
HAL Id: hal-00319471
https://hal.science/hal-00319471

Submitted on 8 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Reactive Multi-Agent models to Cellular
Automata - Illustration on a Diffusion-Limited

Aggregation model
Antoine Spicher, Nazim A. Fatès, Olivier Simonin

To cite this version:
Antoine Spicher, Nazim A. Fatès, Olivier Simonin. From Reactive Multi-Agent models to Cellular
Automata - Illustration on a Diffusion-Limited Aggregation model. 1st International Conference on
Agents and Artificial Intelligence, Jan 2009, Portugal. http://www.icaart.org/. �hal-00319471�

https://hal.science/hal-00319471
https://hal.archives-ouvertes.fr

FROM REACTIVE MULTI-AGENTS MODELS
TO CELLULAR AUTOMATA

Illustration on a Diffusion-Limited Aggregation Model

Keywords: Reactive multi-agent systems, cellular automata, influence-reaction model, diffusion-limited aggregation

Abstract: This paper deals with the synchronous implementation of situated Multi-Agent Systems (MAS) in order to
have no execution bias and to allow their programming on massively parallel computing devices. For this pur-
pose we investigate the translation of discrete MAS into Cellular Automata (CA). Contrarily to the sequential
scheduling generally used in MAS simulations, CA is a model for massively parallel computing where the
updating of the components is synchronous. However, CA expressivity is limited and not adapted to build
models where independent entities may move and act on neighbor cells. After illustrating these issues on a
simple example, we propose a generic method to translate discrete MAS into CA, called transactional CA.
Our approach consists in translating MAS specified with the influence-reaction model into a transactional CA.

1 INTRODUCTION

Multi-agents systems (MAS) are widely used for
modeling systems where autonomous entities, the
agents, move in a virtual space, theenvironment, and
act on it. Numerous simulators and platforms have
been developed to simulate such systems. However,
in these tools, the updating of the agents is often left
as a hidden procedure, on which the user has no con-
trol. The most common updating procedure is the
sequential procedure: agents are updated one after
the other with an order fixed in advance (often ran-
domly). It is a well-known problem that such schedul-
ing is a potential source of biases,i.e., it may intro-
duce causalities that were not designed by the user but
come only from the simulating tool. By contrast, Cel-
lular automata (CA) are a well-known model of mas-
sively parallel computing devices where the updating
of the components is synchronous: all the cells are up-
dated at once without any priority between them. The
advantage of using the CA formalism is simplicity:
it involves static homogeneous computing units that
are regularly arranged in space. The drawback of ex-
pressing a model with cellular automata appears when
one needs to build models with pseudo-independent
entities that may move and act on neighbor cells. In-

deed, in CA, a cell cannot write or move directly on
its neighbor cells, whereas such an ability is usually
required to express a MAS model. This paper investi-
gates the translation of discrete MAS models into CA,
which is illustrated on a simple example. The inter-
est is twofold: (1) to have a synchronous execution of
agents and thus to reduce bias due to the update, and
(2) to ease the programming of MAS on massively
parallel computing devices such as FPGAs or GPUs.

The purpose of our research is to find a method to
translate ”the language of multi-agents” into ”the lan-
guage of cellular automata”. In this article, we pro-
pose to take advantage of both contexts, the high ex-
pressiveness of a MAS specification and the simplic-
ity of a CA implementation. We aim at developing
a framework where MAS, that are simply described
through the separate specifications of the local agent
behaviors and the environment dynamics, are auto-
matically translated as a uniform transition function
of a CA.

This article is organized as follows: In section 2,
we discuss the relations between CA and MAS ap-
proaches. Section 3 introduces the concept oftrans-
actional CA, starting from the study of a paradigmatic
example of a MAS model, namely the Diffusion-
Limited Aggregation model. Section 4 proposes the

first step of a formal description allowing the generic
coding of a reactive MAS model into a transactional
CA. We finally conclude with discussions on related
and future works.

