, (X/∆) is uniformized by a Galois covering D → (X/∆) which ramifies exactly on ∆. So the classical Kobayashi pseudo-distance is induced by ω the pushforward of the Poncaré metric. Let f : D → (X/∆) be an orbifold morphism. As the situation is locally the same as in theorem 3.9, we obtain that f * ω ≤ h P and therefore d (X/∆) ≥ d * (X/∆) . Let us underline another property of hyperbolic orbifold curves which will be useful in the next section. In the case where (M/∆) is uniformized by the unit disk D, we can project the Poincaré metric 4|dz| 2

(1-|z| 2 ) 2 on M ′ = M \ ∆ 1 which gives a singular metric h (M/∆) inducing the Kobayashi pseudodistance. Despite the singularities we have Theorem 3.14 ([14], p.233). The area of M ′ = M \ ∆ 1 with respect to the metric h (M/∆) is finite and

Area(M ′ ) = 2π deg(K (M/∆) ).
We have obtained a different proof of the result of [START_REF] Campana | A Brody theorem for orbifolds[END_REF] where the authors prove the equivalence of classical and non-classical hyperbolicity for orbifolds of dimension 1 using the orbifold Brody's lemma and Nevanlinna theory:

Theorem 3.15 ([8]). Let (X/∆) be a compact orbifold of dimension 1. Then the following properties are equivalent (1) (X/∆) is hyperbolic. (2) (X/∆) is classically hyperbolic. (3) deg(K (X/∆) ) := deg(K X + ∆) > 0.
As a particular case, we recover the following classical result Theorem 3.16 (Nevanlinna [22]). Let f :

C → (P 1 / i (1 -1 m i )a i ) be a non-constant orbifold morphism. Then i 1 - 1 m i ≤ 2.
This theorem can be obtained thanks to the Second Main Theorem on P 1 . In section 6 of this paper, we will obtain similar results in higher dimension in cases where no Second Main Theorem is known.

3.3. Hyperbolicity of higher dimensional orbifolds. Now we investigate the higher dimensional case. In particular, is it still true that classical hyperbolicity coincides with (nonclassical) hyperbolicity ? The following example found in discussion with F. Campana answers it in the negative: Theorem 3.17. There exists an orbifold surface (S/∆) which is classically hyperbolic but not hyperbolic.

Proof. Let X be a hyperbolic projective complex surface, S its blow-up at one point p and E ⊂ S the exceptional divisor. We take C 1 , C 2 , C 3 three curves tangent to E at three distinct points p 1 , p 2 , p 3 . This can be done taking the strict transforms of curves in X with a cusp at

p of local equation (y + tx) 2 -x 3 = 0 for t = 0, 1, -1. Define ∆ = (1 - 1 3 )C 1 + (1 - 1 3 )C 2 + (1 - 1 5 )C 3 .
Let's prove that (S/∆) is classically hyperbolic but not hyperbolic.

(E/∆ ′ ), with

∆ ′ = (1 - 1 2 )p 1 + (1 - 1 2 )p 2 + (1 - 1 3 )p 3 ,
is not hyperbolic by theorem 3.15 since

-2 + (1 - 1 2 ) + (1 - 1 2 ) + (1 - 1 3 ) = - 1 3 < 0. A non-constant orbifold morphism f : C → (E/∆ ′ ) gives a non-constant orbifold morphism f : C → (S/∆) since the multiplicities verify respectively 2 × 2 ≥ 3, 2 × 2 ≥ 3, 2 × 3 ≥ 5.
Therefore (S/∆) is not hyperbolic. Suppose (S/∆) is not classically hyperbolic. Then by theorem 3.7 there is either a non constant classical orbifold morphism f : C → (S/∆) or a non-constant holomorphic map

f : C → supp(∆). But since X is hyperbolic we must have f (C) ⊂ E. Therefore we obtain a non-constant classical orbifold morphism f : C → (E/∆ ′ ) with ∆ ′ = (1 - 1 m 1 )p 1 + (1 - 1 m 2 )p 2 + (1 - 1 m 3 )p 3
a divisor on E such that the multiplicities verify, by the definition of a classical morphism, that 2m 1 and 2m 2 are multiples of 3, 2m 3 is a multiple of 5. So, m 1 and m 2 are multiples of 3, m 3 is a multiple of 5 and we obtain

-2 + (1 - 1 m 1 ) + (1 - 1 m 2 ) + (1 - 1 m 3 ) ≥ -2 + (1 - 1 3 ) + (1 - 1 3 ) + (1 - 1 5 ) = 2 15 > 0.
This implies that (E/∆ ′ ) is hyperbolic and f : C → (E/∆ ′ ) should be constant, which is a contradiction. So, (S/∆) is classically hyperbolic. Now, we would like to define hyperbolic imbedding for orbifolds.

Definition 3.18. We say that (X/∆) is hyperbolically (resp. classically hyperbolically) imbedded in X if for any two sequences of points

(p n ), (q n ) ⊂ X \ ∆ 1 converging to two points p, q ∈ X d (X/∆) (p n , q n ) -→ n→+∞ 0 ⇒ p = q (resp. d * (X/∆) (p n , q n ) -→ n→+∞ 0 ⇒ p = q).
This can be characterized by Proposition 3.19. Let ω be a hermitian metric on X compact. Then (X/∆) is hyperbolically (resp. classically hyperbolically) imbedded in X iff there is a positive constant c such that

f * ω ≤ c h P
for all orbifold (resp. classical orbifold) morphism f : D → (X/∆), where h P denotes the Poincaré metric.

Proof. Let us prove it in the non-classical case. If such a constant c does not exist then there exists a sequence {f n } of orbifold morphism from D to (X/∆) such that

f ′ n (0) ω > n.
Since X is compact we may assume that {f n (0)} converges to a point p ∈ X. Let U be a complete hyperbolic neighborhood of p in X. Assume that there exists a positive number r < 1 such that f n (∆ r ) ⊂ U for n ≥ n 0 . Then {f n|∆r : ∆ r → U} would be relatively compact and woud have a subsequence which converges to a holomorphic function from ∆ r to U, which contradicts f ′ n (0) ω > n. This means that for each positive integer k, there exist a point z k ∈ ∆ and an integer n k such that

|z k | < 1 k and f n k (z k ) / ∈ U. Let p k = f n k (0) and q k = f n k (z k ).
By taking a subsequence we may assume that {q k } converges to a point q not in U. Therefore we have

d (X/∆) (p k , q k ) ≤ d P (0, z k ) → 0 for k → ∞,
and this contradicts the fact that (X/∆) is hyperbolically imbedded in X. Conversely, let δ be the distance function on X induced by 1 c ω. Then δ ≤ d (X/∆) . which implies obviously that (X/∆) is hyperbolically imbedded in X.

