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Singular metrics on the two-sphere in

space mechanics

B. Bonnard∗ J.-B. Caillau†

July 2008

Abstract

Riemannian metrics on the sphere of revolution with an equatorial singu-
larity are introduced so as to study dynamics arising in space mechanics
and two-body control. A homotopy from the round metric on the sphere
is defined which gives evidence of classification by the order of singularity
for such metrics. Symmetry, integrability and quasi-homogeneity proper-
ties near the singularity unveil the main features of geodesics and allow to
compute asymptotics, in connection with optimality issues. This question
is fully addressed in the end of the paper where cut and conjugate loci are
analyzed, providing examples of bifurcation and collapsing.

Keywords. Two-body control, almost-Riemannian metrics, homotopy,
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1 Two-body control

The aim of this paper is to put in the same framework two problems arising from
space mechanics and studied in previous papers: Bi-entry orbit transfer (see [5]),
and a single-input version of the problem as well (see [6]). We achieve this goal
using a singular or almost-Riemannian setting, thus completing the study of
the regular (i.e. classical Riemannian) situation initiated in [7]. This approach
is motivated by the use of homotopy methods [3] in optimal control. We first
recall the two-body optimal control problem which models orbit transfer in the
bi-entry case.

Consider a 1/r2 controlled field in the plane,

q̈ = − q

|q|3
+ u, |u| ≤ η,

where the norm r = |q| =
√
|q1|2 + |q2|2 of the position vector, q ∈ R2, measures

the distance between the two bodies—in practice a planet, and a spacecraft—,
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whereas u ∈ R2 (bi-entry system) is the two-dimensional control—the accelera-
tion provided by the spacecraft thruster. For obvious technological reasons, the
norm of the control is bounded over, |u| =

√
|u1|2 + |u2|2 ≤ η. One criterion of

interest for real space missions is minimization of the L1-norm of control, which
is connected with fuel consumption minimization,∫ tf

0

|u|dt→ min,

the final or transfer time tf being fixed. Since boundary conditions typically
consist in prescribing initial and final orbits for the spacecraft, trajectories are
indeed referred to as transfers. The state of the spacecraft can be described by
position and velocity vectors, (q, q̇) ∈ R4, or by using coordinates in dimension
three which account for the geometry of the osculating conic (i.e. the conic on
which the spacecraft is bounded to remain if the control vanishes), together with
a scalar parameter defining position on the conic itself. Restricting to negative
mechanical energy

E =
q̇2

2
− 1
|q|

< 0,

we consider only the case of elliptic orbits and choose any set of three param-
eters describing the osculating ellipse (e.g., semi-major axis, eccentricity and
argument of perigee), then adding longitude, l ∈ S1, to determine the angular
position on the ellipse. In the sequel, we shall not distinguish between longi-
tude and cumulated longitude which measures the total angular length of the
trajectory and can be used as a new time. This leads to a so-called periodic
sub-Riemannian form of the dynamics.

Replacing time by longitude, the system is rewritten according to

dx
dl

= u1F1(l, x) + u2F2(l, x), |u| ≤ η,

where F1 and F2 are vector fields over the three dimensional manifold, Xe, of
elliptic orbits, parameterized by longitude in S1. As the original four dimen-
sional state manifold which was trivially fibered over S1 (one coordinate being
longitude), the submanifold of elliptic orbits has a natural product structure,

Xe = R∗
+ ×D.

Here, D is the Poincaré open unit disk, and we can choose coordinates such
as parameter, P ∈ R∗

+, and cartesian or polar coordinates on the disk, that is
either eccentricity vector, (ex, ey), or eccentricity and argument of perigee, (e, θ).
In such coordinates,

F1 =
P 2

W 2

(
sin l

∂

∂ex
− cos l

∂

∂ey

)
,

F2 =
P 2

W 2

[
2P
W

∂

∂P

+
(

cos l +
ex + cos l

W

)
∂

∂ex
+
(

sin l +
ey + sin l

W

)
∂

∂ey

]
,

with W = 1 + ex cos l + ey sin l. The criterion becomes∫ lf

0

|u| dl
ω(l, x)

→ min
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where lf is the final (cumulated) longitude, and ω the pulsation of the system,

dl = ω(l, x)dt, ω =
W 2

P 3/2
· (1)

Up to this point, the system has two parameters, ε = 1/lf and α = ε/η.
The first one is to be regarded as a small parameter since there is a practical
interest for long orbit transfers (i.e. with many revolutions of one body around
the other), while the second is a saturation parameter (the smaller it is, the
more unlikely the activation of the constraint of the control, |u| ≤ η). Before
giving the Hamiltonian of the problem in normal form, we add a last and third
parameter, namely of homotopy parameter connecting the L1-cost to a more
tractable L2-cost,∫ lf

0

[(1− λ)|u|2 + λ|u|] dl
ω(l, x)

→ min, λ ∈ [0, 1].

Pontryagin maximum principle then tells us that so-called normal minimizing
trajectories are projections on the state manifold of curves in the cotangent
bundle T ∗Xe, which are integral curves of the following Hamiltonian with pa-
rameters.

Proposition 1. The normal maximized Hamiltonian of the problem is

Hλ,α,ε(s, z) =
1

1− λ
Θµ(l,x)

[
ω(ε−1s, x)

2

(
|ψ|(ε−1s, z)− λ

εω(ε−1s, x)

)2

+

]
.

In the previous expression, (.)+ means that only the positive part is retained,
and a second time change in the form of a rescaling has been performed setting
s = l/lf = εl, so longitude acts as a fast time while s is the new, slow time. The
variable z = (x, p) denotes a state-costate point of the cotangent bundle, while
function ψ is defined from Hamiltonian lifts Hi(l, z) = 〈p, Fi(l, x)〉 of vector
fields,

ψ(l, z) = (H1,H2)(l, z).

The function Θµ finally is a deformation of identity as Θµ(y) = (1/µ)Θ(µy)
with µ = µ(l, x) = α2ω(l, x)/(1− λ)2, and Θ defined by

Θ(y) = y when y < 1/2, Θ(y) =
√

2y − 1 when y ≥ 1/2.

In particular, Θ0 = id and
√
µΘµ →

√
2y when µ → ∞. The following Hamil-

tonians are readily recovered as special instances of the general case. For λ = 1,

H1,α,ε(s, z) =
1
α

(
|ψ| − 1

εω

)
+

(ε−1s, z)

is the original Hamiltonian of L1-minimization while, for λ = 0,

H0,α,ε(s, z) = Θα2ω

(ω
2
|ψ|2

)
(ε−1s, z)

is associated with (constrained) L2-minimization. A fundamental issue with
respect to homotopy methods in optimal control is to devise a set a parameters
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providing an integrable case. This task is fulfilled by setting λ = α = ε = 0, that
is considering the averaged Hamiltonian of (unconstrained) L2-minimization,

H0(z) =
(ω

2
|ψ|2

)
(z),

=
1
2π

∫ 2π

0

ω

2
|ψ|2(l, z)dl,

since classical averaging is indeed obtained as a weak limit when ε→ 0. Using
mean motion, n, instead of parameter, P , and polar coordinates on D, one
actually gets the following.

