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Abstract

This paper addresses the issue of designing expetsnfior a metamodel that needs to be
accurate for a certain level of the response vatuech situation is encountered in
particular in constrained optimization and religpilanalysis. Here, we propose an
iterative strategy to build designs of experimentsich is based on an explicit trade-off
between reduction of global uncertainty and expioraof the regions of interest. The
method is illustrated on several test-problems ghown that a substantial reduction of
error can be achieved in the crucial regions, wetsonable loss on the global accuracy.
The method is finally applied to a reliability aysis problem; it is found that the
adaptive designs significantly outperform classgmce-filling designs.

1. Introduction

In the past decades, the use roftamodeling techniques has been recognized to
efficiently address the issues of prediction andinogation of expensive-to-compute
numerical simulators or black-box functions [1,2]metamodel (or surrogate model) is
an approximation to system response constructed ft® value at a limited number of
selected input values, tldesign of experiments (DoE). The choice of the DoE is crucial
for the accuracy of the metamodel approximationrtHeumore, in many engineering
problems, the total number of function evaluatiengrastically limited by computational
cost; hence, it is of crucial interest to developtmods for selecting efficiently the
experiments.

In this paper, we focus on a particular applicatichere metamodels are used in a
way that their accuracy is crucial for certain lesets. Such situation appears in
particular in two popular frameworks:

(1) In constrained optimization, the constrainbdtion often relies on expensive
calculations. For instance, a typical structurairogation formulation is to minimize a
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weight function such that the maximum stress, cdasgpby finite element analysis, does
not exceed a certain value. When using a metantodgbproximate the constraint, it is
of utmost importance that the approximation ersominimal along the contour line that
separates the admissible designs from infeasil#s.on

(2) In reliability analysis, a metamodel is oftesed to propagate the uncertainty of
random input variables to the performance functbm system [3,4]. In particular, the
probability of failure of the system can be complutesing sampling techniques (i.e.
Monte-Carlo Simulations, MCS), by counting the nembf samples that are above a
certain threshold. The contour line of the respateal to the threshold must be known
accurately to discriminate between samples.

The objective of the present work is to provideethodology to construct a design
of experiments such that the metamodel accurapgyoximates the vicinity of a contour
line. Mourelatos et al. [5] used a combination @bgl and local metamodels to first
detect the critical regions and then obtain a lgaatcurate approximation. Ranjan et al.
[6] proposed a modified version of the EGO algantto sequentially explore the domain
region along a contour line. Vasquez et al. [7]posed an iterative strategy to minimize
the classification error when computing a probapiif failure based on Kriging. In this
paper, we present an alternative criterion to caseEjuentially the experiments, based
on an explicit trade-off between the exploratiornhaf target region (on the vicinity of the
contour line) and reduction of the global uncettaifjprediction variance) in the
metamodel.

The paper is organized as follow: in Section 2,Khiging model and the framework
of design of experiments are described. In Sec3iothe original criterion of selecting
experiments is presented, followed by its assogiaggjuential strategy to derive designs
of experiments. Results are presented for variowyacal examples in Section 4.
Finally, the criterion is applied to estimating {h@bability of failure.

2. Kriging Metamodel and Design of Experiments

Let us first introduce some notations. We dernadige response of numerical simulator or
function that is to be studied:

y: DORY - R
X - y(x)

1)

where x ={x, ..., X} | is ad-dimensional vector of input variables. In orderbigld a
metamodel, the respongés observed at distinct locations<:

X=[xl,...,x”]
v={y(e)r) =0

In Eqg. (2), choosinK is called thedesign of experiments (DoE), andY is observations.
Since the responseis expensive to evaluate, we approximate it bymgple modelM,
called themetamodel or surrogate model, based on hypothesis on the naturg ahd on
its observationsy at the points of the DoE. In this paper, we preserparticular
metamodel, Universal Kriging (UK), then we discisssne important issues about the
choice of the design of experiments.