Algebraic hyperbolicity of orbifolds

4.1. The compact and the logarithmic setting. In [START_REF] Demailly | Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials[END_REF], J.-P. Demailly introduced the concept of algebraic hyperbolicity for compact complex manifolds Definition 4.1. Let X be a compact complex manifold and ω a hermitian metric on X. X is algebraically hyperbolic if there exists ε > 0 such that every compact irreducible curve

C ⊂ X satisfies 2g( C) -2 ≥ ε deg ω (C)
where g( C) is the genus of the normalization C of C and deg ω (C) = C ω.

Later, algebraic hyperbolicity was defined in the logarithmic setting by X. Chen in [START_REF] Chen | On Algebraic Hyperbolicity of Log Varieties[END_REF] as follows 4.2. The orbifold case. We give the following definition which contains the two previous ones Definition 4.4. Let (X/∆) be a compact orbifold, ω a hermitian metric on X. (X/∆) is algebraically (resp. classically algebraically) hyperbolic if there exists ε > 0 such that for any non-constant orbifold (resp. classical orbifold) morphism f : (C/∆ ′ ) → (X/∆), where (C/∆ ′ ) is an orbifold curve,

deg(K (C/∆ ′ ) ) := deg(K C + ∆ ′ ) ≥ ε C f * ω.
The interest of such a notion is to provide a necessary condition for analytic hyperbolicity which is more tractable since it involves only algebraic curves instead of transcendental ones. So the first thing to do is to prove that analytic hyperbolicity implies algebraic hyperbolicity. In the compact setting this was done in [START_REF] Demailly | Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials[END_REF] and for the logarithmic case in [START_REF] Pacienza | On the logarithmic Kobayashi conjecture[END_REF]. Here we will prove it in the more general setting of orbifolds. Theorem 4.5. Let (X/∆) be an hyperbolic (resp. classically hyperbolic) compact orbifold hyperbolically imbedded in X. Then (X/∆) is algebraically (resp. classically algebraically) hyperbolic.

Proof. Let f : (C/∆ ′ ) → (X/∆) be a non-constant orbifold morphism where (C/∆ ′ ) is an orbifold curve. Since (X/∆) is hyperbolic, (C/∆ ′ ) is hyperbolic. Therefore from theorem 3.12 we obtain that there is an orbifold morphism π : D → (C/∆ ′ ). As explained above this gives us a singular metric h (C/∆ ′ ) on C \ ∆ ′ 1 as the push-forward of the Poincaré metric by π. Moreover, since (X/∆) is hyperbolically imbedded in X, we have (f • π) * ω ≤ c h P with c a positive constant. So, f * ω ≤ c h (C/∆ ′ ) . Integrating and using theorem 3.14, we obtain

1 2πc C f * ω ≤ deg(K (C/∆ ′ ) ).
The following result generalizes a result of J.-P. Demailly [START_REF] Demailly | Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials[END_REF] stating that any morphism f : A → X from an abelian variety to a compact algebraically hyperbolic manifold is constant.

Theorem 4.6. Let (X/∆) be an algebraically (resp. classically algebraically) hyperbolic compact orbifold and (A/S) the logarithmic manifold associated to a semi-abelian variety A. Then any orbifold (resp. classically orbifold) morphism f : (A/S) → (X/∆) is constant.

Proof. Let C ⊂ A be a smooth curve with smooth compactification C ⊂ A. Let m be a postive integer and consider the morphism m A : A → A which is the multiplication by m in A and extends to a morphism m A : A → A. We have the composition

f m : C ⊂ A m A -→ A f -→ X.
Therefore we have an orbifold morphism

f m : (C/∆ ′ ) → (X/∆)
where ∆ ′ is the divisor induced on C by S. Let L be an ample line bundle on X. We have

deg(K C + ∆ ′ ) ≥ εC.f * m L = εm 2 C.f * L.
As m can be as large as we want, this shows that C.f * L = 0, so f is constant on all curves in A and therefore constant on A.

An interesting example of algebraically hyperbolic orbifold is given by the following theorem which generalizes results of [START_REF] Chen | On Algebraic Hyperbolicity of Log Varieties[END_REF] and [START_REF] Pacienza | On the logarithmic Kobayashi conjecture[END_REF] Theorem 4.7. Let H 1 , . . . , H q be very generic hypersurfaces of degrees d i in P n . Let

∆ = 1≤i≤q (1 - 1 m i )H i .
Then for any non-constant orbifold morphism f :

(C/∆ ′ ) → (X/∆), where (C/∆ ′ ) is an orbifold curve, deg(K (C/∆ ′ ) ) ≥ (deg(∆) -2n) deg(C). In particular if deg(∆) > 2n then (P n /∆) is algebraically hyperbolic. Proof. Let D = q i=1 H i , C ⊂ P n be a reduced irreducible curve not contained in D and f : C → C its normalization. Then it is sufficient to prove that deg(K ( C/ ∆) ) ≥ (deg(∆) -2n) deg(C)
for any orbifold ( C/ ∆) such that f : ( C/ ∆) → (P n /∆) is an orbifold morphism. First let us recall that in the logarithmic setting (i.e m i = ∞ for all i) the result is known (see [START_REF] Chen | On Algebraic Hyperbolicity of Log Varieties[END_REF] and [START_REF] Pacienza | On the logarithmic Kobayashi conjecture[END_REF]) i.e where d = q i=1 d i . There is a minimal orbifold structure on C which makes f an orbifold morphism and it is of course sufficient to prove the result for this orbifold. Let

f * (H j ) = i(C,D) i=1 t i,j p i , f * (D) = i(C,D) i=1 t i p i ,
where the p i are the distinct points of f -1 (D). Then if ∆ = i(C,D) i=1 m ′ i p i , the conditions for f to be an orbifold morphism are

m ′ i t i ≥ m j for all j ∈ ϕ(i) = {1 ≤ k ≤ i(C, D)/f (p i ) ∈ H k }.
Therefore the minimal orbifold structure is given by

m i = sup j∈ϕ(i) m j t i
where ⌈k⌉ denotes the round up of k. So we have to prove

2g( C) -2 + i(C,D) i=1 1 - 1 m i ≥ (deg(∆) -2n) deg(C).
We have

i(C,D) i=1 1 - 1 m i ≥ i(C,D) i=1 1 - t i sup j∈ϕ(i) m j ≥ i(C, D) - i(C,D) i=1 q j=1 t i,j m j . Moreover i(C,D) i=1 t i,j = deg(f * H j ) = C.H j = deg(C)d j . Therefore i(C,D) i=1 q j=1 t i,j m j = deg(C) q j=1 d j m j .
From this inequality and 4.1 we obtain

2g( C) -2 + i(C,D) i=1 1 - 1 m i ≥ (d -2n) deg(C) -deg(C) q j=1 d j m j .
And finally

2g( C) -2 + i(C,D) i=1 1 - 1 m i ≥ (deg(∆) -2n) deg(C).
This example is a motivation for the conjecture introduced in the next section. As a corollary we obtain Corollary 4.8. Let H 1 , . . . , H q be very generic hypersurfaces of degrees d i in P n . Let

∆ = 1≤i≤q (1 - 1 m i )H i such that deg(∆) > 2n.
Then every orbifold morphism f : C → (P n /∆) whose image is contained in an algebraic curve is constant.