Proposition 2. The averaged Hamiltonian of unconstrained L2-minimization
in the bi-entry case is

H0(z) =
9n1/3

2
p2

n +
1

2n5/3

[
5(1− e2)

2
p2

e +
5− 4e2

2e2
p2

θ

]
.

This computation is already present in [11], and a detailed study of trajec-
tories is initiated in the subsequent paper [12]. The analysis is completed in [5]
thanks to the appropriate Riemannian setting that we now recall.

As is clear from Proposition 2, H0 is Liouville-integrable and associated to
the Riemannian metric in orthogonal form

ds2 =
dn2

9n1/3
+ n5/3

[
2

5(1− e2)
de2 +

2
5− 4e2

e2dθ2
]
.

Setting n = (5r/2)6/5 and e = sinϕ, one gets

ds2 = dr2 +
r2

c2

(
sin2 ϕ

1− (1− µ2) sin2 ϕ
dθ2 + dϕ2

)
(2)

with c =
√

2/5 and µ = (
√

5)−1. This metric has to be compared with the flat
one in R3, and there are convexity issues related to the fact that c < 1 (we
will come back on this when addressing the single-input case in §2). Changing
coordinates from (e, θ) to (θ, ϕ) allows to extend the metric from Xe = R∗

+×D
to X = R∗

+ × S2, lifting the open manifold with boundary D to the two-sphere
where (θ, ϕ) are the standard angular coordinates. This compactification step
is crucial and will be discussed anew in §4.

By homogeneity in the r variable, analysis can be restricted to S2. The re-
sulting metric on the sphere is shown to be a deformation of standard ones in §2.
The deformation reveals a classification with respect to the order of singularity
of appropriate metrics on S2 whose study encompasses bi-entry and single-input
control of two bodies. Section 3 provides a detailed account of symmetry, ho-
mogeneity and asymptotic properties of such singular metrics on the sphere.
All these aspects are connected with the optimality status of geodesics which
is studied in §4 where the emphasis if finally laid on bifurcation and collapsing
phenomena.



Singular metrics on the two-sphere in space mechanics 5

2 Construction of homotopy

The restriction of metric (2) to S2 writes

ds2 =
sin2 ϕ

1− (1− µ2) sin2 ϕ
dθ2 + dϕ2 (3)

and is a deformation of the canonical metric of the ellipsoid. Indeed, we have
the following.

Proposition 3. The metric (3) associated with bi-entry two-body control is
conformal to the canonical metric on an oblate ellipsoid of revolution with unit
semi-major axis and semi-minor axis µ = (

√
5)−1.

Proof. Note that for any positive µ,

sin2 ϕ

1− (1− µ2) sin2 ϕ
dθ2 + dϕ2 = [1− (1− µ2) sin2 ϕ]−1gE ,µ

where
gE ,µ = sin2 ϕ dθ2 + [µ2 + (1− µ2) cos2 ϕ]dϕ2 (4)

is the aforementioned metric on the oblate ellipsoid of revolution as is clear
when parameterizing the surface by

x = sinϕ cos θ, y = sinϕ sin θ, z = µ cosϕ.

As we shall see in §4, this analogy with the oblate ellipsoid is quite strong
and sheds some light not only on the optimality status of geodesics, but also on
the way the sphere collapses when µ→ 0.

Setting now X = sin2 ϕ and ν = 1− µ2, we can also write (3)

ds2 = XR(νX)dθ2 + dϕ2,

the rational fraction R being the simplest possible with a pole at X = 1, that
is at ϕ = π/2.

Proposition 4. Setting

gν = XR(νX)dθ2 + dϕ2 and R(X) =
1

1−X
,

where X = sin2 ϕ, defines a homotopy between the round metric on S2 (for
ν = 0) and a metric with an equatorial singularity (for ν = 1). The metric (3)
associated with bi-entry two-body control is obtained for ν = 4/5.

Before discussing the singular metric g1 = tan2 ϕ dθ2 + dϕ2 (see also [9]
where the same metric shows up in the context of quantum control), we go back
to orbit transfer and introduce the tangential single-input model. Consider
the control of a 1/r2 field by a command whose direction is prescribed to be
tangential to the trajectory, that is to say directed by the speed,

q̈ = − q

|q|3
+ u

q̇

|q̇|
, |u| ≤ η.
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The control is now scalar, u ∈ R, and the same machinery as before ap-
plies. Reparameterizing by longitude, the system is written in periodic sub-
Riemannian form

dx
dl

= u1F1(l, x), |u| = |u1| ≤ η,

with, in coordinates (n, e, θ) on Xe,

F1 = − 3(1− e2)w
n1/3(1 + e cos v)2

∂

∂n
+

2(1− e2)2

n4/3(1 + e cos v)2w

[
(e+ cos v)

∂

∂e
+

sin v
e

∂

∂θ

]
and

v = l − θ, w = |(ex + cos l, ey + sin l)| =
√

1 + 2e cos(l − θ) + e2.

The pulsation remains the same—compare with (1)—,

dl = ω(l, x)dt, ω(l, x) =
n(1 + e cos(l − θ))2

(1− e2)3/2
·

It is then remarkable that averaging the unconstrained L2-minimization Hamil-
tonian provides again an integrable system, still associated with a Riemannian
metric in orthogonal form [6].

Proposition 5. The averaged Hamiltonian of unconstrained L2-minimization
in the tangential single-input case is

Ht,0(z) =
9n1/3

2
p2

n +
1

2n5/3

[
4(1− e2)3/2

1 +
√

1− e2
p2

e +
4(1− e2)

(1 +
√

1− e2)e2
p2

θ

]
.

The corresponding Riemannian metric on Xe = R∗
+ ×D is

ds2 =
dn2

9n1/3
+ n5/3

[
1 +

√
1− e2

4(1− e2)3/2
de2 +

1 +
√

1− e2

4(1− e2)
e2dθ2

]
,

which we rewrite

ds2 = dr2 +
r2

c2t

[
sin2 ϕ (2− sin2 ϕ)2

4 cos4 ϕ
dθ2 + dϕ2

]
, (5)

setting again n = (5r/2)6/5, but changing the way the Poincaré disk is lifted to
the sphere when replacing e by ϕ. Actually, the appropriate change of coordinate
turns here to be

e = sinϕ
√

1 + cos2 ϕ,

while the new constant is ct = 2/5.

Remark 1. In comparison with the bi-entry case, ct = c2, so ct < c < 1 and
both three-dimensional metrics on X = R∗

+ × S2 are non-convex, as illustrated
in meridian half-planes, {θ = cst}. Since θ is cyclic, pθ is constant and choos-
ing pθ = 0 generates trajectories in such planes. There, the two-dimensional
restricted metric writes in both cases

ds2 = dr2 + r2dψ2
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with either ψ = ϕ/c or ψ = ϕ/ct, and the metric is actually flat. Geodesics
are straight lines in a non-convex angular sector of the plane which is either
(−π/(2c), π/(2c)) or (−π/(2ct), π/(2ct)). The smaller the constant, the higher
the non-convexity, accounting for the relation between the loss of existence
for boundary conditions with too different eccentricities (see [5]for a detailed
analysis) and the number of inputs available to control the system.