(2)
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2.1 Universal Kriging Model

The main hypothesis behind the Kriging model iagsume that the true functigms one
realization of a Gaussian process

y(x) =Y (x,@) (3)

where o belongs to the underlying probability spa@e In the following we use the
notationY (x) for the process an¥ (x,w) for one realization. For Universal Kriginy,
is of the form:

Y(X)=Z:ﬁj f(x)+Z (x) @

wheref; are linearly independent known functions, @nid a Gaussian process with zero
mean and covariand¢ewith known correlation structure and parameters.

Under such hypothesis, the best linear unbiasetasr (BLUE) fory, knowing the
observation¥’, is given by the following equation:

me (x)=E[Y(x)|Y(X)=Y]

. . ()
=f (x)p+c(x)" c*(Y -Fh)
where f(x) =[ f,(X),..., f,(X)] is 1x p vector of basesﬁ:{,@l, /?p}T is px1 vector
of estimates off, c(x)=[cov(x,x"),...,covk x" )] is nx1 vector of covariance,
C=[cov(x',x) )l j<niS NXN covariance matrix, and ' =[fT(x}),...,f" (x")] is pxn
matrix of bases. In Eq. (5B is the vector of generalized least square estsratg:

B={B,... 3T =(F'CF) FTcy (6)

In addition, the Kriging model provides an estimate the accuracy of the mean
predictor, the Kriging prediction variance:

-1 T
$ (x) =02 ~c(x) C7o(x)+(f (x)" ~c(x) ¢ (FTCF) (1 (x) ~c() ¢ F)
Q)
where g? is the process variance. For details of derivatisee for instance [8, 9]. Note
that the Kriging variance in Eq. (7) does not depen the observationg, but only on

the design of experiments.
We denote bW (x) the Gaussian process conditional on the obsensti:

(M(x))_, =(Y()7Y(X)=Y)__ =(Y(x)/obs) _ (8)

The Kriging model provides the distribution Mfat a prediction point:
M (x) ~ N(m,(x).s¢ (x)) ©
The Kriging meanny interpolates the functio¥i(x) at the design of experiment points:
mK(xi):Y(x‘),lsisn (10)

The Kriging variance is null at the observationnisk’, and greater than zero elsewhere:
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s2(x)=0 1<i<n 1)
sz (x) >0 X %X

Besides, the Kriging variance function increaseth wWie distance of to the observation
points. Figure 1 shows a Kriging model with a fiostler trend and five equally-spaced
observations along with the confidence intervalbjclv is calculated fromm, *2s, .
Note that due to the interpolating property of UKe prediction variance is null at the
observation points.

True function
2 O Observations
— Kriging mean : K
— - — - Kriging CI

3 1 1 1 1 1 1 1 1 1 ]
0 0.1 0.z 0.3 0.4 05 06 07 e 09 1

Figure 1: Example of Kriging model. The confidemuervals arem, +2s, . The DoE
consists of five points equally spaced in [0, IjeTrend is a first order polynomial.

2.2 Design of Experiments

Choosing the set of experimen{splays a critical role in the accuracy of the metdei
and the subsequent use of the metamodel for pi@alidh this section, we detail three
families of design of experiments: classical desigoptimal designs, and sequential
designs.

(i) Classical (space-filling) designs

The first family of DoE consists of designs based geometric considerations. Full-
factorial designs and central-composite designeniggto this category [10]. Although
these designs ensure a reasonable space-filliggepyon low dimensions, they require a
large number of observations in high dimensionskinta them impractical for
computationally expensive problems.