Proof. Let f (C) ⊂ C. Then f induces an orbifold morphism f : C → (C ′ /∆ ′ )
where C ′ is the normalization of C and ∆ ′ is the minimal orbifold structure making (C ′ /∆ ′ ) → (P n /∆) an orbifold morphism. But by the previous theorem we have in particular that (C/∆ ′ ) is hyperbolic. This implies that f is constant.

An orbifold Kobayashi's conjecture

It is well known (see [START_REF] Kobayashi | Hyperbolic complex spaces[END_REF]) that the complement of 2n + 1 or more hyperplanes in general position in P n is hyperbolic. In the orbifold setting we have Theorem 5.1. Let H 1 , H 2 , . . . , H q be q hyperplanes in general position in P n with q > 2n.

Let ∆ = 1≤i≤q (1 -1 m i )H i with deg(∆) > q - q n + 1 + 1 n .
Then (P n /∆) is hyperbolic and hyperbolically imbedded in P n .

We will prove this result using Nevanlinna theory so let us recall the usual notations. Let E = ∞ i=1 ν i z i be a divisor on C with distinct z i ∈ C. Then we define the counting functions of E truncated to l ≤ ∞ by

n l (t, E) = {|z i |<t} min{ν i , l} (5.1) N l (r, E) = r 1 n l (t, E) t dt (5.2)
If D is a divisor on a complex space X and f : C → X is a holomorphic map then

N l f (r, D) = N l (r, f * D). We denote N f (r, D) := N ∞ f (r, D).
If ω is a (1, 1)-form on X then the order function with respect to ω is defined by

T f (r, ω) = r 1 |z|<t f * ω dt t .
The defect is defined by

δ l (f, D) = lim inf r→∞ 1 - N l f (r, D) T f (r, c 1 (D))
.

To state the result we need, let us recall the notion of hyperplanes in subgeneral position. Let N ≥ n and q ≥ N + 1. We consider q hyperplanes H 1 , H 2 , . . . , H q in P n , which are given by H j :< Z, A j >= 0 for non-zero vectors A j in C n+1 . Then we say that H 1 , H 2 , . . . , H q are in N-subgeneral position if for every 1

≤ i 0 ≤ • • • ≤ i N ≤ q span(A i 0 , . . . , A i N ) = C n+1 .
We have the following generalized defect relation of Cartan due to Nochka [START_REF] Nochka | On the theory of meromorphic functions[END_REF]:

Theorem 5.2. Let H 1 , H 2 , . . . , H q be q hyperplanes in N-subgeneral position in P n . Then for any holomorphic map f : C → P n that is non-linearly degenerate, we have

q i=1 δ n (f, H i ) ≤ 2N -n + 1.
As a corollary we obtain Theorem 5.3. Let H 1 , H 2 , . . . , H q be q hyperplanes in general position in P n with q > 2n.

Let ∆ = 1≤i≤q (1 -1 m i )H i with deg(∆) > q - q n + 1 + 1 n .
Then every orbifold morphism f : C → (P n /∆) is constant.

Proof. Suppose P l ⊂ P n contains f (C). The intersections of P l with the H i are in n-subgeneral position in P l . By the First Main Theorem of Nevanlinna theory we have

T f (r, c 1 (H i )) ≥ N f (r, H i ) + C
where C is a constant. Since f * H i has multiplicity at least m i at every point of

f -1 H i we have N f (r, H i ) ≥ m i l N l f (r, H i ). Therefore δ l (f, H i ) ≥ 1 - l m i . Therefore deg(∆) -(q - q n + 1 + 1 n ) ≤ q -1 n - q -k -1 n -k = k(n + 1 -q) n(n -k) < 0.
So we obtain a contradiction.

These results and theorem 4.7 suggest the following generalization of a conjecture of S. Kobayashi (see [START_REF] Kobayashi | Hyperbolic complex spaces[END_REF]): Conjecture 5.4. Let H 0 , H 1 , . . . , H q be generic hypersurfaces in P n . Let

∆ = 0≤i≤q (1 - 1 m i )H i with deg(∆) > 2n.
Then (P n /∆) is hyperbolic and hyperbolically imbedded in P n .

We will prove some more results towards this conjecture in the next section.

6. Orbifold jet differentials and applications 6.1. Symmetric differentials. Let (X/∆) be a smooth orbifold i.e ⌈∆⌉ := supp(∆) is a normal crossing divisor. Let (x 1 , . . . , x n ) be local coordinates such that ∆ has equation

x (1-1 m 1 ) 1 . . . x (1-1 mn ) n = 0.
Following [START_REF] Campana | Orbifoldes spéciales et classification biméromorphe des variétés kählériennes compactes[END_REF] we can define sheaves of differential forms on orbifolds Definition 6.1. For N a positive integer, S N Ω (X/∆) is the locally free subsheaf of S N Ω X (log⌈∆⌉) generated by the elements

x ⌈ α 1 m 1 ⌉ 1 . . . x ⌈ αn mn ⌉ n dx 1 x 1 α 1 . . . dx n
x n αn such that α i = N, where ⌈k⌉ denotes the round up of k.

As an immediate consequence of the definition we have Proposition 6.2. [START_REF] Campana | Orbifoldes spéciales et classification biméromorphe des variétés kählériennes compactes[END_REF] Let (X/∆) and (Y /∆ ′ ) be smooth orbifolds and f : (X/∆) → (Y /∆ ′ ) an orbifold morphism. Then

f * (S N Ω (Y /∆ ′ ) ) ⊂ S N Ω (X/∆) .
6.2. Applications to hyperbolicity. It is well known in the compact and logarithmic cases that the existence of global symmetric differential forms vanishing on an ample divisor provide differential equations for entire curves. This can be generalized to the orbifold case as shown in [START_REF] Campana | Variétés faiblement spéciales à courbes entières dégénérees[END_REF] Theorem 6.3. (Campana-Paun) Let (X/∆) be a smooth compact orbifold, A an ample line bundle on X and ω ∈ H 0 (X, S N Ω (X/∆) ⊗ A -1 ). Then for any orbifold morphism f : C → (X/∆) ω(f ′ ) ≡ 0.