2 MAS versus CA

At first sight, the two formalisms look very sim-
ilar and are often confused. One may find sev-
eral works where the names “cellular automata” and
“multi-agent systems” are used without distinction.
This is easily understandable since CA are often used
to model the environment of a MAS, and, recipro-
cally, one may see a CA as a particular kind of MAS
where agents do not move.

We now clarify the differences between CA and
MAS in the context of research. We compare them at
two levels: (1) the modeling level:What in a model
makes CA or MAS more suitable to express it?(2) the
simulation level:How intuitive is the implementation
of CA and MAS?

MAS and CA, as modeling tools. In their defi-
nition, CA are uniform objects: there is aunique
neighborhood shape for each cell and auniquetran-
sition function. As a consequence, CA are fitted to
model phenomena that involvehomogeneousspaces;
CA have been used for example to model physical
systems (Chopard and Droz, 2005), biological sys-
tems (Deutsch and Dormann, 2005), spatially em-
bedded computations (Adamatzky, 2001), etc. Note
that it is always possible to take into account inhomo-
geneities, for example by encoding the heterogeneity
in the cell states, but this is generally not straightfor-
ward to do so.

MAS are preferred for expressing an heteroge-
neous population of entities. They necessitate to make
a distinction between the agents’ behaviors and the
environmentwhere they are embedded (Ferber, 1999).
This distinction allows us to focus on the specifica-
tion of particular and localized events, namely the
agentsactions. They offer a methodology for de-
signing systems, at the level of algorithms, program-
ming languages, hardware, etc. Examples of MAS
applications range from the simulation of natural sys-
tems, from ants (Resnick, 1994) to human behav-
iors (Regelous, 2004), to the design of massively dis-
tributed software and algorithms like web-services,
peer-to-peer technologies, etc. Nevertheless, we must
note that contrarily to CA, no universal definition of
MAS has been accepted so far. From the modeling
point of view, translating MAS in the cellular au-
tomata formalism has (at least) the advantage of fix-

ing the mathematical expression of the model and re-
moving ambiguities of formulation.

MAS and CA, as simulation tools. The key char-
acteristic of complex systems is the difficulty, if not
the impossibility, of inferring their global behavior
from the local specification of the interactions. Few
mathematical tools are available to predict the evolu-
tion of complex systems in general, more especially
those which involve self-organization. This gives to
simulation a central role to find the mechanisms that
explain how complexity emerges from simple local
interactions. We thus have to pay attention to the qual-
ity of simulations and to detect ambiguities that may
be hidden in the way they are implemented.

The agent-based programming style is somehow
intuitive and natural as the programmer takes the
point of view of the agent. There is a form of an-
thropomorphism that makes MAS programming par-
ticularly attractive. Nevertheless, we emphasize that
once all the agents behaviors are individually speci-
fied, there are still many ways to make the agents in-
teract and play together in the environment. The im-
plementation of such systems raises many questions,
like assessing the importance of the synchronicity in
simulations: are the agents updated all together or
one after the other? The design of spatially-extended
computing devices will require to imagine a new type
of computer science, where the computations do not
necessarilyrely on the existence of a synchronization
between the components.

By contrast with MAS, CA lead to shift the pro-
grammer’s point of view from the “eyes” of the agents
to their environment. The benefits of this shifting ef-
fort are twofold: (1) the CA formalism forces the pro-
grammer to solve conflicts between concurrent agents
actions at the elementary level of the cell and for-
bids the use of any global procedure. (2) As a conse-
quence, the implementation on massively distributed
devices is easy. Indeed, CA provide the program-
mer a cell-centered programming style where the set
of cells represents computing units that are regularly
organized. Recent works have shown that it is pos-
sible to have a good efficiency by using parallel ar-
chitecture to run CA simulations for FPGA (Halbach
and Hoffmann, 2004) and for GPU (Permalla and
Aaby, 2008). In other words,CA provide an easy-to-
implement framework, but expressing the local rule
necessitates a method to “blend” the different com-
ponents of a complex system.