A popular alternative to the geometrical designkatin Hypercube sampling (LHS)
[11]. LHS is a random DoE that insures uniformifytlee marginal distributions of the
input variables. LHS can also be optimized usingess criteria; for instance, the
maximum minimum distance between sampling pointeO space-filling strategies
include maximum-entropy designs, low-discrepanguseaces, etc. [12]. Figure 2 shows
three different DoEs (full-factorial, central congite, and LHS designs) for two-
dimensional domain.
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Figure 2: Full-factorial, central composite, and3.Hesigns with 9 points

(if) Optimal designs (model-dependent designs)

DoE using optimal design theory has originally beewveloped in the frame of linear

regression [13, 14]. The idea of optimal desigrotizes to choose the observation points
in order to maximize the quality of statistical @rénce. A- and D-optimality aim at

minimizing the uncertainty in the parameters of thetamodel. In the framework of

linear regression, D-optimal designs minimize tloéumne of the confidence ellipsoid of

the coefficients, while A-optimal designs minimite perimeter. Formally, the A- and D-

optimality criteria are, respectively, the traced aseterminant of Fisher’s information

matrix.

For non-parametric metamodels such as Kriging, criterion of this type is
available. Instead, a natural alternative is teetaklvantage of the prediction variance
associated with the metamodel. The prediction wagaallows us to build measures that
reflect the overall accuracy of the Kriging. Twodffelient criteria are available: the
integrated mean square error (IMSE) and maximurmregaare error (MMSE) [15, 16]:

IMSE = [ MSE(x) du(x) (12)
D
MMSE = max MSE(x) ] (13)

where/(x) is an integration measure and
MSE(x) = E| (y(x) =M (x)) | (14)

When no modeling error is involved, the MSE coiesiavith the prediction variancs .
Note that the above criteria are often called tecton and G-criterion, respectively, in
the regression framework. The IMSE a measure of the average accuracy of the
metamodel, while the MMSE measures the ‘risk’ oféaerror in prediction.

Optimal designs arenodel-dependent, in the sense that the optimality criterion is
determined by the choice of the metamodel. In s=go@, A- and D-criteria depend on
the choice of the basis functions, while in Krigitige prediction variance? depends on
the linear trend, the covariance structure, andrpater values. However, one may notice
that none of the criteria depends on the respoalses at the design points.



(iii) Adaptive designs

The previous DoE strategies choose all the poihthe design before computing any
observation. It is also possible to build the Defentially, by choosing a new point as
a function of the other points and their correspogdesponse values. Typically, the new
point achieves a maximum on some criterion; fotanee, the sequential DoE can be
built by making at each step a new observatiorhab the prediction variance becomes
maximal.

Williams et al. [17] use a Bayesian approach derive sequential IMSE designs.
Jones et al. (1998) derive sequential designs Her dptimization of deterministic
simulation models (the well-known EGO algorithmy, ¢thoosing at each step the point
that maximizes the expected improvement, a funatidhat represents a compromise
between exploration of unknown regions and locatce[18].

A particular advantage of sequential strategiesr ather DoEs is that they can
integrate the information given by the filstobservation values to choose the 1)"
training point. In this paper, the objective isatcurately fit a function when it is close to
a given level-set. It is then evident that the Do&eds to be built according to the
observation values, hence sequentially.

3. Weighted IMSE Criterion

In this section, we present a variation of the IMSEerion, adapted to the problem of
fitting a function accurately for a certain leveltsThe controlling idea of this work is
that the surrogate does not need to be globallyrate, but only in some critical regions,
which are the vicinity of the target contour line.

3.1 Target region defined by an indicator function

The IMSE criterion is convenient because it sumshepuncertainty associated with the
Kriging model over the entire domaid. However, when one is more interested in
predictingY accurately in the vicinity of a contour line= y™(T) (T a constant), such a
criterion is not suitable since it weights all psinn D according to their Kriging
variance, which does not depend on the observatiom@smd hence does not favor zones
with respect to properties concerning thewalues but only on the basis of their position
with respect to DoE.

We propose to change the integration domain fidotm a neighborhood of ™*(T) in
order to learny accurately near the contour line. We defineegion of interest Xr,
(parameterized by) as the subset ID whose image is within the boun@is: andT+e:

Xr, =y ([T-&T+e)={x0D|y(X)O[T-£T +4} (15)

Figure 3 illustrates one-dimensional function witle region of interest being @at= 0.8.
Note that the target region consists of two distests.
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Figure 3: One-dimensional illustration of the targegion. The level-sék is equal to 0.8,
ande to 0.2. The target region consists of two distsgds.