Here we would like to illustrate these ideas initiated in [START_REF] Campana | Variétés faiblement spéciales à courbes entières dégénérees[END_REF]. We provide some results towards conjecture 5.4 which generalize [START_REF] Goul | Logarithmic jets and hyperbolicity[END_REF] where the logarithmic case was studied. Theorem 6.4. Let (X/∆) be a smooth projective orbifold surface of general type, where ∆ = n i=1 (1 -1 m i )C i is the decomposition into irreducible components, and A an ample line bundle on X. Suppose that g i := g(C i ) ≥ 2, h 0 (C i , O C i (C i )) = 0 for all i and that the logarithmic Chern classes of (X, ⌈∆⌉) verify

(6.1) c 1 2 -c 2 - n i=1 1 m i (2g i -2 + j =i C i C j ) > 0 then H 0 (X, S N Ω (X/∆) ⊗ A -1 ) = 0 for N large enough. Proof. Let F := S N Ω X (log⌈∆⌉)/S N Ω (X/∆) be the quotient sheaf. F is supported on C = C i and h 0 (X, S N Ω (X/∆) ) ≥ h 0 (X, S N Ω X (log⌈∆⌉)) -h 0 (C, F ) ≥ h 0 (X, S N Ω X (log⌈∆⌉)) - n i=1 h 0 (C i , F |C i ).
F |C i has a natural filtration

F N ⊂ F N -1 ⊂ • • • ⊂ F 1 ⊂ F 0 = F |C 1 such that F j /F j+1 = S N -j Ω (C i /∆ i ) ⊗ G j where ∆ i := j =i (1 -1 m j )O C i (C j )
is the divisor induced by ∆ on C i and G j is a locally free sheaf of rank r j := ⌈ j m i ⌉ admitting a filtration

H 1 ⊂ H 1 ⊂ • • • ⊂ H r j = G j where H i /H i-1 = [N * C i ] ⊗i with N C i denoting the normal bundle of C i . We have S N -j Ω (C i /∆ i ) = ⌊(N -j)(K C i + ∆ i )⌋. Since [N C i ] = O C i (C i ) and h 0 (C i , O C i (C i )) = 0 we obtain h 0 (C i , F |C i ) ≤ N j=0 h 0 (C i , F j /F j+1 ) ≤ h 0 (C i , N(K C i + j =i O C i (C j )) + N j=1 r j h 0 (C i , (N -j)(K C i + j =i O C i (C j )).
Since g i ≥ 2 we obtain for Nj ≥ 1

h 0 (C i , (N -j)(K C i + j =i O C i (C j )) ≤ (N -j)(2g i -2 + j =i C i C j ) -g i + 1.
Now we suppose N = qm i is a multiple of m i . We write j = (h -1)m i + k with 1 ≤ k ≤ m i so r j := h. Therefore we obtain

h 0 (C i , F |C i ) ≤ m i q(2g i -2 + j =i C i C j ) -g i + 1 + q h=1 m i (hm i (q -h + 1)(2g i -2 + j =i C i C j ) -g i + 1) ≤ 1 6 m 2 i q 3 (2g i -2 + j =i C i C j ) + O(q 2 ).
Therefore we obtain if

N = qm 1 . . . m n n i=1 h 0 (C i , F |C i ) ≤ 1 6 (m 1 . . . m n q) 3 n i=1 1 m i (2g i -2 + j =i C i C j ) + O(q 2 ).
On the other hand

χ(X, S N Ω X (log⌈∆⌉) = (m 1 . . . m n q) 3 6 (c 1 2 -c 2 ) + O(q 2 ).
Using Bogomolov's vanishing theorem [START_REF] Bogomolov | Holomorphic tensors and vector bundles on projective varieties[END_REF] for the h 2 term we obtain

h 0 (X, S N Ω X (log⌈∆⌉)) ≥ (m 1 . . . m n q) 3 6 (c 1 2 -c 2 ) + O(q 2 ).
So finally we have

h 0 (X, S N Ω (X/∆) ) ≥ (m 1 . . . m n q) 3 6 c 1 2 -c 2 - n i=1 1 m i (2g i -2 + j =i C i C j ) + O(q 2 ).
As a first application, we can generalize a result due to Bogomolov [START_REF] Bogomolov | Families of curves on a surface of general type[END_REF] about the finiteness of rational and elliptic curves on surfaces of general type with c 2 1 > c 2 . Theorem 6.5. Let (X/∆) be a smooth compact orbifold surface of general type with the same hypotheses as in theorem 6.4. Then there are only finitely many special curves C ⊂ (X/∆) i.e images of non-constant orbifold morphism ν :

(C ′ /∆ ′ ) → (X/∆) where (C ′ /∆ ′ ) is an orbifold curve with deg(K (C ′ /∆ ′ ) ≤ 0.
Proof. Let Y = P(T X (-log⌈∆⌉)) be the projectivization of the logarithmic tangent bundle. From theorem 6.4 there is a global section ω ∈ H 0 (X, S N Ω (X/∆) ⊗ A -1 ) which can be seen as a holomorphic section of O Y (N) ⊗ π * A -1 , where π : Y → X denotes the canonical projection. Now, from theorem 6.3, the lifts of the special curves must lie in an irreducible component Z ⊂ Y of the zeros of ω. Let V ⊂ T Y (-log π * ⌈∆⌉) be the subbundle defined by

V x,[v] = {ξ ∈ T Y (-log π * ⌈∆⌉); (π) * ξ ∈ C.v}.
Then V defines on the desingularization Z of Z an algebraic foliation by curves, such that the tangent bundle to the leaves is given by T Z ∩ V . The lifts of the special curves are leaves of this foliation. Now, a theorem of Jouanolou [START_REF] Jouanolou | Hypersurfaces solutions d'une équation de Pfaff analytique[END_REF] implies that if there are an infinite number of such curves then there is a meromorphic fibration Z → S from Z to a curve such that the leaves correspond to the fibers of the fibration. Let ∆ ⊂ Z be the divisor above ∆. Then ( Z/ ∆) is of general type. But we cannot have a fibration ( Z/ ∆) → S with special generic fiber ( Z/ ∆) s and at the same time ( Z/ ∆) of general type (see corollary 7.14 of [START_REF] Campana | Orbifoldes spéciales et classification biméromorphe des variétés kählériennes compactes[END_REF]). Now, we turn to the transcendental case. We will use the following result which is a consequence of deep works of McQuillan on foliations of surfaces (see [START_REF] Mcquillan | Diophantine approximations and foliations[END_REF], [START_REF] Mcquillan | Bloch hyperbolicity[END_REF], [START_REF] Mcquillan | Rational criteria for hyperbolicity[END_REF] and also [START_REF] Goul | Logarithmic jets and hyperbolicity[END_REF] for a weaker version). For the convenience of the reader we will give a proof, refering to the above mentioned articles for details. Theorem 6.6. Let (X, D) be a smooth logarithmic projective surface of log general type and f : C → X a non algebraically degenerate entire curve. Let f [START_REF] Bogomolov | Families of curves on a surface of general type[END_REF] : C → P(T X (-log D)) denote the canonical lifting of f . Suppose

f [1] (C) is contained in a divisor in P(T X (-log D)). Then T f (r, c 1 (K X + D)) ≤ N 1 f (r, D) + ǫT f (r, c 1 (H))
|| ǫ for some ample line bundle H on X and the notation || ǫ meaning that the inequality holds for any ǫ > 0, for r outside a subset of finite measure depending on ǫ.

