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Abstract

In this work we study the almost sure convergence for the vertical and hor-
izontal increments of the Brownian sheet. Afterwards, a modification of these
results for a regularization of this process, provides almost sure convergence in
law for the length of the level curve, defined for the regularized process, towards
a modification to the Brownian sheet’s local time.

1 Introduction

In the study of the asymptotic behavior for the increments of one parameter processes
{Zi}ter, usually only a type of increments is defined, namely Zyy. — Z;. In two
parameter situations, as in the Brownian sheet case i.e. {W(t, s)(t.s)efo,12 ), it is
possible to introduce different types of increments. On the one hand the vertical and
horizontal increments can be defined as: W (i+¢,s)—W (¢, s) and W(t,s+e)-Wi(t,s),
and on the other hand one can consider the surface increments: W(t + ¢, s + €) +
W(t,s) — W(t+e,s) — W(t,s +¢), and so on.

In this work we shall study the asymptotic behavior for the former increments. We
will show in Theorem 1, denoting by A the bi-dimensional Lebesgue measure, that for
almost every w (fixed) it holds:

M@,s) €[0,1)%Ve(t,8) < 21, He(t,s) < x5} — Fo(z1)Fi(z2)dsdt a.s. ase —0
. [0'1]2

This is the final form of the paper.
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where H,(t,s) = ELL”—'JE&M, Ve(t,s) = EH—‘%"?’—")— and F, is the Gaussian
distribution with variance r. One could express this result by saying that there exits
a null subset IV of {2, the probability space of the Brownian sheet such that if w ¢ N
the random vector (V;(:,,w), He(+,",w)) defined in the bidimensional Lebesgue space
([0, 1]3, M, X) converges in law to the random vector (v/U1&1, v Uzés) where (Us)iz1
are uniform and independent random variables and (§;);=1,2 are independent standard
Gaussian random variables independent also of the U;.

A result in this direction, in the one parameter case, has been shown by M. Wschebor
in [6]: Let {X¢}ie[o,1) be a standard Brownian Motion, if ®(z) denotes the standard
Gaussian distribution arid A; is the one dimensional Lebesgue measure, we have for

a.e..fixed w

X s+ — X 5
NG
In the same article he also proves the following statement. Define the regularized
process X; =
i f_ (t 2 X ds, where ¢ is a smooth density function, having bounded support.
Let be f a contmuous and bounded function, Wschebor’s second result says that for

a.e. fixed w
T [ El/z . =5}
\/;/_ f(l‘)ﬂ—“N (z)dz — /_ f(z)L(z)dz ase = 0

where N¢(z) = #{s < 1: Xt = z} is the number of crossings of the process X¢ at
level z, || || is the L? norm and L(z) is the Brownian Motion’s local time at level .
It is interesting to note that these two results establish a relationship between the
asymptotic for increments and the asymptotics for crossings. This relation starts with
the following Banach-Kac formula [1] [3], with f as before:

(o) 1 .
/_ f(z)N(z)dz = /0 FOX9)| X2 lds

Af{s<1: <z}—=®(z)ase =0

where X¢ is the derivative of X, that exists due to the smoothness of ¢.

In the two parameter context there exists another formula, named the co-area for-
mula ([2] pp. 249), that we will describe now (note that an elementary proof of this
formula can be given using a slight generalization of the Divergence Theorem). Let
the regularized sheet be defined as W,(t,s) =

[ 7 o) ()W (u, v)dudv and L5(z) = Ai{(t,s) € [0,1]2 : Wia(t,s) =
z} be the level curve’s lenght. The co-area formula is:

/_0o f(z)L5(z)dz = /[0 - F(We(t, )/ (B We(t, 5))% + (O We(t, 5))2ds dt

In Theorem 2 we will prove, using this last expression, that for a.e. w fixed

d:z——)/ f(z)L(z)dz as e — 0,
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We shall not consider at all the surface increments, nevertherless we must note that
these increments have not related to any level functional. However, severa] statistical
applications could be deduced from its asymptotic behavior. This matter will be
considered elsewhere. :

2 Hypothesis and notation

Let W be the Brownian sheet on R x R, setting Wi(t,s) = 0if ¢t or s are negative.
For each (¢,5) and £ > 0 we define the regularized process W, (t,8) = @, * W(t,s)
where ¢, (t,5) = Z0(L)p(2) and * denotes the convolution. We have the following
hypothesis

(H1) For the kernel ¢: f_l, wt),dt = 1, p € C2, % 2 0 and the support of pis a
subset of [-1, 1]. ' '

We denote A the Lebesgue measure inR2. F, s¢ [0,1], stands for the Gaussian
distribution with variance s.