With the region of interest, the reduced IMSE ciite is defined as follow:
IMSE,, = j MSE(x) ck:j MSEX) &, 1.q b & )]k (16)
D

XT £

wherel; _, ;.,[y(X)] is the indicator function, equal to 1 whenx)0[T -& T +¢| and
0 elsewhere.

Finding a design that minimizes IM@BRvould make the metamodel accurate in the
subsetXt., which is exactly what we want. Weighting the IM8Eerion over a region
of interest was pointed by Box and Draper in [¥#wever, the notable difference here
is that this region is unknown by the user.

Now, we can adapt the criterion in the contexKafjing modeling, wherey as a
realization of a Gaussian procegs(see Section 2.1). Thus, IMSEis defined with
respect to the event:

j MSE)L, , 1.qlY (.@)]x=1 () (17)

To come back to a deterministic criterion, we cdesithe expectation of (w),
conditionally to the observations (which is thettasproximation in thé? sense):

IMSE,, = E[ | (w)|0bs]

(18)
= E| [MSE()1,, 1.4¥ (<)X obs}

Since the quantity inside the integral is positiwe,can commute the expectation and the
integral:



IMSE,, =£MSE(X)E[%_£ e [YQ()j‘ost o
= [MSE(E[ 1., 1,4 M 6)]|ck (19)
= } MSE X)W (x )dx
According to Eq. (19), the reduced criterion is @iynthe average of the MSE weighted

by the functionW(x). BesidesW(x) is simply the probability that the response iside
the interva|T -& T +¢]. Indeed:

W) =E| L, 1.gMX]|=P(ME)O[T-¢ T+¢]) (20)
For the Kriging model, we have:
M (x) ~ N(m,(x).s?(x)) (21)

We can obtain a simple analytical form Wx):

T+e

I (m(9.20) (u)du (22)
T-¢

wheregN(m 0.0 (X))(u) is the probability density function (PDF) bf(x). By integrating

the PDF we obtain:

where @ is the cumulative distribution function (CDF) ohet standard normal
distribution.

3.2 Target region defined by a Gaussian density

Defining the region of interestr, is convenient to understand the concepts andrteede
the weight function. However, it might not corresdaexactly to our objective. Indeed, if
we consider an ideal case where the function iseéytknown, the indicator function

will yield a weight 1 to a point whereG(x)-T =&, but 0 if G(x)-T =&+10°. Also,

it will not discriminate between a point where thiference is equal to and another one

where this difference is equal to zero.

Instead, we prefer a criterion that continuousigreases the importance of the
location when the response approaches the threskoldinstance, we can choose a
triangular function (with a maximum &) or a sigmoid function. Here, we choose to use
the probability density function of a normal dibtrtion which leads to a simple
analytical form of the weight function.

Therefore, the Gaussian-based weight functioefismed as

W(x)=E[g,(M(x)-T)] (24)
whereg, (u) is the PDF ofN(0, ¢?).



WhenM(x) stands for the Kriging model, we can obtain apdéviorm for the weight
function:

W(x) = I gE(u—T)gN(W(X)YSkZ(X))(u)du (25)
Sinceg; is symmetric:

W(x) = I g, (T—u)gN(w(X)ysf(x))(u)du (26)
W(x) is the convolution product of two Gaussian déesjthence, we deduce:

[ 1(W(X)‘T)2J

2 g2 +0(x)

X) = !
\/Zﬂ(af +ak2(x))

This new weight function depends on a single patamg that allows us to select the
size the domain of interest around the functiotar§e value ob, would enhance space-
filling, since the weight function would tend tocanstant and the weighted IMSE to a
uniform IMSE criterion. On the contrary, a smalluewould enhance the accuracy of
the surrogate on a narrow region around the comitoeiof interest.