As before, we restrict to S2 by homogeneity and consider

ds2 =
sin2 ϕ (2− sin2 ϕ)2

4 cos4 ϕ
dθ2 + dϕ2. (6)

The following clearly holds.

Proposition 6. Setting

gν = XR(νX)dθ2 + dϕ2 and

R(X) =
(

1−X/2
1−X

)2

=
1
4

[
1 +

2
1−X

+
1

(1−X)2

]
,

where X = sin2 ϕ, defines a homotopy between the round metric on S2 (for
ν = 0) and the equatorially singular metric (6) associated with tangential single-
input two-body control (for ν = 1).

We are thus led to consider the following family of metrics with singularity
on the sphere. For p ≥ 1, let

R(X) =
p∑

n=0

an

(1−X)n
, a0, . . . , an−1 ≥ 0, an > 0, (7)

be a rational fraction with a pole of finite order p at X = 1. Without loss of
generality, we assume that R(0) = 1. As revealed by homotopy from the round
metric, p = 1 in the bi-entry case while p = 2 in the tangential single-input case,
and there is a classification according to the order of the singularity. Define

g = XR(X)dθ2 + dϕ2 where X = sin2 ϕ. (8)

It is a Riemannian metric on both open hemispheres of S2 with a singularity at
the equator {ϕ = π/2}, and it defines a metric—a so-called almost-Riemannian
one [2]—on the whole sphere as is clear from next proposition.

Proposition 7. Let Γ(ϕ) = (XR(X))−1, X = sin2 ϕ. The two vector fields

F1 =
√

Γ(ϕ)
∂

∂θ
, F2 =

∂

∂ϕ

define a complete sub-Riemannian1 metric on S2.

Proof. Readily, (adkF2)F1 = (
√

Γ)(k)∂/∂θ which is not zero at ϕ = π/2 for some
order of derivation since

√
Γ is not flat as R has a finite order pole at X = 1.

So the distribution generated by F1 and F2 verifies the Hörmander condition at
any point of the compact manifold S2, including the singular set (the equator).

1Carnot-Carathéodory [4].
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The distance between two arbitrary points of the sphere is thus defined, up
to a multiplicative constant, as the value of the optimal control problem with
dynamics

ẋ = u1F1(x) + u2F2(x),

cost functional ∫ tf

0

|u|2dt→ min

with final time tf fixed, and boundary conditions the two points. Equivalently,
one can consider the minimum time trajectory between the points with respect
to

ẋ = u1F1(x) + u2F2(x), |u| ≤ 1.

Classification by the order is also reflected by transcendency of geodesics, as
will be clear from next section.

3 Symmetry, quasi-homogeneity, asymptotics

Given a metric defined by (7-8), we restrict to the level set {H = 1/2} of the
Hamiltonian associated to the metric,

H =
1
2
(Γ(ϕ)p2

θ + p2
ϕ), Γ = (XR(X))−1, X = sin2 ϕ,

and so parameterize extremals by arc length. Consider the extremal depar-
ting from ϕ0 6= 0 (π) (not a pole), θ0 being normalized to 0 (cyclic variable)
and defined by a positive pθ (the degenerate case pθ = 0 corresponding to
meridians—which are the only extremals passing through the poles) and non-
negative pϕ0 =

√
1− Γ(ϕ0)p2

θ. Along the extremal, ϕ̇ first vanishes when
ϕ = ϕ1 = π − Γ−1(p−2

θ ), Γ being a one-to-one (strictly decreasing) mapping
between (0, π/2) and R∗

+ by the definition (7) of R. As Γ′ does not vanish,

1− Γ(ϕ)p2
θ = O(ϕ1 − ϕ)

in the neighbourhood of π−Γ−1(p−2
θ ), and the following integral is well-defined,

t1(pθ, ϕ0) =
∫ π−Γ−1(p−2

θ )

ϕ0

dϕ√
1− Γ(ϕ)p2

θ

·

Lemma 1. The axial symmetry σ1 with respect to θ1 = θ(t1) is an inner sym-
metry of the extremal.

Proof. Set

θ̂ = 2θ1 − θ(2t1 − t), p̂θ = pθ,
ϕ̂ = ϕ(2t1 − t), p̂ϕ = −pϕ(2t1 − t),

and check that new curve is still an extremal, passing through the same point
of the cotangent bundle at t1 since pϕ(t1) = 0.
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Necessarily, π − Γ−1(p−2
θ ) ≥ π − ϕ0, so there also exists t′1 ≤ t1 such that

ϕ(t′1) = π − ϕ0. Using the previous axial symmetry, we deduce the existence of
t2 = 2t1 − t′1 ≥ t1 such that, again, ϕ(t2) = π − ϕ0. Using now the equatorial
symmetry of Γ,

Γ(π − ϕ) = Γ(ϕ),

the following is clear.

Lemma 2. The central symmetry s2 with respect to (θ2/2, π/2) defines another
extremal with same initial condition.

Proof. Set

θ̂ = θ2 − θ(t2 − t), p̂θ = pθ,
ϕ̂ = π − ϕ(t2 − t), p̂ϕ = pϕ(t2 − t).

The new curve is still an extremal since

˙̂
θ = Γ(π − ϕ̂)pθ = Γ(ϕ̂)p̂θ, ˙̂pϕ =

1
2
Γ′(π − ϕ̂)p2

θ = −1
2
Γ′(ϕ̂)p̂2

θ,

and θ̂0 = 0 = θ0, ϕ̂0 = π − (π − ϕ0) = ϕ0.

Finally denote t3 the point such that ϕ(t3) = π/2 ≤ π − ϕ0, and remark
that the central symmetry σ2 with respect to (θ(t3), ϕ(t3)) leaves the extremal
invariant. Since the axial symmetry s1 with respect to θ = 0 obviously defines
another extremal with same initial condition, we conclude that the group gen-
erated by s1 and s2 acts on the set of extremals with same initial condition,
while the group generated by σ1 and σ2 defines inner symmetries of extremals.
The composition rules indicate in both cases that the underlying group is the
four-order abelian Klein group,

V = Z/2Z× Z/2Z ' {id, s1, s2, s1s2} ' {id, σ1, σ2, σ1σ2}.

Proposition 8. Given any initial condition, the Klein group acts on the set
of extremals issuing from the point. It also defines inner symmetries of any
extremal.

An extremal is said to be a pseudo-equator whenever ϕ̇(0) = pϕ(0) is equal
to zero, whereas the equator itself cannot be an extremal since Γ(π/2) = 0
because of the singularity.

Lemma 3. Every extremal which is not a meridian is a pseudo-equator.