3 THE DLA EXAMPLE AS A
STARTING POINT

In this section, we introduce our approach through
the translation of a simple MAS model into an origi-
nal kind of CA, calledtransactional CA. For this pur-
pose, we focus on the CA encoding of adiffusion-
limited aggregation(DLA) system. This example
presents a good trade-off between the simplicity of
description and the richness of problems risen by this
coding.

The DLA model was introduced to study phys-
ical processes where diffusing particles, following
a Brownian motion, aggregate (Witten and Sanders,
1981): for instance, zinc ions aggregate onto elec-
trodes in an electrolytic solution. This process leads
to interesting self-organized dendritic fractal struc-
tures. Different models of DLA have been proposed;
we consider in this article that particles stick together
forever and that there is no aggregate formation be-
tween two mobile particles.

3.1 MAS Specification of the DLA

The MAS specification of the DLA model describes
separately theagentsand theenvironmentwhere they
evolve:

The environment is a 2D finite and toric square grid
composed of elements calledpatches. Theexclu-
sion principleholds: i.e., there cannot be more
than one agent on each patch of the grid.

The population of agents,denoted byA , is com-
posed of the particles. Each particlea of A is lo-
calized on a cellρa of the environment and is char-
acterized by a stateσa: a particle is eitherFixed

or Mobile.

The initial configuration of the system is composed of
a population ofMobile particles and someFixed par-
ticles called theseeds. The expected behavior is the
aggregation of theMobile particles to build dendrites
from the seeds.

We propose to formulate the agent dynamics using
the usualperception-decision-actioncycle (Brooks,
1990). We first describe the perception and action
abilities of an agent. Theperceptionconsists of two
functions:

• Γ1 returns true if the agent perceives aFixed
neighborparticle, andfalse otherwise;

• Γ2 computes the set ofdirections that lead to
emptyneighborpatches.

The neighborhood referred in these perceptions cor-
responds to the four closest positions ofρa following

North, South, East and West directions. Theset of
actionsis:

• Diffuse(d): move following directiond;

• Aggregate: change to theFixed state;

• Stay: do nothing

Let U (S) denote the operation of selecting one ele-
ment in a finite setSwith uniform probability, thede-
cision processreturns an action as a function of the
agent perceptions:

if Γ1 then Aggregate

else if Γ2 6= /0 then Diffuse(U (Γ2))
else Stay

(1)

3.2 CA Expression of the DLA Model

We now reach the core of the problem. We first dis-
cuss about implementing the agent motion within a
synchronous computational model. We then propose
our solution, calledtransactional CA, and we finally
illustrate it on the DLA example.

The Synchrony Paradox. In the MAS style of pro-
gramming, emphasis is put on the agents local be-
haviors. Classically, to avoid collisions between mo-
bile particles, mobile particles are introduced one af-
ter the other, or in some cases, are introduced simulta-
neously but updated one after the other using a sched-
uler. However, two objections can be raised:

1. The implementation of this sequential updating
on a massively distributed computing device is
not impossible, but it requires the introduction of
complex procedures to synchronize the different
schedulers.

2. The use of a scheduler introduces an external form
of causality that was not specified in the original
DLA formulation. This may induce a bias in the
formation of dendritic patterns, especially when
the density of mobile particles is high.

By contrast, the framework of CA demands an early
resolution of the conflicts created by simultaneous
moves to a given patch. To achieve that, we propose
to establish a dialog between cells.