(27)

3.3 lllustration

We consider a one-dimensional case, where theifumgto approximate is a realization
of a Gaussian process with Gaussian covariancetsteuy is defined on [0, 1]; the

design of experiments consists of five observatiegsally spaced in this interval. The
level-set of interest is chosen as 1.3, and bath and ¢ are taken as 0.2. Figure 4
represents the true function, the Kriging metamaai®ll corresponding weights. The
weight function in Eq. (23) is shown as “intervalthile that in Eq. (27) is shown as
‘Gaussian” in the figure.

Among the five observations, one is substantialtser toT than the others. As a
consequence, the weight functions are large ardbisl observation point. For the
indicator-based weight function, the weights ar# authe observation points, since on
this example no observation is inside the targétevanterval. For the Gaussian-based
weight, it is also very close to zero. For bothdimns, high weights are given to regions
for which the actual function is inside the targeerval. Both weight functions are also
non-zero where the uncertainty is high, even ifKiniging mean is far fronT (aroundx
= 0.65 and 0.85).
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Figure 4: lllustration of the weights functions. pp graph: true function, observations,
Kriging mean and confidence intervals, and targgian. Lower graph: weight functions.
Both weights are large where the true functiomssde the target region, but also in
regions of high uncertainties (arouxéd 0.65 and 0.85).

4. Sequential Strategy for Selecting Experiments

Without any observation, the weight functi?w(x) is, by construction, a constant. Every
time a new observation is performed, the weightciom will more precisely
discriminate the regions of interest from the ashdience, the procedure to build an
optimal DoE is necessarily iterative, as shown afl€ 1:

Table 1: Procedure of the IMGbased sequential DoE strategy

Create an initial DoE X, and generate observatiwi = y(X)
For i goingfrom oneto the total number of additional observations
Fit the Kriging model to the daeX,,., Y,.i,}
Find a new training pointae, that minimizes the criteriotMSE,, ({ X, X a.})
Compute the new observatioghew = Y(Xnew)
Update the DoE and observations:
Xysi ={Xk+i—1’xnew}
Yk+i :{Yk+i -1 ynew}

End of loop

The Kriging parameters can be reevaluated afteryavew observation, or only from
the initial DoE before the iterative procedure. &lttat reevaluating the parameters can
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be problematic. Indeed, the algorithm will tendriake observations where the function
value is close to the threshaldThe observations are then likely to have the saahees,
even if they are not close to each other. Hencegbyaluating the model, there is a risk
of finding a model ‘flatter’ than the true function

Finding the new training point requires an innptimization procedure. When the
classical IMSE criterion is considered, the optimtian can be expressed as:

min - IMSE(X,.,) = IMSE({ X, Xo}) (28)
where
IMSE({ X, X} ) = [ 8% (X{ Xic X} ) 0K (29)

st (X|{X,.X e} ) is the variance at of the Kriging based on the design of experimetts
augmented with the training poirtey. Since the Kriging variance does not depend on
the observation, there is no need to hgxg.,) to compute the IMSE.

In contrast, the weighted IMSE depends on the rehtiens through the weight
function W(x). Hence, when expressing the weighted IMSE asnatifan of Xpey, We
update only the variance part under the integrdlraot the weight:

IMSE,, (X, Y Xoaw) = [ 8 (X{ X, Xod )W (X]X, Y, ) (30)

Using this expression, we have the simple formaatfor the inner optimization
problem:

XTNiDrE) IMSE,, (XY Xoew) (31)
The above optimization problem may be, in practicballenging. The problem
dimension is the same with the design space dimen3$he objective function can have
many local optima and is expensive to compute. ddddor any candidat&ney, the
Kriging model must be reevaluated (to ob&gifx({ X, X.,}))- Also, since the criterion is
in integral form, it must be evaluated by numeriogtgration.