Let & and & be two standard independent Gaussian r.v. The standard Gaussian
density will be denoted by ¢. Also Le(z) is the length of the z-level curve of the
process We on [0, 1]2. We shall define L(z) as a modification of the local time for the
Brownian sheet on [0, 1)2 that satisfies for all bounded and continuous function

[==]
/ f(x)[i(z)dz:/ F(W(t,8)E[y/s€? + t€2]ds dt:=/ F(W(t,s))D(t, s)ds dt.
oo [0,1]2 0,12

Throughout this article, C shall stand for a generic constant, whose value may change
during a proof.

Define for (t,s) € [0, 1]2,

1
Vve(tv S) = E[W(t +¢, S) - W(t’ S)]

and

1
Helt,) = —=[W(t,s+ &) - W(t, o)
the vertical and horizontal increments for the Brownian sheet.
3 Results

Theorem 1

O Mt € [0, 1]2;1/;(ts) <z, Hs(ts)gzz}—)_/ Fy(z1)Fi(z3)ds dt a.s. ase—0
[0,1]2

(1) / VV2(t, s) + H2(t, s)ds dt — / I'(t,s)ds dt
(0,12 [0,1]2
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Proof: The proof will follow the steps of [6]. We divide R? in four regions as is shown
in figure 1.

t- €t t+¢
(I) (I)
S+ €
S
Ss- €
(IIT) (1v)
Figure 1

We need the correlations between (V. (t, s), He(t,s)) and (V. (¥, "), H(t', ")) for
(¢,5) €[0,1]? and (#', ") in regions (I), (IT), (II]) and (V).

Lemma 1 For (t,s) € [0,1]* and (¢, s) € [0, 1]?, _
if (t',8') € (1), (I1), (IIT) or (IV) B[V, (t, )V (¥, )] = 0 = E[H, (t, s) H. (¢, 5]
if (¢',8) € (II), (III) or (IV), EH,(t,s)Ve(t',s)] = 0 and if (#,") € (I),
E[H(t,s)V.(¢,s")] = € '
if (¢',8') € (D), (II) or (III), E[Vi(t,s)H.(t',s)] = 0 and if (£',s) € (IV),
E[Ve(t,s)H(t',s")] =€

Proof: The proof is the result of a straighforward computation.

Consider, for w € Q fixed, (Vi (-, ), He(-, *)) as a random vector on ([0, 1)2, \). We shall
prove in what follows that this vector converges in lawalmost surely to (vTh &, vUz&3)
where (U;)i=1,2 are two independent uniform r.v.’s on [0,1], independent also of
(&)i=1,2. For this we consider a linear combination of Ve and H,, namely (. (t,s) =
aVe(t,s) + c2He (2, 5).

Let us compute the moments of this r.v. First, letting {f = / €k (t,s)ds dt, we
(0,12

]

have

E[G] = / Elc1v/s&1 + coVt€;]* ds dt.
Computing the variance we get

Var(ch) = [ (Blek(e 56t ()] - B ) ELek ol du s
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We split the integrals into different regions (I;)i=1,4 defined as
Il={(u,v)€[0,1]2,uSt,st} ,12={(’u,’v)€[0,1]2,uzt,st}
I3={('u.,'u)€[0,1]2,uSt,vgs},I4={(u,v)e[0,1]2,uzt,vgs}

Let J; be the integral corresponding to the domain I;, i = 1,4, we get

Jy ~ /AI{E[ff(t, s)€ (u,v)] — E[¢E (¢, )| E[€F (u, v)]}dv du ds dt

where ~ means asymptotically equivalent and Al = [e,1] x[e,1] % [0,t—¢€] x [0, s —€l,
all other terms are O(e).