Proof. Let S ⊂ P(T X (-log D)) denote the surface which contains f (C) and π : S → X the canonical projection. As already explained in the proof of theorem 6.5, there is a canonical foliation F on S such that f [START_REF] Bogomolov | Families of curves on a surface of general type[END_REF] : C → P(T X (-log D)) is a leaf of F . After some blow ups we obtain a foliated smooth surface ( S, D, F ) → (S, π -1 (D), F ), i.e S is smooth, D is normal crossing and F has reduced singularities. Let D = C + B where C is the invariant part of D by F . We have an exact sequence 0 → N * (C) → T * S (log D) → K F (B).I Z → 0, where I Z is an ideal supported on the singularity set Z of F . Now, we apply the logarithmic tautological inequality of McQuillan (see [START_REF] Mcquillan | Noncommutative Mori theory[END_REF] and [START_REF] Vojta | On the ABC conjecture and diophantine approximation by rational points[END_REF]) which gives

T f [1] (r, c 1 (L)) ≤ N 1 f (r, D) + ǫT f (r, c 1 (H))|| ǫ ,
where L = O P(T S (-log D)) (1), f and f [START_REF] Bogomolov | Families of curves on a surface of general type[END_REF] are the lifts of f . Moreover, we have

L |Y = p * K F (B) ⊗ O(-E),
where L |Y denotes the restriction of L to the graph Y of the foliation, p : Y → S the projection and E is the total exceptional divisor. Therefore we obtain

T f (r, c 1 (K F + B)) ≤ N 1 f (r, D) + ǫT f (r, c 1 (H))|| ǫ .
Indeed, it is proved in [START_REF] Mcquillan | Diophantine approximations and foliations[END_REF] (see also [START_REF] Mcquillan | Bloch hyperbolicity[END_REF], [START_REF] Mcquillan | Rational criteria for hyperbolicity[END_REF], [START_REF] Brunella | Courbes entières et feuilletages holomorphes[END_REF] and [START_REF] Goul | Logarithmic jets and hyperbolicity[END_REF]), using sequence of blow ups on S,

that T f [1] (r, c 1 (E)) ≤ ǫT f (r, c 1 (H))|| ǫ .
It is also proved (see [START_REF] Mcquillan | Diophantine approximations and foliations[END_REF], [START_REF] Mcquillan | Bloch hyperbolicity[END_REF], [START_REF] Mcquillan | Rational criteria for hyperbolicity[END_REF], [START_REF] Brunella | Courbes entières et feuilletages holomorphes[END_REF] and [START_REF] Goul | Logarithmic jets and hyperbolicity[END_REF]) that

T f (r, c 1 (N * (C))) ≤ ǫT f (r, c 1 (H))|| ǫ .
Therefore we obtain

T f (r, c 1 (K S + D)) ≤ N 1 f (r, D) + ǫT f (r, c 1 (H))|| ǫ , and finally T f (r, c 1 (K X + D)) ≤ N 1 f (r, D) + ǫT f (r, c 1 (H))|| ǫ .
Now, we can prove Theorem 6.7. Let (X/∆) be a smooth compact orbifold surface of general type with the same hypotheses as in theorem 6.4. Then every orbifold morphism f : C → (X/∆) is algebraically degenerate.

Proof. Suppose f : C → (X/∆) is non algebraically degenerate. Let D := ⌈∆⌉. By the hypotheses, f [START_REF] Bogomolov | Families of curves on a surface of general type[END_REF] (C) is contained in a divisor in P(T X (-log D)). Then we can apply theorem 6.6 and we have

T f (r, c 1 (K X + D)) ≤ N 1 f (r, D) + ǫT f (r, c 1 (H))|| ǫ . Moreover T f (r, c 1 (K X + ∆)) = T f (r, c 1 (K X )) + n i=1 (1 - 1 m i )T f (r, c 1 (C i )).
We have

m i N 1 f (r, C i ) ≤ N f (r, C i ) and by the First Main Theorem N f (r, C i ) ≤ T f (r, c 1 (C i )) + O(1). Therefore T f (r, c 1 (C i )) -N 1 f (r, C i ) ≥ (1 - 1 m i )T f (r, c 1 (C i )) + O(1).
So we obtain

T f (r, c 1 (K X + ∆)) ≤ T f (r, c 1 (K X )) + n i=1 (T f (r, c 1 (C i )) -N 1 f (r, C i )) + O(1). And T f (r, c 1 (K X + ∆)) ≤ T f (r, c 1 (K X + D)) -N 1 f (r, D) + O(1), which gives T f (r, c 1 (K X + ∆)) ≤ ǫT f (r, c 1 (H))|| ǫ .
This is a contradiction since (X/∆) is of general type, and f is algebraically degenerate. Remark 6.8. These results generalize [START_REF] Goul | Logarithmic jets and hyperbolicity[END_REF] where all multiplicities are infinite.

As a consequence of theorems 6.5 and 6.7 we obtain the proof of Theorem 1.1. Let (X/∆) be a smooth compact orbifold surface of general type with the same hypotheses as in theorem 6.4. Then there exists a proper subvariety Y X such that every orbifold morphism f : C → (X/∆) verifies f (C) ⊂ Y .

Degeneracy of holomorphic curves with ramification.

As an application we obtain the following theorem Theorem 6.9.

Let C i , 1 ≤ i ≤ 2, be two smooth curves in X = P 2 of degree d i ≥ 4 with normal crossings. Let ∆ = (1 -1 m 1 )C 1 + (1 -1 m 2 )C 2 , and d = d 1 + d 2 . If (6.2) deg(∆) > d 2 1 + d 2 2 + d 1 d 2 -6 d -3 then every orbifold morphism f : C → (X/∆) is algebraically degenerate. Moreover, if the curves C i are very generic, then (X/∆) is hyperbolic.
Proof. First we verify that condition 6.1 is satisfied. We compute everything in terms of the degrees

d 1 ≤ d 2 c 1 2 -c 2 - 1 m 1 (2g 1 -2 + d 1 d 2 ) - 1 m 2 (2g 2 -2 + d 1 d 2 ) = deg(∆)(d -3) -(d 2 1 + d 2 2 + d 1 d 2 -6).
So, if condition 6.2 is satisfied, we can apply theorem 1.1 and obtain the algebraic degeneracy of f . If c 1 2c 2 > 0 then d 1 ≥ 5 or d 1 ≥ 4 and d 2 ≥ 7 (see [START_REF] Rousseau | Hyperbolicité du complémentaire d'une courbe : le cas de deux composantes[END_REF]). Therefore deg(∆) > 4 and, if the curves are very generic, from corollary 4.8 we obtain that f is constant.