5. Numerical Examples

In this section, we evaluate the accuracy andieffay of the method through numerical
examples. We consider the fitting of realizatiorfsrandom processes with known
covariance structures. Hence, there is no modeém@r when using a Kriging

approximation; the error is only due to the lackrdérmation.

5.1 Two-dimensional example

The first example is the approximation of a redlaa of a two dimensional isotropic
Gaussian process with Gaussian covariance funclibae.design space is [-121]For
both numerical integration and optimization, theide space is divided by a 832 grid.
We present the results for the following configigas:

-11 -



- Target valud is chosen as 0.5
- Gaussian-based weight function is used, witlapaters. = 0.07.
- Initial DoE consists of the four corners of dhemain

16 points are added iteratively to the DoOE as desdrin the previous section. The final
results are presented in Figure 5.

True process Kriging expectation

T X S e,
S A
22 ORI ot
RSN 52
e

2

'3 SRR
D SRS
1 =

1

LY
RN
"“\“é\‘\

N . AN
Critical regions - AR
g G

nst

C
Figure 5: Optimal éegsign after 16 iterations. Tl#dm left figure shows the contour
lines of the true function at levels [I62 T-o., T, T+o,, T+20,], which delimit the target
regions; the bold line corresponds to the targataiar. Most of the training points are
chosen close to the target region. The Krigingaraze (bottom right figure) is very small
in these regions and large in non-critical regions.

Figure 5(a) is the plot of the true function, andufe 5(b) is that of the Kriging mean. In
the contour plot in Figure 5(c), it is shown thagre are three critical regions; on two of
them the function takes the valligon the third region the response is lower buselm
the threshold. After 16 iterations, the sequertiedtegy used five points to explore the
first critical region, eight points to explore tsecond region, two points for the third
region and one point for space-filling. As shownHigure 5(d), the Kriging variance
becomes small near the critical regions, whilesitrelatively large in the non-critical
region.

Figure 6 and (c) (d)
Figure 7 show the initial stage and the stage aftieing eight observations. Initially, the
prediction variance is constant, except at thenitigiof the corners, as shown in Figure
6(a). Since one corner has a response value ddbe target, the weight is higher in that
region (Figure 6(b)). Thus, a new observation iesem closer to this corner than the
others (Figure 6(c)). After eight iterations ((c) (d)
Figure 7), the weight function shows that the ragiare already well identified. The new
observation is not chosen where the weight is &rdrit where both weight and variance
are relatively large, that is on the critical regtbat is not well-explored yet.

-12 -
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Figure 6: Initial state. The weight function is @st uniform, except near the training

points.
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Kriging variance
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(c) (d)
Figure 7: Optimization problem after 8 iterationghe weight function discriminates
between critical and non-critical regions.
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5.2 Six-dimensional example

In the second example, we consider a realizaticsm sik-dimensional isotropic Gaussian
process with Gaussian covariance function. Thegdespace is [-1 £] In order to limit
the complexity (number of non-connected targetamsg) of the target region, we add a
linear trend to the Gaussian process.

The weighted IMSE criterion is computed by Quasinté-Carlo integration. The
integration points are chosen from a Sobol sequit@eto ensure a good space filling
property. At each step, the optimization is perfedmusing the population-based
optimizer CMA-ES [21].

We present the results for the following configimas:

Target value is chosen as 2

- Gaussian-based weight function is used, with 0.05.

Initial DOE consists of 20 points chosen fromibhénypercube sampling (LHS)
70 points are added iteratively to the DoE.

For comparison purpose, we generate a classicakdping DoE that consists of 90
LHS points with maximum minimum distance criterion.

First, we represent the error at 10,000 (unifordibtributed) data points (Figure 8).
The classical space-filling DoE leads to a unifamor behavior, while the optimal DoE
lead to large errors when the response is far filmentarget value, while small errors
when it is close to the target.