Transactional CA. A particle move requires a
sourcecell (that contains a particle at timet) and a
targetcell (that will contain the particle at timet +1).
We propose to elaborate a three-steptransactional
process where cells negotiate their requirements:

1. Request: sourcecells express their needs to their
neighbors.

T
ar

ge
t

time

Request Approval Transaction

S
ou

rc
e

otherwise

otherwise

exactly one request

otherwise

from direction d′

M1S

F0

M0 M0

E0E0

F0

E1 E2

F1 F2

F1A F2A

M2S

R2(d′)

M2D(d)M1D(d)

Γ1

d ∈ Γ2

qd = R2(−d)

Figure 1: DLA local evolution rule within a transactional CA. This graph shows the local evolution of a cell from a state to
another depending on its neighborhood state. Explanationsare given in the text.

2. Approval-rejection: targetcells accept or not their
neighbors requirements; this decision is done with
respect to an exclusion principle policy (for exam-
ple, an empty cell is an available target iff there
is exactly one particle requesting to move to this
cell).

3. Transaction: sources and targets separately
evolve.

DLA Transaction Model. Figure 1 shows with a
graph the local transition function of a transactional
CA capturing the agent-based specification of the
DLA given in section 3.1. On this graph, nodes rep-
resent the different states of the CA (statesE0, F0 and
M0 are given twice to clarify the figure) and the ar-
rows specify transitions between states. States are dis-
tributed
• vertically, to segregate the behaviors of sources

and targets, and

• horizontally, to distinguish the three steps of a
transactional CA.

At the beginning, the cells are either empty or contain
a particle which is either fixed or mobile: three states
are usedE0, F0 andM0.
• The request transition consists in deciding an ac-

tion for eachM0 cell: depending on the percep-
tions, a mobile particle either aggregates (state
F1A), or requests diffusion following a direction
d (stateM1D(d)), or stays at the same position
(stateM1S).

• During the approval step, empty cellsE1 de-
cide, by reading their neighbors requirements, if
they remain empty (stateE2) or become recep-
tors of particles moving from a directiond′ (state
R2(d′)).

• Finally, the transaction is computed: receptors be-
come particles, moving particles with a receptor
target (i.e., when the stateqd of the pointed cell
is R2(−d), where−d denotes the direction oppo-
site tod) become empty, and aggregating particles
become fixed. Other cells remain in their initial
state.

Figure 2 presents simulations of the previous de-
scribed DLA model in two simulations frameworks.
On the first line, simulations were obtained using a
classical sequential framework based on a scheduler,
on the second line, we display simulations of our syn-
chronous transactional CA. The same initial config-
uration, given on the left column, was used on both
platforms. It consists of a 100x100 grid where seeds
are localized on the boundaries and where mobile par-
ticles are gathered in a 40x40 central square. Both
systems exhibit the same qualitative behavior, as seen
on the right column of Figure 2. However, further
studies on the dendrites distribution or on the mean
time required to reach a fixed point would be needed
to assess the differences between the two approaches.
To compare the time scales of the two systems, we
define asimulation time stepas: (a) the three sub-
steps of the transactional CA and (b) the update of
all the agents in the sequential framework. We ob-
serve that the dissolution of the initial square is slower
in the synchronous CA than it is in the MAS model
with a sequential updating (see the middle column of
Figure 2). A simple explanation of this phenomenon
is that an asynchronous update allows a particle to
move to a just evacuated patchduring a simulation
time step, while the synchronous update forbids this
behavior.

t = 0 t = 130 t = ∞
Figure 2: DLA Simulations: from left to right, the initial state, the state after 130 simulation time steps and the fixed point,
with in black the fixed particles and in gray the mobile particles. The first line was obtained using the sequential simulation
tool TurtleKit (Michel et al., 2003), the second was obtained using the CA simulation tool FiatLux (Fatès, 2008).

4 TOWARDS A
GENERALIZATION

In this section, we investigate how a generic
method could be developed to automatically translate
the specification of a MAS into the transition function
of a transactional CA. Of course, reducing a MAS to
a CA enforces some restrictions on what can be de-
scribed. More especially, in order to respect the finite-
ness of CA, we assume that MAS are discrete and fi-
nite systems:i.e., the environment is adiscreteand
regular grid where afinite number of agents are lo-
calized on specific parts of this grid (they do not have
continuous coordinates).