Example 6.10. Let C i , 1 ≤ i ≤ 2 be two smooth curves in P 2 of degree 5 with normal crossings. Let ∆ = (1 -1 70 )C 1 + (1 -1 71 )C 2 .
Then every orbifold morphism f : C → (X/∆) is algebraically degenerate. If the curves C i are very generic, then (P 2 /∆) is hyperbolic.

6.2.2.

Weakly special manifolds with degenerate entire curves. Let us recall that a complex projective manifold is said to be weakly-special if none of its finite etale covers has a dominant rational map to a positive-dimensional manifold of general type. Bogomolov and Tschinkel constructed in [START_REF] Bogomolov | Special elliptic fibrations[END_REF] examples of algebraic threefolds which are weakly-special but non-special. These examples are simply connected and come with an elliptic fibration ϕ : X → B, where B is a surface with κ(B) = 1. This fibration is of general type because it has multiple fibres of multiplicity m ≥ 2 over a smooth curve D such that κ(B, K B + (1 -1 m )D) = 2. But these multiple fibers cannot be eliminated by an etale cover of X, which is simply connected. We remark that our results enable us to simplify the proof and generalize the results of [START_REF] Campana | Variétés faiblement spéciales à courbes entières dégénérees[END_REF] where it is proved that in some of the examples of [START_REF] Bogomolov | Special elliptic fibrations[END_REF] all entire curves are degenerate. Indeed, using these notations, an immediate consequence of theorem 1.1 is Theorem 6.11. Let X be a Bogomolov-Tshinkel example. If

c 1 2 (B, D) -c 2 (B, D) - 1 m (2g(D) -2) > 0
then there exists Γ B such that for any entire curve h : C → X, ϕ • h : C → B is either a point or contained in Γ.

Proof. We just remark that ϕ • h : C → (B, (1 -1 m )D) is an orbifold morphism and apply theorem 1.1. Remark 6.12. The use of McQuillan's results in the logarithmic setting simplify the arguments used in [START_REF] Campana | Variétés faiblement spéciales à courbes entières dégénérees[END_REF] to obtain the algebraic degeneracy. Indeed, the authors need additional technical hypotheses to use the compact version of McQuillan's results. 6.3. Higher order jet differentials. More generally, we generalize jet differentials from the compact setting (see [START_REF] Green | Two applications of algebraic geometry to entire holomorphic mappings[END_REF] and [START_REF] Demailly | Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials[END_REF]) and the logarithmic setting (see [START_REF] Dethloff | Logarithmic jet bundles and applications[END_REF]) to the orbifold setting.

Recall that if X is a compact complex manifold, in [START_REF] Green | Two applications of algebraic geometry to entire holomorphic mappings[END_REF] Green and Griffiths have introduced the vector bundle of jet differentials of order k and degree m, E GG k,m Ω X → X whose fibers are complex valued polynomials Q(f ′ , f ′′ , . . . , f (k) ) on the fibers of J k X of weight m for the action of C * :

Q(λf ′ , λ 2 f ′′ , . . . , λ k f (k) ) = λ m Q(f ′ , f ′′ , . . . , f (k) ) for all λ ∈ C * and (f ′ , f ′′ , . . . , f (k) ) ∈ J k X.
If (X, D) is a logarithmic manifold, i.e X is a compact complex manifold and D = i D i is a normal crossing divisor, the vector bundle of logarithmic jet differentials of order k and degree m, E GG k,m Ω (X,D) → X consists of polynomials satisfying the same weight condition Q(f ′ , f ′′ , . . . , f (k) ) in the derivatives of f and in the derivatives of log(s j (f )) on D j = {s j = 0} locally.

Let (X/∆) be a smooth orbifold. Let (x 1 , . . . , x n ) be local coordinates such that ∆ has equation

x (1-1 m 1 ) 1 . . . x (1-1 mn ) n = 0.
Definition 6.13. For N a positive integer, E k,N Ω (X/∆) is the locally free subsheaf of E GG k,N Ω (X,⌈∆⌉) generated by the elements

1≤i≤n x ⌈ α i,1 m i ⌉ i dx i x i α i,1 • • • 1≤i≤n x ⌈ kα i,k m i ⌉ i d k x i x i α i,k such that |α 1 | + 2|α 2 | + • • • + k|α k | = N where |α i | = j α j,i .
Now theorem 6.3 generalizes as Theorem 6.14. Let (X/∆) be a smooth compact orbifold, A an ample line bundle on X and P ∈ H 0 (X, E k,N Ω (X/∆) ⊗ A -1 ). Then for any orbifold morphism f : C → (X/∆)

P (f ) ≡ 0.
Proof. The proof goes along the same lines as in the classical setting using the logarithmic derivative lemma (see [START_REF] Siu | A proof of the generalized Schwarz lemma using the logarithmic derivative lemma[END_REF], [START_REF] Wong | Nevanlinna theory for holomorphic curves in projective varieties[END_REF], [START_REF] Campana | Variétés faiblement spéciales à courbes entières dégénérees[END_REF]) which we summarize for the convenience of the reader. P (f ) is a holomorphic section of f * A -1 . Suppose it does not vanish identically. Let ω = Θ h (A), then by the Poincaré-Lelong equation

i∂∂ log ||P (f )|| 2 h -1 ≥ f * ω. Therefore T f (r, ω) ≤ r 1 dt t |z|<t i∂∂ log ||P (f )|| 2 h -1
and from Jensen formula

2π 0 log + ||P (f )|| h -1 dθ ≥ T f (r, ω) + O(1).
Finally the logarithmic derivative lemma gives

2π 0 log + ||P (f )|| h -1 dθ ≤ O(log(r) + log(T f (r, ω))
outside a set of finite Lebesgue measure in [0, +∞[. This gives a contradiction.

Remark 6.15. In a sequel of this paper we will give some applications of these higher order jet differentials and develop an approach using stacks.

7. Measure hyperbolicity and orbifolds of general type 7.1. Kobayashi-Ochiai's extension theorems. Let us recall some results about holomorphic mappings into orbifolds of general type.