Optimal DoE Regular LHS
+ SHES L
i
i 04F iy
r Il
o . H'II
02t I
i
it
] g
i
i
02+ il
i
iy
04} i
il
i
06 - 1l
. s \ . . . ‘ . . T TR .
1 2 -8 -7 -6 5 -4 -3 -2 -1 1] 1 2
True distance to Threshald True distance to Threshold

(@) (b)

Figure 8: Comparison of error distribution for tRoEs: (a) optimal DoE and (b)
classical LHS. The x-axis is the difference betvtee true function and the threshold,
the y-axis is the error. Five vertical bars arendrat -2, -c;, 0, to. and +2, for the
target region. The error is on average smalletferL.HS design, but the optimal DoE
reduces substantially the error in the target regio
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In order to analyze the error in the target regisa,draw the boxplots of the errors for
the test points where responses are inside theidsrpe,, +o.] and [-&,, +20,] (Figure
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9). Compared to the space-filling strategy, themak design reduces significantly the
error. In particular, on both graphs the lower-uppeartiles interval is 2.5 times smaller
for the optimal DoE.
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Figure 9: Boxplots of errors for the LHS and optiesigns for the test points where
responses are inside the domaimsg, [+o;] (left) and [-3, +2] (right). Error at these
points is a lot smaller for the optimal designsboth intervals.

6. Application to Probability of Failure Estimation

6.1 Probability of failure using metamodel

Failure of a system can usually be determined tjlvaucriterion, called a limit-stat&,
The limit-state is defined such that the systernossidered safe & < 0, while failed
otherwise. For instance, the limit-state of a gtrieec can be defined as the difference
between respons®, (e.g., maximum stress or strain) and capa€ify(e.g., maximum
allowable stress or strain):

G=R-C (32)

Due to uncertainties in material properties anddilogs, the limit-state often shows
random distribution. When the limit-state is randdhe safety of the system should be
evaluated in terms of reliability or probability ¢dilure. The probability of failure is
defined as:

P, =Prob(G= Q (33)

There are many methods for calculating the faiprabability of a system [22-24]. Some
of them use the relation between input random bhesaand the limit-state (e.g., first-
order reliability method) and some consider theatistate as a black-box (e.g., Monte-
Carlo Simulations, MCS). MCS generates sampledeflitnit-state and calculates the
number of failed samples [24]. The ratio between nlambers of failures and the total
number of samples approximates the probabilityadfife of the system:

B, =ﬁi'[620] (34)
i=1
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Wherel[a] is the indicator function, equals to luifs true and O otherwise.

The accuracy of MCS strongly depends on the nurabeamples used, especially
when the probability of failure is low. When thestof simulation is high, engineers can
afford to have only a small number of samples, Wwiscnot good enough to estimate the
reliability with acceptable accuracy [25, 26]. Henasing a metamodel to approximate
the limit-stateG is a natural solution to the lack of data; MCShien performed on the
metamodel that is inexpensive to evaluate.

Besides, the use of Kriging allows us to replabe tndicator function by a
continuous distribution:

N N .
=200 (0 (@)
i=1

where CDE) denotes the cumulative distribution function (CF)the Kriging model at
Xi.

6.2 Adaptation of the weighted IMSE criterion

When approximating the limit-state, it is cleartthgarticular effort must be given to the
regions where it is close to zero, since error hat tregion is likely to affect the
probability estimate. Naturally, the critical regis where the value of limit state is close
to zero.

However, substantial improvement can be given, téking into account the
distribution of the input variables. Indeed, letasmsider the case of two distinct failure
regions, one of it dominating the other (that e probability that the input falls onto the
first region is much larger than the probabilityttht falls onto the other). Instead of
learning indifferently the two critical regions, wtill be more efficient to spend more
computational effort on the one that will affect shthe probability estimate. In the same
sense, when learning a single critical regionsitefficient to learn it only where the
samples are more likely to be.

To address this probability of input variables, wedify the weighted IMSE
criterion by integrating the weighted MSE not wéthuniform measure, but with the PDF
of the input variables:

IMSE,, = [ MSE(xW (x) du(x) (36)

whereu(x) is the joint PDF of the input variables.