Using Lemma 1 one can see, since (u,v) belongs to (III), that all the Gaussian r.v.’s
in the integrand are independent so J; = O(e) also and the same procedure gives
Jo = Ofg).

We shall study the asymptotic behavior of J;. The same arguments apply for J,.
The computation here is more involved because the corresponding Gaussian r.v. are
not independent. We obtain as before

gy /A Bl + Vi) Vo, + cv/ag)]
—E[e1 /s + C2\/E£2]'°E[c1 V€ + cpv/ubs)* }dvdudsdt

where (£})i=1 2 are independent standard Gaussian r.v. with correlation E(GE) =0

except for ¢ = 2 and § = 1 and in this case E(&8) = ﬁ (see Lemma 1) and

AZ = [e,1] x [0,1— €] x [0, — €] x [s +&,1]. The other terms of J; are O(e). We
now fix (t,s,u,v) and make a change of variables to transform (&1,&2,€1,&)) into a
standard Gaussian random vector, obtaining

J12/ /(01\/1_)-1324'62\/‘51/2)'c
az Jrs

X{[clx/g.’l,'l + 02\/1?( 1- gyl + %mz)]k - (01\/5.’121 + Cz\/zyl)k}

X 3(21)d(y1)d(z2) d(y2)dz1 dyy dzodys dv du ds dt

To prove that this integral is O(e) we use the identity

k-1
AP~ BF=(4-B)Y AIB*I (k—15)

7=0

and the fact that % € L1((0,1), dv).
So we have proved that in L2(Q2), § — f[0,1]2 Ele1/3&1 + ca/t&o]*ds dt as e — 0 and
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furthermore Var(¢§) = O(¢).
We want to prove now that this convergence takes place almost surely. Using the
Borel-Cantelli lemma and taking €, = v~2, a > 1, it holds that a.s. in w

;" — / E[Cl\/gfl —+ Cz\/zé-g]kds dt.
(0.1

To finish the proof we have to consider the oscillation

sup l/ ke, s)dsdt—/
ev415e<e,  J[0,1)2 0,1

1

€8 (t,5)ds dt|.
]2

Let us start with

[ eeadsar- [ g osan
(0,12 o]

)

Sl ek : ]2{[Cn/5Veu (¢,5) + cav/Ev He, (1, 8)] }ds dt|
J[0,1

remk12| /[ RCVEADEENCAD)

—[e1vE Ve, (t,8) + cov/Ev He, (2, 8)|* Yds dt| = 1y + 5.

_ _ k/2
If es41 < € < &, then |e=F/2 — e,,k/2| < e,,k/zf(%) — 1], we have I; <

o \k/2 . ) ] . \H/2
[(—L) ~1]|¢4*]. Then by the choice of the sequence &, it holds that (;:_—1) =1

Ev+1
showing that {; tends to zero a.s.
For I we shall use as before the binomial identity for A* — B*, taking A.(t, s) =

VE&e(t,s) and B, (t,s) = \/6,¢., (t, ), we get
k-1 E—1 ) ]
Iy se;ffA . |Ae(t,s) = Be, (1, s)]Z( ; ) [Ae(t, s)?|Be, (t,8)|F I~ ds dt.
W1 J=0

Using the modulus of continuity for the Brownian sheet ([4], pag 154) ie. |W(t+
€,8) = W(t,5)| < c(w)e®®/2=? for any § > 0 as small as we wish, we obtain

k-1
L < Fw)(jarl +leal) e (e, —e) /DD 3 ( k ; 1 ) e((/2)=8)3 (1/2)=5)(k=1—3)
=0

This implies that

lp < C M2 (e, - ,44) (/=0 1/ -8)(k-1)
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where the constant depends on k, w and 4. Finally one gets

/2
Ir<C (i) (1- E)((I/”—J)E;kd =0
€vt1 Ey

as v = +00 if § is small enough i.e. 6 « 2(le+17
Thus we have shown that

/ (e1Ve(t,s) + c2H,(t,5))*ds dt — Ele;/s6 + coVt&) ds dt as. ase — (.
{0.1)2 ,

[o,1)2

This result can be expressed saying that for a.s. o (Ve(, ), Ho (-, *)) converges in law
to (v/T. 1;\/5;52) where (U;)i—; . are two independent uniform r.v. on [0,1] also
independent of (&:)i=1,2, hence (i) and (3%) follow. 0O

Remark. Result (ii) is closely linked with the convergence of the leve] curve length
Le to the Brownian sheet local time, a fact that we shall study next,.