In [START_REF] Kobayashi | Ochiai Meromorphic mappings into compact complex spaces of general type[END_REF] it was established that a meromorphic map of maximal rank from a dense Zariski open subset U of a complex manifold V to a compact variety of general type extends meromorphically to V .

The main results of [START_REF] Sakai | Degeneracy of holomorphic maps with ramification[END_REF] can be formulated in the orbifold setting as follows Theorem 7.1. (Sakai) Let (X/∆) be a smooth orbifold of general type where X is a smooth projective manifold of dimension n. Then any orbifold morphism f : C n → (X/∆) is degenerate i.e its Jacobian vanishes identically.

In [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF] the following orbifold generalization of [START_REF] Kobayashi | Ochiai Meromorphic mappings into compact complex spaces of general type[END_REF] was proved Theorem 7.2. (Campana) Let V be a connected complex manifold, Z a reduced divisor on V and U := V \ Z. Let ϕ : U → X be a meromorphic map with X a projective manifold. Let f : X → Y be a fibration of general type and assume ψ := f • ϕ : U → Y is of maximal rank. Then (1) ψ extends meromorphically to V .

(2) for any m > 0 sufficiently divisible and s ∈ H 0 (Y, m(K Y + ∆(f ))), ψ * (s) extends to a global holomorphic section of (Ω p V ) ⊗m ((m -1)Z). Here we would like to prove the following result which generalizes both [START_REF] Sakai | Degeneracy of holomorphic maps with ramification[END_REF] and [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF] Theorem 7.3. Let V be a connected complex manifold, Z a reduced divisor on V and U := V \ Z. Let ϕ : U → (X/∆) be an orbifold morphism with X a projective manifold. Let f : (X/∆) → Y be a fibration of general type and assume ψ := f • ϕ : U → Y is of maximal rank. Then

(1) ψ extends meromorphically to V .

(2) for any m > 0 sufficiently divisible and s ∈ H 0 (Y, m(K Y + ∆(f ))), ψ * (s) extends to a global holomorphic section of (Ω p V ) ⊗m ((m -1)Z). An immediate corollary which provides new examples of special orbifolds is Corollary 7.4. Let (X/∆) be a smooth orbifold where X is a smooth projective manifold of dimension n. Assume there exists a non degenerate orbifold morphism f : C n → (X/∆). Then (X/∆) is special.

The proof of the theorem will follow the same lines as [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF] except that we have to take into account the orbifold structure on X. We need to recall some definitions from [START_REF] Campana | Orbifoldes spéciales et classification biméromorphe des variétés kählériennes compactes[END_REF].

Let (X/∆) be a smooth orbifold. Let (x 1 , . . . , x n ) be local coordinates such that ∆ has equation

x (1-1 m 1 ) 1 . . . x (1-1 mn ) n = 0.
First, let us recall the definition of the orbifold base of a fibration in this setting. Definition 7.5. Let (X/∆) be an orbifold and f : (X/∆) → Y a fibration i.e a surjective holomorphic map with connected fibers. Then for every irreducible divisor D ⊂ Y such that f * (D) = j m j D j + R where R denotes the f -exceptional part, we define its multiplicity

m(f, ∆, D) = inf j {m j .m ∆ (D j }.
where m ∆ (D j ) is the multiplicity of D j in ∆.

The orbifold base (Y /∆(f )) is then defined by

∆(f ) = D⊂Y 1 - 1 m(f, ∆, D) D.
Definition 7.6. For non negative integers N, q, S N,q (X/∆) is the locally free subsheaf of S N Ω q X (log⌈∆⌉) generated by the elements

x ⌈ k m ⌉ ⊗ l=N l=1 dx J l x J l
where the J l are ordered sets of

q elements of {1, . . . , n}, x ⌈ k m ⌉ = n j=1 x ⌈ k j m j ⌉ j
for k j the number of times that j appears in J 1 , . . . , J N and

dx J l x J l = ∧ j∈J l dx j x j . Definition 7.7. Let g : (X/∆) → Y be a fibration with Y smooth. g is neat realtively to g ′ : (X ′ /∆ ′ ) → Y ′ if there is a commutative diagramm (X/∆) w / / g (X ′ /∆ ′ ) g ′ Y v / / Y ′ such that (1 
) w is an orbifold morphism, v and w are bimeromorphic and w * (∆) = ∆ ′ .

(2) Every g-exceptional divisor is w-exceptional.

In this context we have (see [START_REF] Campana | Orbifoldes spéciales et classification biméromorphe des variétés kählériennes compactes[END_REF])

Proposition 7.8. For every fibration g ′ : (X ′ /∆ ′ ) → Y ′ , there exists g : (X/∆) → Y neat relatively to g ′ .

To deal with the orbifold structure on X we will need the following proposition Proposition 7.9. Let g : (X/∆) → Y and g ′ : (X ′ /∆ ′ ) → Y ′ be fibrations with dim Y = p such that g is neat relatively to g ′ .

(X/∆) w / / g (X ′ /∆ ′ ) g ′ Y v / / Y ′
Let m > 0 be an integer such that m∆(g) is Cartier.

Then we have an injection of sheaves

g * (O Y (m(K Y + ∆(g)))) ⊂ S m,p (X/∆).
Proof. Let D ⊂ X be an irreducible divisor not f -exceptional and x 0 ∈ D a generic point with local coordinates x = (x 1 , . . . , x n ) such that locally an equation of D is (x 1 = 0). Take local coordinates (y 1 , . . . , y p ) near g(x 0 ) such that ∆(g) has equation y up to a non zero constant factor. Since mt 1 m 1 ≥ ⌈ m m ′ ⌉, g * (ω) is a local section of S m,p (X/∆). Therefore the injection is true outside V ∪ E(g) where V is a subset of X of codimension two or more contained above ∆(g) and E(g) is the union of g-exceptional divisors. But then w * (g * (O Y (m(K Y + ∆(g))))) injects into S m,p (X ′ /∆ ′ ) over X ′ outside a codimension 2 or more analytic subset Z. Since these sheaves are locally free this injection extends through Z by Hartog extension theorem. Now we give the proof of theorem 7.3

Proof. We start with some reductions as in [START_REF] Kobayashi | Hyperbolic complex spaces[END_REF] and [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF] to which we refer for details. We can reduce to the equidimensional case dim U = p. By localizing we may assume that V is a unit polydisc D p and Z is a subpolydisc {0} × D p-1 so that U = D * × D p-1 . By proposition 7.8 we can assume that f is neat.

Since K Y + ∆(g) is big, we have m(K Y + ∆(g)) = H + A with A very ample and H effective. Let α ∈ H 0 (Y, O Y (H)) be a nonzero section and δ ∈ H 0 (Y, O Y (m∆)) a section vanishing exactly on m∆. Let σ 0 , . . . , σ N be a basis of H 0 (Y, A) and s j = ασ j and t j = s j δ . To prove that ψ extends meromorphically to V , it suffices to show that the ψ * (s j ) extends to meromorphic sections of mK V .