6.3 Example

The limit state function is taken as a classicahpeetric function from the optimization
literature (modification of the Camelback functifv]). The two-dimensional design
space is given a@v) D[—l ]] . Then, the performance function is defined as

f(u,v) = —%{(4— 2.10° +—;U4]L_12+—2u—v +i§(— 4+i96\72jv 2} + 0.271 (37)

wheretu =u-3/5andv =v-9/40.
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Let U and V be independent Gaussian variables with zero meah standard
deviation taken at 0.28; i.el),V ~N(0,0.28). Then, the failure is defined when f
becomes greater than 0.4. Thus, the limit stadefined as

G=f(U,v)-04 (38)

Figure 10 plots the performance functitfo,v) and the contour line fof(u,v) = 0.4.
Contour lines show that there are two failure regjmne dominating the other.

Carmelback function
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S :ﬁw .
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\

Figure 10f(u,v) function and contour lines féfu,v) = 0.4. There are two failure regions,
one (bottom right, right figure) dominating the etlftop right).

For this example, we generate two optimal designsfirst is generated sequentially as
described in Section 4, with uniform integration asere (Eq. (19)); the second is
generated using the input distribution as integratheasure (Eq.(36)). Both use the four
corners of the domain as starting DoE and 12 itsratare performed. For comparison
purpose, a 16-point full factorial design is alsed. It is found that a Simple Kriging
model (UK without linear trend) with isotropic Gaimn covariance function
approximates well the function. The same (accurategriance parameters are used for
the different DoEs.

Figure 11 draws the two optimal designs obtainetithe full factorial designs. Both
optimal designs concentrate the computational etfiorthe failure regions and the center
of the domain. With uniform measure integratiorFigure 11(a), the DoE achieve more
space-filling than the other one. By taking theuidistribution into account in Figure
11(b), we see that only two observations are usedxplore the dominated critical
region, while five are used for the most criticaleo Besides, all five points are located
relatively close to the center of the domain.
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Finally, we perform 10 MCS on the three metamodels to compute the prbtyabf
failure estimates. TOMCS are also performed directly on the test fuorctio obtain the
true probability of failure. Results are reportadliable 2. The full-factorial design leads
to 36% error, while both optimal designs lead t&nall error. Substantial improvement
is obtained by taking the input distribution intcaunt.

Table 2: Probability of failure estimates for thege DoEs and the actual function based
on 10 MCS. The standard deviation of all estimates igheforder of 210°.

Optimal without| Optimal with Probability
DoE FF input input estimate based
distribution distribution on 10 MCS
Probability of | 57q 0.416 0.431 0.434
failure (%)
Relative error 35.6 % 4.1 % 0.6 %

7. Conclusions

In this paper, we addressed the issue of choosidgsegn of experiments when the
Kriging metamodel was used to approximate a functocurately around a particular
level-set. This situation frequently occurs in domised optimization and reliability
analysis. We proposed a modified version of thesital IMSE criterion by weighting
the prediction variance by the expected proximityarget values. The choice of a new
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observation based on such criterion is a traddéetfifveen exploration of the target region
(on the vicinity of the contour line) and reductiohthe global uncertainty (prediction
variance) in the metamodel.

We applied our strategy to examples in two anddsixensions. In two dimensions,
we showed that the sampling efficiently exploreel thrget regions while ensuring space-
filling. In six dimensions, we showed that compated classical space-filling design,
the error reduction in the target region was ofdfder of five.

Finally, the method was tested for reliabilityiesttion on an analytical example. An
additional criterion was adapted to integrate tis¢ridution of input random variables. It
was found that both criterion-based strategiesifstgntly outperformed space-filling
designs, and taking into account the input distitsuprovides additional improvement.

In this paper, the question of modeling error wasaddresses. Future work will include
a study on the effect of error in the Kriging paederns on the accuracy and efficiency of
the method.
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