Our approach is based on the use of the formal
influence-reactionmodel (Ferber and Muller, 1996)
to describe a MAS. In fact, the three steps of the
transactional CA are similar to the three steps of
influence-reaction: (1) agents produce influences that
are attempts of actions, (2) influences are combined
to avoid conflicts between the corresponding actions,
and (3) the environment is updated with respect to the
combined influences. In the following, we formally
introduce the influence-reaction model and we finally
give the first step of a formal description of anauto-
matic translation of an influence-reaction based spec-
ification into a transactional CA.

4.1 Influence-Reaction Model

On the opposite of the CA, there is no unique formal
description of MAS models. Nevertheless, there ex-
ists some generic models that focus on specific kinds
of MAS (e.g., logic MAS, communicating MAS,
etc.). For the sake of clarity, we only considersit-
uatedMAS that deal withdiscreteenvironment and
reactiveagents. The term “situated MAS” relates to
systems where agents are embedded in a “physical”
environment.

In this context, we focus on theinfluence-reaction
modelthat is dedicated to the formal description of
situated MAS, allowing, in particular, the simulation
of simultaneous actions (Ferber and Muller, 1996).
In this model, agents releaseinfluencesthat will in-
ducereactionsof the environment. An influence cor-
responds to attempting an action. The reaction con-
sists in combining the different influences in order to
realize the corresponding actions. This principle is
inspired by physics where entities react because some
forces act on them. Like forces, influences can be
combined. For instance, an influence may be an at-
tempt to pull a door. If two agents simultaneously
perform this influence with the same intensity from
the opposite sides of a door, the combination of both
influences vanishes and the resulting action is null.

We assume here that the combination of influences
can be computedlocally. In other words, the evalua-
tion of the combination function can be distributed on
each patch of the environment. The dynamics of the
three steps of the influence-reaction model may be de-

scribed as follows:

1. Each agenta of A separately computes, as a func-
tion fa of its current stateσt

a and of its percep-
tionsΓa, its new stateσt+1

a and the associated set
of influencesIa. We denote byI the set of all the
possible influences,ΣA the set of the agent states.

2. Let Iρ denote all the influences produced by the
agents ofA that could affect the patchρ of the
environment (we denote byP the set of all the en-
vironment patches). Each patchρ separately com-
putes the set∏Iρ of combined influences affect-
ing the patchρ.

3. Finally, for each patchρ of the environment, the
new stateσt+1

ρ of ρ is computed as a functionfE
of the current position stateσt

ρ with respect to the
set of influences∏Iρ. We denote byΣE the set of
the patch states.

Using these notations, the influence-reaction dynam-
ics may be formally summarized by the following two
equations:

〈σt+1
a , Ia〉 = fa(σt

a,Γa) a∈ A (2)
σt+1

ρ = fE (σt
ρ,∏ Iρ) ρ ∈ P (3)

4.2 Generation of a Transactional CA

Formally speaking, a CA is a 4-tuple(L ,Q,N ,δ)
where:

• L is the set ofcellsgenerally taken as a subset of
Z

dim, dim is the dimension of the space.

• Q is a finite set ofstates. Each cellc∈ L is asso-
ciated with a valueqc ∈ Q.

• Each cellc is associated with a set of cellsN (c)⊂
L called theneighborhoodof c. The relation-
shipN expresses the locality of interactions,i.e.,
N (c) is constituted of cells “close” toc.

• The local transition functionδ returns a value in
Q that depends on the current stateqc and on the
states of the cells in the neighborhoodN (c).