Then we define

v := j i mp 2 t j ∧ t j 1 m
which is a meromorphic pseudo-volume form on Y . From proposition 7.9 we see that f * (t j ) is a holomorphic section of S m,p (X/∆) and therefore w = ψ * (v) is a pseudo-volume form on U. In the same way w = where F : Y → P N is the map defined by A and Θ is the curvature form of the Fubini-Study metric. Therefore there exists C > 0 such that K w ≤ -1 C and the Schwarz lemma for volume elements imply that U w < ∞.

Finally this implies that ψ * (s j ) extends to meromorphic sections of mK V .

For the second assertion we refer to proposition 8.28 of [START_REF] Campana | Orbifolds, special varieties and classification theory[END_REF] 7.2. Orbifold measure hyperbolicity.

Definition 7.10. Let (X/∆) be an orbifold with ∆ = i a i Z i and ∆ 1 the union of all Z i with a i = 1.

(1) The orbifold Kobayashi measure µ (X/∆) on (X/∆) is the largest measure on X \ ∆ 1 such that g * µ (X/∆) µ P for every orbifold morphism g : D n → (X/∆), where µ P denotes the Poincaré measure on D n induced by the Poincaré volume element

κ n = n! n j=1 4 (1 -|z j | 2 ) 2 i 2 dz j ∧ dz j .
(2) The classical orbifold Kobayashi pseudo-distance µ * (X/∆) on (X/∆) is the largest measure on X \ ∆ 1 such that g * µ (X/∆) µ P for every classical orbifold morphism g : D n → (X/∆). Definition 7.11. Let (X/∆) be an orbifold. Then (X/∆) is said to be (classically) measure hyperbolic if (µ * (X/∆) (B) > 0) µ (X/∆) (B) > 0 for every non empty open subset B ⊂ X \ ∆ 1 . Theorem 7.12. Let (X/∆) be a projective orbifold of general type. Then (X/∆) is measure hyperbolic.

Proof. This is essentially a consequence of [START_REF] Sakai | Degeneracy of holomorphic maps with ramification[END_REF]. Indeed, there, a volume form Ψ is constructed on X \supp(∆) such that X\supp(∆) Ψ < ∞ and for every orbifold morphism f : D n → (X/∆), f * (Ψ) ≤ κ n . We recall its construction for the convenience of the reader. Let A be an ample divisor on X, then we can find an effective divisor D in |mK (X/∆) -A| for m large enough. Let σ be a section vanishing exactly on D. Let ∆ = i 1 -1 m i Z i with sections s j defining Z j . We choose hermitian metrics h A on A, h j on Z j . Then we have a volume form on X \ supp(∆) defined, up to a constant c, locally by

Ψ = c ||σ|| 2 m h -1 A n j=1 (ln ||s j || 2 h j ) 2 |s j | 2(1-1 m j
) n j=1 i 2π dz j ∧ dz j .

For every orbifold morphism f : D n → (X/∆), f * (Ψ) is a singular volume element such that (-Ricci(f * (Ψ))) n ≥ f * (Ψ) in the sense of currents. Therefore, using Ahlfors-Schwarz lemma for volume elements, we obtain that f * (Ψ) ≤ κ n . Finally, by definition, µ (X/∆) is greater than the measure induced by Ψ and (X/∆) is measure hyperbolic.

Definition 4 . 2 .

 42 Let (X, D) be a log-manifold. For each reduced curve C ⊂ X that meets D properly, let ν : C → C be the normalization of C. Then i(C, D) is the number of distinct points in the set ν -1 (D) ⊂ C. Definition 4.3. A logarithmic variety (X, D) is algebraically hyperbolic if there exists a positive number ε such that 2g( C) -2 + i(C, D) ≥ ε deg ω (C) for all reduced and irreducible curves C ⊂ X meeting D properly where C is the normalization of C, g( C) its genus and deg ω (C) = C ω with ω a hermitian metric on X.

(4. 1 )

 1 2g( C) -2 + i(C, D) ≥ (d -2n) deg(C)

m 1 1 .

 1 D is mapped locally to y 1 = 0. So, g(x) = (x t 1 1 , . . . , x p ) with t 1 .m ′ ≥ m 1 for m ′ = m ∆ (E). Let ω =   dy 1 ∧ • • • ∧ dy p y generator of O Y (m(K Y + ∆(g))). Then g * (ω) = x mt 1 . . x m p dx 1 ∧ • • • ∧ dx p x 1 . . . x p ⊗m

j i mp 2 ψ

 2 * (s j ) ∧ ψ * (s j ) 1 mis a pseudo-volume form on U. Then a computation of the Ricci curvature givesRicci( w) = Ricci(w) = ψ * (-F * (Θ))

From theorem 5.2, we deduce that the conclusion holds provided

for l = 1, . . . , n. This condition is clearly satisfied since

Now, we can prove theorem 5.1.

Proof. Suppose (P n /∆) is not hyperbolically imbedded in P n . We shall need a slight refinement of theorem 3.7. There is a sequence of orbifold morphisms f n : D → (P n /∆) such that lim||f ′ n (0)|| = +∞. Thanks to Brody reparametrization, we obtain a sequence of orbifold morphisms g n : D(0, r n ) → (P n /∆), with r n → +∞, converging to a holomorphic map f : C → P n which is either a non constant orbifold morphism f : C → (P n /∆) or a non-constant holomorphic map f : C → supp(∆).

The first case is not possible thanks to theorem 5.3. Consider a partition of indices {1, 2, . . . , q} = I ∪ J, and let L I = ∩ i∈I H i . If I contains k elements, L I is an nk dimensional linear subspace. The intersections Z j = H j ∩ L I are qk hyperplanes in general position in L I .

The observation here is that in the second case there is a partition {1, 2, . . . , q} = I ∪ J such that f is an orbifold morphism from C to (L I /∆ ′ ) where ∆ ′ = i∈J (1 -1 m i )Z i . Indeed, the sequence g n : D(0, r n ) → (P n /∆) can be seen as a sequence of orbifold morphisms g n : D(0, r n ) → (P n /∆ J ), where ∆ J = i∈J (1 -1 m i )H i since ∆ J ≤ ∆. Therefore (see [START_REF] Campana | A Brody theorem for orbifolds[END_REF]) it converges to a map f which is either an orbifold morphism from C to (P n /∆ ′ ) or verifies f (C) ⊂ supp(∆ ′ ).

Using again theorem 5.3, we see that the conclusion holds provided

The first condition is satisfied since q > 2n. For the second one, suppose it is not true then