Proof. For pθ positive and pϕ0 nonnegative (the other cases are deduced by sym-
metry), there exists ϕ̃0 = Γ−1(p−2

θ ) such that, up to a time shift, the extremal
is the pseudo-equator with initial condition ϕ̃0.

Conversely, any pseudo-equator meets ϕ = π/2 as one understands from the
analysis of symmetries. Taking ϕ̃0 = π/2 as new initial condition and retaining
the same value for pθ provides the same geodesic, up to a time shift again. As
a result, rather than parameterizing extremals using both ϕ0—we set θ0 = 0
thanks to the symmetry of revolution—and pθ, one may either parameterize by
ϕ0 ∈ (0, π/2) alone using the fact all geodesics (with the exception of meridians,
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pθ = 0) are pseudo-equators (then, implicitly, p2
θ = 1/Γ(ϕ0), ϕ0 6= π/2 since the

equator is not a geodesic), or parameterize by their Clairaut constant pθ ∈ R∗
+,

considering only the initial condition at singularity, ϕ0 = π/2. The second point
of view reduces the study of geodesics to those starting at singularity.

Proposition 9. On every extremal, coordinate ϕ is periodic with period

T (pθ) = 4
∫ π/2

Γ−1(p−2
θ )

dϕ√
1− Γ(ϕ)p2

θ

,

and θ(t+ T ) = θ(t)±∆θ (the sign depending on the sign of pθ) with

∆θ(pθ) = 4
∫ π/2

Γ−1(p−2
θ )

Γ(ϕ)pθdϕ√
1− Γ(ϕ)p2

θ

·

Proof. According to the previous analysis, it is enough to check the result on
pseudo-equators. But then, t1 = t2 = t3 = 2t4, so setting T = 2t1 and using the
axial symmetry with respect to θ1 gives the result since ϕ(T ) = ϕ(0), pϕ(T ) =
−pϕ(0) = 0 = pϕ(0). Hence θ̇ = Γ(ϕ)pθ is also periodic, which concludes the
proof.

As functions of ϕ0,

T (ϕ0) = 4
∫ π/2

ϕ0

dϕ√
1− Γ(ϕ)/Γ(ϕ0)

, (9)

and

∆θ(ϕ0) = 4
∫ π/2

ϕ0

Γ(ϕ)dϕ√
Γ(ϕ0)− Γ(ϕ)

· (10)

These relations actually cover the case of meridians pθ = 0 (i.e. ϕ0 = 0) for
which T = 2π and ∆θ = 2π (two instantaneous rotations of angle π when
crossing poles at t = π and t = 2π). The limits when approaching the equator
are also known.

Proposition 10. Both T and ∆θ vanish when |pθ| → ∞ ( i.e. ϕ0 → π/2).

Proof. Directly follows from estimates of integrals (9-10) using the fact that,
because of (7), Γ does not vanish identically at ϕ = π/2.

Refined estimates of T and ∆θ will be given in the end of the section. We
now focus of quasi-homogeneity properties of the local model at singularity.
Setting x = π/2− ϕ and y = θ, since 1− sin2 ϕ ∼ (π/2− ϕ)2 when ϕ tends to
π/2, a local model for the metric (8) is

ds2 = dx2 +
dy2

x2p
(11)

where p is the order of the pole. The equatorial symmetry of Γ is approximated
by (−x)2p = x2p, so the discrete symmetry group is preserved. Such almost-
Riemannian metrics are related to sub-Riemannian distributions. For p = 1,
the local model is ds2 = dx2 + dy2/x2, and the metric is actually obtained by
projecting the Heisenberg sub-Riemannian distribution [8]. This distribution is
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indeed defined, up to a renormalization, by the following two vector fields on
R3,

F1 =
∂

∂x
− y

∂

∂z
, F2 =

∂

∂x
+ x

∂

∂z
,

and the corresponding sub-Riemannian Hamiltonian is

H =
1
2
[
(p2

x + p2
y) + 2pz(xpy − ypx) + (x2 + y2)p2

z

]
,

which strongly suggests to use cylindrical coordinates. In these variables,

H =
1
2
[
p2

r + (pθ/r + rpz)2
]
.

As θ and z are cyclic, the system is integrable in dimension three, and projects
onto a Hamiltonian in the (r, z)-space with the desired singularity,

H =
1
2
(p2

r + r2p2
z),

when restricting to pθ = 0. For p = 2, the local model is ds2 = dx2 + dy2/x4,
which is connected to the flat Martinet sub-Riemannian distribution. Consider
indeed the two vector fields on R3 (see [1])

F1 =
∂

∂x
+ y2 ∂

∂z
, F2 =

∂

∂y
,

so the sub-Riemannian Hamiltonian is

H =
1
2
[
p2

y + (px + y2pz)2
]
.

The two coordinates x and z are cyclic, and the Hamiltonian projects onto
H = (1/2)(p2

y + y4p2
z) in the (y, z)-space when restricting to px = 0, providing

the higher order singularity.
Going back to the general case, we restrict the computation to geodesics

issuing from the origin on the level set {H = 1/2} of the Hamiltonian

H =
1
2
(p2

x + x2pp2
y)

so that the initial adjoint state belongs to the union of the two lines, {px = ±1}.
We set λ = py and restrict to positive λ by symmetry (the trivial geodesics
(±t, 0) being obtained for λ = 0). The coordinate x is then

x =
1

p
√
λ
q(t p

√
λ) ,

where q is defined through the quadrature

q−1(u) =
∫ u

0

dv
p
√

1− v2p
·

For p = 1, q is harmonic, elliptic for p = 2, hyperelliptic and reciprocal to an
hypergeometric function in general. More precisely,

q−1(u) = u · 2F1(1/2, 1/(2p); 1 + 1/(2p);u2p) (12)
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where 2F1(a, b; c; z) is the hypergeometric series

2F1(a, b; c; z) =
∑
n≥0

αn
zn

n!
,

and
α0 = 1,

αn+1/αn = (n+ a)(n+ b)/(n+ c).

The reciprocal of q is hence equal to

q−1(u) =
∑
n≥0

αn
u2np+1

n!

with αn = (a)n(b)n/(c)n for a = 1/2, b = 1/(2p) and c = 1 + 1/(2p), the
notation (a)n standing for the Pochhammer symbol

(a)n = a(a+ 1) · · · (a+ n− 1).

Here,

α0 = 1,

α1 =
1
2

1
2p+ 1

,

α2 =
3
4

2p+ 1
8p2 + 6p+ 1

,

α3 =
15
8

8p2 + 6p+ 1
48p3 + 44p2 + 12p+ 1

,

...

which gives the usual Taylor series of the reciprocal of the sine function for
p = 1, asinu = u+ u3/6 + 3x5/40 + 5x7/112...

Eventually, ẏ = λx2p, so

y =
1

( p
√
λ)p+1

r(t p
√
λ),

where r is defined by a second quadrature,

r(t) =
∫ t

0

q2pds.

In the Heisenberg case (p = 1), one has

q = sin t, r =
t

2
− 1

4
sin 2t.