The surface W, (t,s) is almost surely C? and we know, thanks to the level curve’s
theory for differentiable surfaces [5], that for all the set {(z,s) : We(t,s) = z}
has finite length a.s. Federer ((2, pp. 249) proved the following change of variable
formula, called the co-area formula: If £ is a bounded continuous function then

'/_oo f(z)L(2)dz =/ F(We(t, SV (G:W. (¢, 8))% + (8 We (¢, 8))2ds dt.

(0,12

This formula can be viewed as the bi-dimensional analoguous to the well known
Banach-Kac formula, (1] [3] for the number of crossings of a process. We have the
following

Theorem 2 Under (H1) and if f is a bounded continuous function then a.s.
. o0 o0 -
Vellel|-? / F@) Lo (@)dz — / F@)E(z)ds when & — 0,
-0 —00

Proof: First we shall consider the case where F=1. We want to prove that a.s.

(0,12

VeIl ! A N V(@ 9)7 + (B, W, (2, 9))2ds dt T(t, s)dsdt as & —

The proof will follow the same lines of the previous one for the increments. We have
the following

Lemma 2 Ifs>¢ andt > ¢

EIVEQW,(t,5)\/28,W, (¢, 5)] = ig
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EOW. () =P (o) =1l | [~ pladote)lts - ew) A (s - ev)duda
—o0 J —oo
(where A means the minimum between the two numbers)
B[O We(t, 9)]” = A} (1)l lep] |2

Proof: The proof is an easy consequence of the definitions.
So we obtain that if s >0 and ¢ > 0,

el *e B0 We(t, s)1* = s, |||l E[8, W, (2, 5)]2 — ¢

and eE(0; W, (t,5)8, W, (t,s)] — 0 as ¢ — 0. Hence this implies that if (c;)i=y o are
two real constants it follows

Elallel ™ Vea:We (2, s) + callpl| 1 /eds W, (¢, ) ds dt
[0.1]2

- / ' Elc1vséL + caVt&)Fds dt as e — 0.
[0'1]2 .

We shall compute the correlations, for different points (¢, s), between the Gaussian
r.v. that appear in the above integral. Thus we get as in lemma 1 the following

Lemma 3 For (¢,s) € [0,1]? end (#,5) € (0,12, verifying t > &, t' > ¢, s > ¢ and
s' > e, we have

(¢) E[VeQW. (¢, s)vVed, We(t,s")] = 0 if [t—t'| > 2

(b) E[\/EasWE(t,s)\/EBSWE(t',s’ ] 0ifls—s'|> 2

(c) E[\Ved:W,(t, S)VED W, (t',s")] eift' —t>2 ands—~s' > 2
(d) E[Ved,W.(t,s)\/ed,W.(t, s’ ] = 0ift—t'>2 ors'—s>2
(e) E[\/eB,W,(t, SIWEOW,(t',s")] = eift—1t'>% ands' —s > 2
(f) E[\ed;W,(t, S)IVEAW(t',s")] = 0ift' —¢ >2 ors—s > 2

Let us return to the proof of the theorem, the situation here is similar to the previous
one for the increments.
As before we must consider the following linear combination

€e(t,s) = “‘P”_l[cl\/EatWE(t: 8) + c2vEd, W (2, 5)]

There exists some differences between this situation and that of the increments. The
Gaussian r.v.’s now do not have variances equal to s or ¢ but tending towards these
numbers. Furthermore /26, W, (t,s) and /28, W,(t,s) are not independent (but
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asymptotically independent).
We shall study (f = / € (t, s)ds dt. Let us compute its variance:
(0.2}2

Var((f) = 4 o BLEE (6 )88 ()] — BIEE R, )] gk (w, )] Yo du ds

Splitting the domain of integration [0, 1]* into four regions (I;);=1,4 denoting by J; the
integrals over these regions and using lemma 3 it is easy to show, as in the previous
theorem, that J; = O(e) for i = 2, 3. Hence it is enough consider the integrals J;, Jj.
We will study only J; because Jy is similar.