The generation of a transactional CA consists in
defining these four elements using the different com-
ponents of the MAS specification. For the sake of
simplicity, we restrict ourselves to MAS where:

• the setP corresponds to a 2D regular square grid
(dim= 2);

• an exclusion principle holds, that limits to one the
maximum number of agents on a given patch;

• the setIa is always a singleton, that means that an
agent decides to attempt only one action at each
time step. Note that this case is somehow general,
because any set of influences could be rewritten

in only one influence: if the agent does nothing
(i.e., Ia = /0), we consider that it releases the spe-
cial Skip influence, and if there are more than two
influences (e.g., Ia = {Depose,Diffuse(d)}), new
symbols are considered inI to capture the corre-
sponding action (e.g., Ia = DeposeDiffuse(d));

• the combination of influences∏ Iρ is always a sin-
gleton. In other words, only one action could af-
fect a positionρ.

As shown on Figure 1, the definition of the transi-
tion function can be divided into three sub-functions
δ0, δ1 andδ2 corresponding to the three steps of trans-
actional CA. As a consequence, the set of statesQ can
also be partitioned into three subsetsQ0, Q1, Q2, de-
pending on the next step of the transactional CA to be
computed.

In the following paragraphs, we briefly detail the
key points of the transactional CA generation. We
illustrate this translation on the example of the DLA.

Cells and Neighborhood. The set of cells exactly
corresponds to the 2D grid defined by the set of
patches, soL = P . The neighborhood relationship
N is defined in such a way thatN (c) gathers the cells
that an agenta, localized onc, may access to compute
its perceptionsΓa and its actionsIa.

As an example, the particles of the DLA model
may remain on the same position, and perceive or
move to the positions following the North, South,
West and East directions. As a consequence, the cor-
responding CA neighborhood relationshipN corre-
sponds to the classical von Neumann neighborhood;
for each cellc∈ L :

N (c) = {c′ ∈ L , ||c−c′|| ≤ 1}

where ||c− c′|| denotes the graph distance between
two cells.

The Initial States SetQ0. The setQ0 corresponds
to the initial states of a cell before three steps of the
transactional CA. Letc be a cell andρ its correspond-
ing patch. The state ofc is characterized at a given
time t by

• the environment stateσt
ρ at ρ, and

• whether there is an agenta with stateσt
a on ρ.

Let Σ̃A denote the setΣA ∪ {Empty}, whereEmpty
represents the absence of agent. Then, the state ofQ0
are couples(σt

a,σt
ρ):

(σt
a,σ

t
ρ) ∈ Q0 = Σ̃A ×ΣE

For the DLA model, we have ΣA =
{Mobile,Fixed} and ΣE = /0: the cells of the

environment are herepassiveand holds no informa-
tion. So we have:

Q0 = {Mobile,Fixed,Empty}

that corresponds to the statesM0, F0 andE0 of the
Figure 1.

The Request Step and the SetQ1. Compared to
the elements ofQ0, the states composingQ1 are char-
acterized by an additional information: the influence
chosen with respect to the specification offa (see
eq. 2). In the case of anEmpty cell, the particular
Skip influence is used. Considering Equation 2 nota-
tions, the transition functionδ0 is defined by:

δ0 : Q0 −→ Q1 = Q0× I

(σt
a,σ

t
ρ) 7−→

{
(σt

a,σt
ρ,Skip) if σt

a = Empty

(σt+1
a ,σt

ρ, Ia) otherwise

Note that the evaluation of the transition functionδ0
depends on the neighborhood state as it requires the
perceptionsΓa to compute〈σt+1

a , Ia〉 using fa.
In the DLA model, the set of particle actions is

I = {Diffuse(d),Aggregate,Stay}. If we identify the
neutralSkip action toStay, the definition ofδ0, based
on the use of Equation 1, gives:

δ0(Empty) = (Empty,Skip)
δ0(Fixed) = (Fixed,Skip)

δ0(Mobile) =






(Fixed,Aggregate)
(Mobile,Diffuse(d))
(Mobile,Stay)

w.r.t. eq. 1

These transitions correspond to the five arrows of
the “Request” column of the Figure 1. Note that
some states ofQ1 are meaningless (e.g., the state
(Fixed,Diffuse(d)) would correspond to a diffusing
fixed particle).