In the flat Martinet case (p = 2), one has (see [1])

q = −cn(t
√

2 +K), r = (3
√

2)−1[t
√

2 + 2 sn cn dn(t
√

2 +K(k), k)],

where cn, sn and dn are Jacobi elliptic functions, here for the parameter k =
1/
√

2. The constant K is the complete elliptic integral of the first kind for the
same value of the parameter,

K(k) =
∫ 1

0

dv√
1− v2

√
1− k2v2

·
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The transcendency of geodesics of the global metric on S2 is similar. Namely,
the quadrature on ϕ is

±dt =
dϕ√

1− p2
θΓ(ϕ)

, (13)

which essentially amounts to

± dt =
dX√

P (X, pθ)

where P is a polynomial in X = sin2 ϕ and pθ. The transcendency is then given
by the genus, g, of the Riemann surface associated with the algebraic curve
Y 2 = P (X, pθ) parameterized by the adjoint vector. In the bi-entry case, p = 1,

P (X, pθ) = 4(1−X)(X − p2
θ(1−X)),

so g = 0, and we have harmonic functions. In the tangential single-input case
where p = 2,

P (X, pθ) = (1−X)(X(2−X)2 − 4p2
θ(1−X)2),

so g = 1, and we have elliptic functions. When p ≥ 4, g = [p/2], and hyper-
elliptic functions are to be considered.

For any p ≥ 1, symmetry reasons imply that non-trivial minimizing geodesics
emanating from the origin first intersect on the y-axis. The cut locus at the
origin, that is the set of points where geodesics cease to be minimizing, is the
axis minus the origin itself. The conjugate locus is the set of first critical values
of the exponential mapping on {H = 1/2},

expt(λ) = exp(0,0),t(λ) = (x(t, λ), y(t, λ)).

Let sp denote the first positive root of

qr′ − (p+ 1)q′r = 0. (14)

Because of quasi-homogeneity with respect to λ, first conjugate times are readily
t1c(λ) = sp/

p
√
λ. Since the conjugate locus can obviously not be contained into

one of the two axes, the following holds.

Lemma 4. The conjugate locus at the origin of ds2 = dx2 + dy2/x2p is the set
y = ±Cpx

p+1 minus the origin where

Cp =
1

p+ 1

√
q2p(sp)

1− q2p(sp)

is nonzero, sp being the first positive root of (14), q defined by (12).

Remark 2. The Hamiltonian of the local model (11) is

H =
1
2
(p2

x + xkp2
y), k = 2p ≥ 2,

so ẋ2 + λxk = 1 on {H = 1/2} (still with λ = p2
y) and

ẍ = −λ
2
kxk−1.
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The associated variational equation is

δẍ = −λ
2
k(k − 1)x(t)k−2δx,

which may alternatively be reduced to a linear second order differential equation
using the so-called Yosida transformation. It consists in the time change s =
xk(t), and denoting ′ = d/ds one gets

s(1− λs)δx′′ + η[1− (1 +
1
2η

)λs]δx′ + η
λ

2
δx = 0, η =

k − 1
k

·

See [10] where the same Jacobi equation is investigated using this transforma-
tion.

As a byproduct of the previous analysis, we get the following result.

Proposition 11. For a singular metric on the sphere defined by (7-8), the
conjugate locus of a point on the equator has two contacts of order p + 1 with
the meridian passing through the point.

We end the section by providing asymptotics of T and ∆θ in the neighbour-
hood of meridians, when pθ → 0, and in the neighbourhood of the equator, when
pθ →∞ (we only consider pθ ≥ 0 because of symmetries). In the first case, the
asymptotics measure how fast the metric (8) converges to the round one since
both metrics restrict to ds2 = dϕ2 along meridians—the only geodesics always
shared by the two of them. Conversely, as T and ∆θ vanish when pθ → ∞
by Proposition 10, geodesics converge to the equator so the asymptotics tell us
how fast cut points (see §4) accumulate towards the initial point, ϕ0 = π/2
(as previously mentioned, parameterization by pθ allows to restrict to geodesics
starting at singularity). One may then consider that the equator is retrieved
as a geodesic by augmenting the level set {H = 1/2}. When ϕ0 = π/2, it is
the union of two lines, {pθ ∈ R, pϕ0 = ±1}, and in contrast to the regular
case discussed in [7], the singularity moves away to infinity the Clairaut con-
stant of the equator so two points at infinity must be added to the level set,
{pθ = ±∞, pϕ0 = 0}.

Next result implies that computing asymptotics of T suffices to obtain those
of ∆θ.

Lemma 5. ∆θ′ = T ′/pθ.

Proof. Write as in [7]

T = pθ∆θ + 4
∫ π/2

Γ−1(p−2
θ )

√
1− Γ(ϕ)p2

θ dϕ,

so

T ′ = ∆θ + pθ∆θ′ + 4
∫ π/2

Γ−1(p−2
θ )

∂

∂pθ

(√
1− Γ(ϕ)p2

θ

)
dϕ

−8(Γ−1)′(p−2
θ )pθ

√
1− Γ(ϕ)p2

θ |ϕ=Γ−1(p−2
θ )︸ ︷︷ ︸

0

= pθ∆θ′.
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In the bi-entry case, p = 1 with R = (1−X)−1, and we get the quadratures
hereafter,

T =
2π√
1 + p2

θ

, ∆θ = 2π

(
1− pθ√

1 + p2
θ

)
. (15)

In the tangential single-input case, p = 2 with R = (1−X/2)2(1−X)−2, and

T =
4√
A2B1

[
Π(ν, k) +

2− p

p− q
K(k)

]
(16)

where K and Π are respectively complete elliptic integrals of first and third
kind,

Π(ν, k) =
∫ 1

0

dv
(1− νv2)

√
1− v2

√
1− k2v2

,

with

∆ = 4(β − α)(β − δ)(γ − α)(γ − δ), σ = (α+ δ)(β + γ)− 2(αδ + βγ),

l1 =
σ −

√
∆

(β − γ)2
, l2 =

σ +
√

∆
(β − γ)2

,

p =
(α+ δ)− l1(β + γ)

2(1− l1)
, q =

(α+ δ)− l2(β + γ)
2(1− l2)

,

A1 = −l2
1− l1
l2 − l1

, B1 = −l1
1− l2
l2 − l1

, A2 =
1− l1
l2 − l1

, B2 =
1− l2
l2 − l1

,

a =
√
A2

B2
, b =

√
A1

B1
, k =

b

a
, ν = b2.

Remark 3. For the sake of completeness, we also provide the quadrature on ϕ
in the tangential single-input case, which subsumes the computation of T (for
the bi-entry case, see [5] from where computations in the singular case are easily
deduced). According to (13), with the same notation as before,

±t =
1

2
√
A2B1

[
Π(v, ν, k) +

2− p

p− q
sn−1(v, k)

+
√
A2B1 atan

(√
A1A2

√
(1− v2)(1− k2v2)−

√
B1B2(1− νv2)

)]1
v
,

where the elliptic integral of third kind is now incomplete, and where

v = b−1X − q

p−X
∈ [−1, 1] with X = sin2 ϕ.