Ji > /{E[(01X1'|'02X2)k(ClX3+C2X4)k]—E[(C1X1+CzX2)k]EKc1X3+c2X4)"]}dvdudsdt.
A

where A} = [(M +2)e,1] x [2¢,1 — 2] x [Me,t — 2¢] % [s + 2¢,1]. We choose also
M large enough such that A (t) > £ and A e(u) > % Here (X1, X5, X3, Xy) is
a Gaussian vector with correlations given by lemmas 2 and 3. The other terms of
Ji are O(e). We now fix (¢,s,u,v) and make a change of variable in the first term
transforming (X7, X», X3, X4) into a standard Gaussian vector and another change
of variable in the two remainder terms that reduce (X1,X2) (resp. (X3,X,)) into
standard Gaussian vectors in R?. We get

J1 :/ / ((e1 + aco) 1 e (8)zy + bczzz)"
A3 JRe

X [(cadzat(c1+cac) A\ e (V)3 +ereza)F—((c; +cc2) A e (v)zs +c2f74)*|¢(%)dEdvdudsdt,
where ¢(2)dz = ¢(z,)¢(z2)d(z3)$(x4)dr1dzodzsdz, and:

1 P 1 o9, .
a= zelfell ALEs) b= () - a®A2 L (s)]/2 e = 26l 752 ()
c -
d= _-56“('0” 2 y €= [’\?,s(u) - 62’\%,5(”) - d2]1/2 ) f = [’\%,5 (u) - 02’\%,5('”)]1/2‘

Using again the identity A*~B* = (4 B) Z_J:;nl AiBk-i-1 ( ¥ ; 1 ) the conditions

M @) >3, M (u) > ¢ and the fact that both —jﬁ and % are in L! for the one-
dimensional Lebesgue measure, we obtain finally that for M large enough J; = O(e)
and Var(&) = O(e).

To finish the proof of Theorem 2 for f = 1 we have to evaluate as in the proof of
Theorem 1 the modulus of continuity for the derivatives of the regularization of the

Brownian sheet. But

eO W, (t,3) = / / Pluyp()W (t — eu, s — ev)du du,
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and a similar expression holds for €,8; Wk, (¢, s). Thus we get
|eBWe (t, 8) — £,0:We, (2, 8)] < C(w)le —eu[*~°

Arguing in the same fashion as in the proof of Theorem 1 we obtain, a.s. in w as €
tends to zero:

/[ (ol VEBLW: & el VEB e t,5))"de do /[ Bl /trveny/3aldo
0,1)2 A R 0.1]2

Henceitholdsthatfora.s. w therandomvector (||¢|| ™ vEO:We (-, ), ||l vEBs We (-, -))
converges in law to (v/U1&1,v/Uz2£z) so the Theorem is proved for f = 1. Let us finish
the proof of the Theorem, consider g : [0,1]> — R a bounded continuous function,

then for a.s. w as € tends to zero

/[o' 2060 U VEBI 5 I+l VEOW (e, Pdids = | (6, )T s)dser

0,12

This can be proved by noting that if J x J is any rectangle included in [0,1]? the
previous result, for f = 1, is still true but with the integrals defined only in I x J.
Thus if 2(t,s) is a step function the above statement holds, we get then the result
approximating uniformly g by step functions.

Now, to conclude the proof let us consider

/[0 e F(We(t, s))\/mq’”_lx/gatws(t, )2 + (||| 2 vVEd, We (2, 5)]2ds dt.

We can show that the difference between this integral and the term

/[0 1 FW(, 3))\/[,“‘PI|_1\/E<9:W5(t, 8)2 + [||el| =1 /€D We (2, 5))2ds dt

goes to zero when € — 0 for a.e. w, and this last expression tends to the required
limit, thus Theorem 2 holds. O

Remark. In [5] (pp. 106) Wschebor has shown that for each z € R it holds
VEllel ™ Le(z) = L(=) in LP().
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