The Approval Step and the SetQ2. During this
step, each cellc, associated with a patchρ, computes
the set of influencesIρ that may affect its state. This
computation is done by reading the third element of
the states of the neighbor cells. Then, the operator∏
combines these influences into a single influence that
will be taken into account during the transaction step.
As a consequence, states fromQ2 refer to an addi-
tional information: the combined influence∏Iρ. The
transitionδ1 is then defined by:

δ1 : Q1 −→ Q2 = Q1× I

(σt+1
a ,σt

ρ, Ia) 7−→ (σt+1
a ,σt

ρ, Ia,∏ Iρ)
The exclusion principle of the DLA model is spec-

ified by the definition of the operator∏. Formally, let

ρ be a patch,Iρ the set of actions that affect the state
of ρ, and|S| the cardinal of a finite setS, we have:

δ1(Empty,Skip) =

{
(Empty,Skip, Iρ) if |Iρ| = 1
(Empty,Skip,Skip) otherwise

δ1(σa, Ia) = (σa, Ia,Skip)

The state(Empty,Skip, Iρ) corresponds to the state
R(d′) of Figure 1: this state is only reachable from an
empty patch with exactly one request of move.

The Transaction Step. The final step consists in
computing a new state ofQ0 as a function of a state
of Q2:

δ2 : Q2 −→ Q0

The transitionδ2 computes the new state of the patch
ρ and the eventual move of agents from or toρ. This
computation relies on two pieces of information:
• the influence∏Iρ thathas to be realized, and

• the influenceIa that is attempted.
As we assume an exclusion principle, we describe
separately the case where the cell is empty and the
case where an agenta is localized on the cell. If the
cell is empty,δ2 is defined by:

δ2(Empty,σt
ρ, Ia,∏ Iρ) =

{
(σt+1

a ,σt+1
ρ) (1)

(Empty,σt+1
ρ) (2)

where (1) and (2) correspond to two possible cases:
Case (1): ∏ Iρ expresses thatρ is a target cell for an

agenta and that this move has to be realized. The
stateσt+1

a of this agent comes from the state of the
source cell. On Figure 1, the transition from state
R2(d′) to stateM0 illustrates this case.

Case (2): ∏ Iρ does not allow any agent move to the
patchρ. On Figure 1, the transition from stateE2
to stateE0 illustrates this case.

In both cases, the state of the environment may be
affected by the influence∏Iρ. The newσt+1

ρ is com-
puted using Equation 3.

If an agenta is localized on the cell,δ2 is defined
by:

δ2(σt+1
a ,σt

ρ, Ia,∏ Iρ) =

{
(Empty,σt+1

ρ) (3)

(σt+1
a ,σt+1

ρ) (4)

where (3) and (4) correspond to two possible cases:
Case (3): Ia expresses a move of the agenta from

the patchρ to another patchρ′ whereIa = ∏ Iρ′
(i.e., the action is allowed by∏Iρ′). The patchρ
becomes empty. On Figure 1, the transition from
stateM2D(d) to stateE0 illustrates this case.

Case (4): Ia is not allowed by the neighborhood. On
Figure 1, the transition from stateM2D(d) to state
M0 illustrates this case.

In both cases, the newσt+1
ρ is computed using Equa-

tion 3.

t = 0 t = 50 t = 500 t = 1500

Figure 3: Transactional CA simulation of a virtual amoebae gathering model. Under some environmental conditions, amoebae
(in black) release a morphogen (whose concentration is displayed as a gray scale). Then, they follow the gradient generated
by reaction-diffusion of that morphogen, until they all gather. Here, each environment patch contains up to two amoebae.