Similarly,

∆θ =
4pθ√
A2B1

[
2Π(κ, k)

pq
− 2Π(µ, k)

(2− p)(2− q)
+

4(1− p)2

p(2− p)(p− q)
K(k)

]
(17)

with, moreover,

c =
q

p
, d =

2− q

2− p
, κ =

ν

c2
, µ =

ν

d2
·
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Here before, α, β, γ and δ = 1 are roots of the degree four polynomial P (X, pθ)
involved in the computation,

P (X, pθ) = (1−X)(X(2−X)2 − 4p2
θ(1−X)2).

We just need expansions of these roots in the neighbourhood of pθ = 0 and
pθ = ∞. Such expansions are available in

√
ε-scale as both

Q(X, ε) = X(2−X)2 − 4ε(1−X)2 and Q̃(X, ε) = 4(1−X)2 − εX(2−X)2

possess either simple or order two roots for ε = 0.

Lemma 6. When pθ → 0,
α = p2

θ + o(p2
θ),

β = 2− pθ

√
2 +

3
2
p2

θ + o(p2
θ), γ = 2 + pθ

√
2 +

3
2
p2

θ + o(p2
θ).

When pθ →∞,

α = 1− 1
2
p−1

θ − 1
8
p−2

θ + o(p−2
θ ), β = 1 +

1
2
p−1

θ − 1
8
p−2

θ + o(p−2
θ ),

γ = 4p2
θ + 2 +

1
4
p−2

θ + o(p−2
θ ).

Plugging these expressions into quadrature (16) and using Lemma 5 leads
to the desired asymptotics, those in the bi-entry case being obvious.

Proposition 12. In the neighbourhood of meridians,

T ∼ 2π(1− 1
2
p2

θ), ∆θ ∼ 2π(1− pθ), pθ → 0,

in the by-entry case, and

T ∼ 2π(1− 3
√

2
8
p2

θ), ∆θ ∼ 2π(1− 3
√

2
4
pθ), pθ → 0,

in the tangential single-input case. In the neighbourhood of the equator,

T ∼ 2π
pθ

, ∆θ ∼ π

p2
θ

, pθ →∞,

in the by-entry case, and

T ∼ 4(2−
√

2)K(3−2
√

2)p−1/2
θ , ∆θ ∼ 4

3
(2−

√
2)K(3−2

√
2)p−3/2

θ , pθ →∞,

in the tangential single-input case.

The influence of the order on the rate of accumulation of cut points is clear,
and the matter of cut and conjugate loci is addressed in details in last section.
The condition for a geodesic to be closed is ∆θ ∈ πQ (rationality of ∆θ/π),
so that asymptotics when pθ →∞ also measure the density of closed curves in
the neighbourhood of the equator. This is related to optimality conditions, too,
through injectivity radius (see [5] in the Riemannian case).
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4 Bifurcation and collapsing

Singular metrics (8) are complete but not Riemannian on the whole sphere while
Riemannian but incomplete on hemispheres, so standard arguments of global
Riemannian geometry have to be adapted. The structure result hereafter holds
unchanged, where separating lines are sets of intersections of distinct minimizing
geodesics with same initial condition.

Proposition 13. Cut points of a singular metric on the sphere defined by (7-8)
are either conjugate points, or points in separating lines.

Proof. First assume ϕ0 6= π/2. If the cut point is not a conjugate point, the
exponential mapping is a diffeomorphism in the neighbourhood of the time, tl,
and adjoint vector which generate the cut point. Since the metric is complete
by Proposition 7, there are minimizing extremals γn joining the initial point to
γ(tl +1/n), n ≥ 1, where γ is the curve in the state space defining the cut point,
γ(tl). As ϕ0 6= π/2, the set {p = (pθ, pϕ) |H(0, ϕ0, p) = 1/2} is compact, and
one can extract a converging subsequence of the (pn)n generating the extremals
γn, and thus get the standard contradiction [13].

When ϕ0 = π/2, though {p |H = 1/2} = R × {pϕ = ±1} is not bounded
anymore, (pθn)n still has to be bounded otherwise there would exist a subse-
quence such that |pθn| → ∞, and γn(tl + 1/n) would tend to (0, π/2) according
to Lemma 10, that is to the initial point, not to the cut point γ(tl). The sequence
being thus bounded, we can conclude as before.

Conversely, geodesics of such metrics are extremals of a minimum time con-
trol problem (see §2), and results of optimal control ensure that optimality is
lost after conjugate points [8]. Besides, extremals of such problems have to be
smooth so that broken curves which are concatenations of minimizing geodesics
cannot be minimizing, entailing that optimality classically cannot be preserved
after points in separating lines.

Theorem 1. Consider a singular metric on the sphere defined by (7-8). Under
the assumption that ∆θ is strictly decreasing for pθ > 0, cut loci are antipodal
subarcs. The cut locus of a pole is reduced to the opposite pole, is equal to the
equator minus the point for an equatorial point, and to a proper closed subarc
of the antipodal parallel otherwise.

Proof. The case of poles is obvious since the only extremals through them are
meridians.

Consider now the situation ϕ0 = π/2, and show that the exponential map-
ping is injective on the quadrant

D = ∪pθ>0[0, T (pθ/2)]× {pθ, 1},

that is show that subarcs of extremals defined by t ∈ [0, T (pθ)/2], positive pθ

and pϕ = +1 do not intersect. If p′θ > pθ, the arc associated with p′θ is strictly
below the one associated with pθ. Indeed, note that on the first half of such an
arc t ∈ [0, T/4) and ϕ̇ does not vanish so that the curve can be parameterized
by ϕ instead of time. There,

f(ϕ, pθ) =
dθ
dϕ

=
Γ(ϕ)pθ√

1− Γ(ϕ)p2
θ
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is an increasing function of pθ since

∂f

∂pθ
=

Γ(ϕ)
(1− Γ(ϕ)p2

θ)3/2
> 0.

As geodesics starting from ϕ0 = π/2 cross again the equator at ∆θ/2, the as-
sumption ensures that the aforementioned subarcs do not intersect. We conclude
by remarking that the full set of extremals is obtained by considering the action
of the Klein group on geodesics with same initial condition (see §3). First, the
central symmetry s2 which generates intersections at t = T/2, then the axial
symmetry s1 with respect to θ = 0 which generates intersections at θ = π, thus
not prior to the previous ones since θ(T/2) = ∆θ/2, and since ∆θ < 2π for
pθ > 0 (by assumption, ∆θ is decreasing, and equal to 2π on meridians, i.e.
when pθ = 0). So extremals are optimal up to t = T/2, and the corresponding
point belongs to the separating line. Since the metric is complete, each point of
the equator is reached by such an extremal and the separating line, hence the
cut locus, is the equator minus the initial point itself.

Consider finally the case when the initial point is neither polar nor equatorial.
Then p2

θ belongs to (0, 1/Γ(ϕ0)), and extremals are again optimal up to t =
T/2. Indeed, there would otherwise exist shorter extremals which would lead
to the existence of shorter extremals for the initial condition ϕ0 = π/2 too,
contradicting the previous fact. The central symmetry s2 still generates an
intersection at t = T/2, and ϕ(T/2) = π − ϕ0 so the corresponding point in
the separating line belongs to the antipodal parallel of the starting point. Since
∆θ is decreasing, the extremities of the cut are obtained letting pθ tend to
±(Γ(ϕ0))−1/2 (now finite, since ϕ0 6= π/2), and the subarc is closed.

To get the result on conjugate loci, we finally also assume that ∆θ is convex.

Theorem 2. Consider a singular metric on the sphere defined by (7-8). Under
the assumption that ∆θ is strictly decreasing and convex for pθ > 0, conjugate
loci are reduced to the opposite pole for poles, double-heart shaped with four
meridional cusps for equatorial points, and astroidal with two meridional and
two equatorial cusps otherwise.

Proof. The analysis outside the equator being a direct extension of the result
in [7], we focus on the proof for ϕ0 = π/2. Consider an extremal defined by a
positive pθ and pϕ0 = +1. For t in (T/4, 3T/4), ϕ̇ 6= 0 and the extremal can be
parameterized by ϕ according to

θ(ϕ, pθ) =
∆θ(pθ)

2
+
∫ π/2

ϕ

f(ϕ′, pθ)dϕ′,

where, as before,

f(ϕ, pθ) =
dθ
dϕ

=
Γ(ϕ)pθ√

1− Γ(ϕ)p2
θ

·

The conjugacy condition writes ∂θ/∂pθ = 0, so the coordinate ϕ1c(pθ) of the
first conjugate point is solution of∫ π/2

ϕ1c(pθ)

∂f

∂pθ
(ϕ′, pθ)dϕ′ = −∆θ′(pθ)

2
> 0,
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in order that ϕ1c(pθ) < π/2 (since ∂f/∂pθ > 0). By differentiating the previous
equality, one gets

ϕ′1c(pθ) =
[
∂f

∂pθ
(ϕ1c(pθ), pθ)

]−1
[

∆θ′′

2
(pθ) +

∫ π/2

ϕ1c(pθ)

∂2f

∂p2
θ

(ϕ′, pθ)dϕ′
]
,

which is positive first because ϕ1c(pθ) < π/2, then because

∂2f

∂p2
θ

=
3Γ2(ϕ)pθ

(1− Γ(ϕ)p2
θ)5/2

> 0,

and by virtue of positiveness of ∆θ′′. In particular, the parameterization pθ 7→
(ϕ1c(pθ), θ(ϕ1c(pθ), pθ)) of the conjugate locus is regular, and the set has no
cusp for positive pθ.

The tangent vector along the conjugate locus is(
∂θ

∂ϕ
ϕ′1c +

∂θ

∂pθ︸︷︷︸
0

)
∂

∂θ
+ ϕ′1c

∂

∂ϕ
,

which is proportional to f(ϕ1c(pθ), pθ)∂/∂θ + ∂/∂ϕ. On the one hand, as in
the regular case discussed in [7], f(ϕ1c(pθ), pθ) tends to 0 when pθ → 0+, and
the locus has a first meridional cusp because of the axial symmetry s1. On the
other hand, when pθ goes to +∞, the analysis on the local model shows that,
contrary to the regular case, the conjugate locus has two tangential contacts with
the meridian (Proposition 11) which, combined again with symmetry s1, form a
second meridional cusp at the initial point where conjugate points accumulate,
and we have a heart shaped conjugate locus. The central symmetry s2 gives the
symmetric part, whence the result.

These two results directly apply to the simplest case of order one, R =
(1 − X)−1, associated with the bi-entry case. Indeed, differentiating (15) one
obtains

∆θ′ = − 1
(1 + p2

θ)3/2
< 0 and ∆θ′′ =

3pθ

(1 + p2
θ)5/2

≥ 0

when pθ > 0. The computation is more intricate in the tangential single-input
case, but there is numerical evidence that the structure is similar, and it is
still possible to verify the required assumptions on ∆θ in the neighbourhood of
meridians and equator thanks to asymptotics. According to Proposition 12,

∆θ ∼ 4
3
(2−

√
2)K(3− 2

√
2)p−3/2

θ , pθ →∞,

and ∆θ′ < 0 ≤ ∆θ′′ when pθ →∞. The analysis has to be refined when pθ → 0
since a higher order expansion of ∆θ is required, involving terms up to fourth
order in the asymptotic expansions of roots β and γ.

Lemma 7. In the neighbourhood of meridians,

β = 2− pθ

√
2 +

3
2
p2

θ −
13
√

2
16

p3
θ +

1
2
p4

θ + o(p4
θ),
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Figure 1: Bi-entry case. Bifurcation of the cut (in black) and conjugate (red
dots) loci, respectively from a closed antipodal subarc to the pointed equator,
and from an astroid to a double-heart, when the initial condition goes to the
equator (ϕ0 < π/2 on the left, ϕ0 = π/2 on the right). Geodesics are portrayed
in blue.

γ = 2 + pθ

√
2 +

3
2
p2

θ +
13
√

2
16

p3
θ +

1
2
p4

θ + o(p4
θ).

Moreover,

∆θ ∼ 2π(1− 3
√

2
4
pθ +

35
√

2
128

p3
θ), pθ → 0.

The condition ∆θ′ < 0 ≤ ∆θ′′ consequently also holds when pθ → 0.
In such situations, we observe a first bifurcation as the initial condition

tends to the equator. Indeed, the cut and conjugate loci are respectively a
closed antipodal subarc and an astroid-shaped set outside polar and equatorial
points, while they bifurcate to an open arc (the equator minus the initial point)
and a double-heart set for an equatorial initial condition (see Fig. 1). A similar
bifurcation may also occur in connection with the homotopy from round metric
on the sphere discussed in §2, as will be clear from curvature estimates.

Given a metric ds2 = G(ϕ)dθ2 + dϕ2 on S2, the Gaussian curvature is

K = −(
√
G)−1 d2

√
G

dϕ2
·

Lemma 8. Let R be a rational fraction verifying (7), and consider the homotopy
from the round metric on the sphere defined by

gν = XR(νX)dθ2 + dϕ2, X = sin2 ϕ. (18)

For any ν ∈ [0, 1], the curvature Kν of gν is a rational fraction in X homoge-
neously depending on R,

Kν = 1 + ν(4X − 3)
R′

R
+ ν2X(1−X)

R′2

R2
− 2ν2X(1−X)

R′′

R
·
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Figure 2: Tangential single-input case. Bifurcation of the cut (in black) and
conjugate (red dots) loci, respectively from a closed antipodal subarc to the
pointed equator, and from an astroid to a double-heart, when ν → 1 (ν < 1 on
the left, ν = 1 on the right). Geodesics are portrayed in blue.