5 CONCLUSION
The transactional CA we proposed is an origi-

nal solution designed to translate reactive MAS into
CA. We have shown the interest of such an approach
on a diffusion-limited aggregation model allowing to
find the three steps required to synchronously run this
MAS in a CA framework. Then we proposed the
first step of a generalization and an automation of this
methodology. This work is based on the use of the
influence-reaction model that is naturally related to
the three-step approach of transactional CA.

Other solutions have already been proposed. For
example, specific kinds of CA have been designed
to model the movement of particles, like thedimer
cellular automata that develops an asynchronous
point of view of the dynamics, or thelattice gas
cellular automatainitially developed for simulating
fluids (Deutsch and Dormann, 2005). The ques-
tion of coding moving objects in CA also led au-
thors (Hochberger et al., 1999) to consider a two-step
CA that prevents collisions. This approach is quite
similar to a transactional CA. These solutions focus
on the displacement of objects and have not been used
yet in a more general context.

By contrast, transactional CA are developed in or-
der to consider any kind of actions. For example, we
are currently applying the methodology presented in
section 4, to generate a CA corresponding to a model
of gathering virtual amoebae (Resnick, 1994), an il-
lustrative MAS that involves an active environment
together with a weak exclusion principle. As shown
on Figure 3, this result is promising and encourages us
to use our approach on a broader range of problems.

REFERENCES

Adamatzky, A. (2001).Computing in Nonlinear Media and
Automata Collectives. Institute of Physics Publishing.

Brooks, R. (1990). Elephants don’t play chess.Robotics
and Autonomous Systems, 6(1-2):3–15.

Chopard, B. and Droz, M. (2005).Cellular Automata Mod-
eling of Physical Systems. Collection Alea-Saclay:
Monographs and Texts in Statistical Physics. Cam-
bridge University Press.

Deutsch, A. and Dormann, S. (2005).Cellular Automa-
ton Modeling of Biological Pattern Formation Char-
acterization, Applications, and Analysis, volume 26
of Modeling and Simulation in Science, Engineering
and Technology. Birkhäuser.

Fatès, N. (2008). Fiatlux CA simulator in Java.http://
nazim.fates.free.fr.

Ferber, J. (1999).Multi-Agent Systems, an Introduction to
Distributed Artificial Intelligence. Addison-Wesley.

Ferber, J. and Muller, J.-P. (1996). Influences and reac-
tion : a model of situated multiagent systems. In
Proceedings of the 2nd International Conference on
Multi-agent Systems, pages 72–79.

Halbach, M. and Hoffmann, R. (2004). Implementing cel-
lular automata in fpga logic. InParallel and Dis-
tributed Processing Symposium, 2004. Proceedings.
18th, page 258.

Hochberger, C., Hoffman, R., and Waldschmidt, S. (1999).
Cdl++ for the description of moving objects in cellular
automata. InPaCT’99: Proceedings of the 5th Inter-
national Conference on Parallel Computing Technolo-
gies, pages 428–435, London, UK. Springer-Verlag.

Michel, F., Beurier, G., Gouaı̂ch, A., and Ferber, J. (2003).
The turtlekit platform : Application to multi-level
emergence. InABS 4 Agent-Based Simulation 4.

Permalla, K. S. and Aaby, B. G. (2008). Data parallel exe-
cution challenges and runtime performance of agent
simulations on gpus. InProceedings of the Spring
Simulation Multi-Conference, Ottawa, Canada.

Regelous, S. (2004). MASSIVE: Multiple agent
simulation system in virtual environnement,
http://www.massivesoftware.com/.

Resnick, M. (1994).Turtles, termites, and traffic jams: ex-
plorations in massively parallel microworlds. MIT
Press, Cambridge, MA, USA.

Witten, T. and Sanders, L. (1981). Diffusion-limited aggre-
gation, a kinetic critical phenomena.Phys. Rev. Lett.,
47(19):1400–1403.