Proposition 14. The following curvature estimates hold for metrics gν defined
by (18),

Kν(X) = 1 + νR′(0)(4X − 3) +O(ν2), ν → 0,

K1(X) ∼ −p(p+ 1)
1−X

, X → 1,

Kν(1) ∼ p

1− ν
, ν → 1,

where p is the order of the pole of R.

Corollary 1. Cut loci of the metrics gν defined by (18) are closed antipodal
subarcs for ν small enough.

Proof. SinceK ′
ν(X) ∼ 4ν(R′/R)(0)+O(ν2) with (R′/R)(0) > 0 by virtue of (7),

the curvature is monotone non-decreasing along half-meridians and the result
follows from [14] main theorem.

A second bifurcation is therefore obtained on cut loci, again from closed
antipodal subarcs to the pointed equator, when ν → 1. The bifurcation may also
occur on conjugate loci, as illustrated in the bi-entry case. For R = (1−X)−1

indeed, it is proven in the Riemannian setting of [7] that conjugate loci are
astroidal when ν < 1. The same phenomenon is observed numerically for the
tangential single-input case (see Fig. 2).

The existence of conjugate points for such metrics as (3), in the bi-entry case,
or (6), in the tangential single-input case, is typical of the almost-Riemannian
setting where conjugate points may exist although curvature remains negative
whenever defined [2]. Indeed, with X = sin2 ϕ,

K = − 2
1−X

< 0 and K = − (1 +X)(4−X)
(2−X)(1−X)

< 0 (19)



Singular metrics on the two-sphere in space mechanics 22

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

10

15

20

!

K "
(!
)

0 0.5 1 1.5 2 2.5 3
−20

−10

0

10

20

30

40

!

K "
(!
)

Figure 3: Curvature Kν associated with homotopy from the round metric. On
the left, R = 1/(1−X) (bi-entry case), R = (1/4)(1 + 2/(1−X) + 1/(1−X)2)
(single-input tangential case) on the right.

for (3) and (6), respectively. An explanation of this fact is provided by homotopy
from the round metric (18). Proposition 14 actually establishes that although
curvature is negative in the neighbourhood of the singularity and even tends
to −∞ when ϕ → π/2, there is a concentration of positive curvature on the
singularity itself as Kν(1) → +∞ when ν → 1−, responsible for the existence of
conjugate points after crossing the singularity (cut, and thus conjugate points
being located after the equator by antipodality). See also Fig. 3 for portrays of
the curvature.

We conclude by reinterpretating homotopy from the round metric in the light
of Proposition 3. It asserts that the metric with an order one singularity associ-
ated with the bi-entry case is conformal to the canonical metric on an ellipsoid
of revolution with unit semi-major axis and semi-minor axis µ =

√
1− ν. Now,

as ν → 1, µ → 0 and the ellipsoid collapses on a two-sided Poincaré disk en-
dowed with the flat metric since, by (4), gE ,µ → gE ,0 = sin2 ϕdθ2+cos2 ϕ dϕ2 =
dρ2 + ρ2dθ2, which is the flat metric in polar coordinates (ρ, θ) on D,

ρ = sinϕ, dρ2 = (1−X)dϕ2, X = sin2 ϕ.

The standard astroid conjugate loci on the ellipsoid are then generated by re-
flections of straight lines on the boundary, as caustics formed by envelopes of
reflecting rays in the usual analogy from optics (see Fig. 4). So we have three
conformal metrics on the Poincaré disk, namely the flat one with zero curvature,
ds2 = dρ2 + ρ2dθ2, the metric associated with the bi-entry case which reads

ds2 =
dρ2 + ρ2dθ2

1− ρ2

in polar coordinates and whose negative curvature K = −2(1−ρ2)−1 (see (19))
tends to −∞ when ρ→ 1, and the canonical Poincaré metric

ds2 =
dρ2 + ρ2dθ2

(1− ρ2)2
(20)

with constant negative curvature K = −1. As illustrated by Fig. 4 in the
bi-entry case, crossing the equatorial singularity is then interpretated as going
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Figure 4: On the left, flat metric on the Poincaré disk. The conjugate locus
formed by the envelope of straight lines (in blue) reflecting on the boundary is
the standard astroid (red dots). On the right, the picture for the same initial
condition of the singular metric defined by R = (1−X)−1. As for the Poincaré
metric, contacts with the boundary are orthogonal.

from one side of D to the other. This can also be seen, like in the flat case,
as generating reflections of geodesics with the boundary. As for the canonical
Poincaré metric (20), those reflections turn to be orthogonal in general.

Consider any metric defined by (7-8) and write the corresponding Hamilto-
nian in coordinates (ρ, θ) on D,

H =
1
2

[
(1−X)p2

ρ +
p2

θ

XR(X)

]
, X = sin2 ϕ = ρ2.

In particular,

θ̇ ∼ pθ

ap
(1−X)p and |ρ̇| = (1−X)|pρ| ∼

√
1−X

when X → 1 since

p2
ρ = (1−X)−1

[
1− p2

θ

XR(X)

]
∼ (1−X)−1

on {H = 1/2}. Reparameterizing time according to dτ = dt
√

1−X we get

dθ
dτ

∼ pθ

ap
(1−X)p−1/2 → 0 and

∣∣∣∣dρdτ
∣∣∣∣ ∼ 1, X → 1,

so contacts with ∂D (i.e. for ρ = X = 1) are orthogonal reflections.
Conversely, using homotopy (18) to replace the singular metric by a Rie-

mannian one when ν < 1 changes the contact for pθ 6= 0 (meridians, obtained
for pθ = 0, obviously remain perpendicular to the boundary). Now indeed,

Hν =
1
2

[
(1−X)p2

ρ +
p2

θ

XR(νX)

]
,
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Figure 5: Tangential single-input case. On the left, metric obtained by homo-
topy from the round one for ν < 1. The initial condition is on the boundary,
tangential contacts with ∂D are observed. On the right, singular metric (ν = 1)
for the same initial condition. Contacts with ∂D are orthogonal and the conju-
gate locus is the caustic generated by reflections of geodesics on the boundary.

and, when X → 1,
θ̇ ∼ pθ

R(ν)
and ρ̇ = pϕ

√
1−X

since pϕ = pρ

√
1−X, which remains finite. So θ̇ 6= 0 if pθ 6= 0 while ρ̇ = 0 at

X = 1, and contacts with the boundary are tangential outside meridians (see
Fig. 5). The last proposition summarizes the analysis.

Proposition 15. For a singular metric on the sphere defined by (7-8), crossing
the equatorial singularity is interpretated on the Poincaré disk as reflecting on
the boundary, and those reflections generate conjugate loci as caustics. Outside
meridians, contacts with the boundary bifurcate from tangential to orthogonal
through homotopy (18).

Let us finally remark that the collapsing interpretation is also important
since going back from S2 to D allows to analyze the two original problems of
two-body control. With evidence of antipodal cut points and further conjugate
points, that is points located on the other side of the Poincaré disk, we conclude
that there are no such points in D for the original coordinates.
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