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Metrics with equatorial singularities

on the sphere∗

B. Bonnard† J.-B. Caillau‡

September 2012

Abstract

Motivated by optimal control of affine systems stemming from mechanics,
metrics on the two-sphere of revolution are considered; these metrics are
Riemannian on each open hemisphere whereas one term of the correspon-
ding tensor becomes infinite on the equator. Length minimizing curves are
computed and structure results on the cut and conjugate loci are given,
extending those in [11]. These results rely on monotonicity and convexity
properties of the quasi-period of the geodesics; such properties are stud-
ied on an example with elliptic transcendency. A suitable deformation
of the round sphere allows to reinterpretate the equatorial singularity in
terms of concentration of curvature and collapsing of the sphere onto a
two-dimensional billiard.

Keywords. two-sphere of revolution, almost and sub-Riemannian me-
trics, cut and conjugate locus

MSC classification. 53C17, 49K15

Introduction

In the papers [11, 35] the authors investigate the cut and conjugate loci of a
Riemannian metric on the two-sphere of revolution that can be written in the
normal form m(ϕ)dθ2 +dϕ2—where ϕ is the angle along the meridian and θ the
angle of revolution—, under the assumption that m(π − ϕ) = m(ϕ) (symmetry
with respect to the equator). Motivated by examples in optimal control, our
aim is to extend these results to metrics of the form

XR(X)dθ2 + dϕ2, X = sin2 ϕ, (1)
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where R is a rational fraction with a single pole at X = 1. The metric is
Riemannian on both open hemispheres but has a singularity on the equator.
Such metrics arise when one considers the time minimum control of a system

ẋ(t) = u1(t)F1(x(t)) + u2(t)F2(x(t)), u2
1(t) + u2

2(t) ≤ 1,

with fixed boundary conditions, x(0) = x0, x(tf ) = xf , and it is well known
that minimizing time amounts to minimizing the length of the curve t 7→ x(t)
provided the metric is defined by assuming F1 and F2 orthonormal. For such
problems, singularities occur when the two vector fields become collinear. This
leads to the concept of almost-Riemannian metrics [3, 4, 12, 15], and the analysis
of such metrics is related to sub-Riemannian geometry [6, 26]. If the distribution
{F1, F2} is bracket generating, every pair of points can be joined by a length
minimizing curve. Moreover, if there exists no abnormal trajectory, each mini-
mizing curve is a geodesic, projection on the x-space of the Hamiltonian flow
exp t

−→
h where

h(z) =
1
2

(
H2

1 (z) + H2
2 (z)

)
, z = (x, p),

and where Hi(z) = 〈p, Fi(x)〉 are the Hamiltonian lifts of the Fi’s. Denoting
expx0

the exponential mapping

expx0
(t, p0) = Π

(
exp t

−→
h (x0, p0)

)
where Π is the projection (x, p) 7→ x, the cut and conjugate loci are defined as in
the Riemannian setting; the cut locus is the set of points where geodesic curves
fail to be minimizing, while the conjugate locus is the image of the critical points
of the exponential mapping.

In this paper, we generalize to the singular case (1) the results in [11] relating
the structure of the cut and conjugate loci to the convexity of the quasi-period
of the θ-coordinate: Under appropriate assumptions, the cut locus of a point is
reduced to a single segment, and the conjugate locus has at most four cusps.
Although similar to the Riemannian case, the singularity of the metric on the
equator has two consequences; the injectivity radius is zero and the singularities
of the conjugate locus of an equatorial point differ. In Section 2, two examples
motivating this study are presented. One stems from quantum mechanics, the
other from space mechanics. Both are limit cases of optimal control problems
not linear but affine in the control. Section 3 is devoted to the integrability
properties of the geodesics of (1), and preliminary computations of the period
and quasi-period of coordinates ϕ and θ are made. The optimality status of
the geodesics is studied in Section 4 where the main results on the structure of
cut and conjugate loci are established. The second example of §2 is given a full
treatment in Section 5. In order to be able to apply §4 results, a detailed analysis
using a parameterization of geodesics by elliptic curves is presented. The last
section accounts for concentration of curvature and collapsing phenomena that
allow to reinterpretate the effect of the equatorial singularity on the metric.
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1 Preliminaries

We consider the metric (1) on S2 where (θ, ϕ) are the coordinates induced by
the covering of the sphere minus poles

R× (0, π) 3 (θ, ϕ) 7→ (sinϕ cos θ, sinϕ sin θ, cos ϕ).

The function R is a rational fraction with a single pole of order p at X = 1,

R(X) =
p∑

k=0

ak

(1−X)k
, a0, . . . , ap−1 ≥ 0, ap > 0 (p ≥ 1). (2)

We assume that the normalization condition a0 + · · · + ap = 1 holds. The
metric is Riemannian on hemispheres with a singularity on the equator when
ϕ = π/2 since R(X) →∞ when X → 1. It is a standard fact that Riemannian
geometry can be recast in the Hamiltonian setting of optimal control: On each
open hemisphere, finding a length minimizing curve connecting two points x0,
xf , is equivalent to finding a measurable control function u : [0, tf ] → R2 such
that almost everywhere

ẋ(t) = u1(t)F1(x(t)) + u2(t)F2(x(t)), u2
1(t) + u2

2(t) ≤ 1, (3)

x(0) = x0, x(tf ) = xf ,

and such that the final time tf is minimized. In the previous coordinates, the
vector fields are (because of the topology of the 2-sphere, one cannot provide
an orthonormal frame of vector fields globally defined on S2)

F1(θ, ϕ) :=
1

sinϕ

√
1/R(X)

∂

∂θ
, F2(θ, ϕ) :=

∂

∂ϕ
(4)

as

Lemma 1. 1/R(X) has a smooth square root.

Proof. One has
1

R(X)
=

cos2p ϕ

ap + · · ·+ a0 cos2p ϕ

and ap + · · ·+ a0 cos2p ϕ ≥ ap > 0 by virtue of (2).

This optimal control formulation makes sense on the whole sphere: This is how
(1) will be understood as a metric defined on all S2 in this paper. Geometrically,
the singularity R(1) = ∞ forces length minimizing curves to be vertical (directed
along meridians) when crossing the equator.
Remark 1. The singularity here is not a degeneracy of the Riemannian tensor
on the tangent space as in, e.g., [30] but a degeneracy of a positive tensor on
the cotangent space.

An appropriate algebraic setting for such a metric is the notion of generalized
sub-Riemannian metrics (see [6, 24]) or almost-Riemannian metrics (see [1, 3, 4,
12]). Let g0 be the round metric on the sphere; to (1) is associated the following
morphism of fibre bundle:1

f : (TS2, g0) → TS2

1That is id-morphism, according to [16] terminology: Base points are unchanged by the
morphism, and fibres are linearly sent to fibres.
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such that f is the identity on the fibres above the poles and

f(θ,ϕ) :
∂

∂θ
7→

√
1/R(X)

∂

∂θ
,

∂

∂ϕ
7→ ∂

∂ϕ

otherwise. This morphism induces an application between vector fields on the
sphere, f∗ : Γ(TS2) → Γ(TS2); if F ∈ Γ(TS2),

f∗(F )(x) := fx(F (x)), x ∈ S2.

Although the direct image f(TS2) is not a fibre bundle,

∆ := f∗(Γ(TS2)) ⊂ Γ(TS2)

is a well defined submodule over smooth functions. For x ∈ S2 and v ∈ ∆x :=
{F (x), F ∈ ∆}, define

gx(v) := inf{g0x(u) | fx(u) = v}.

Outside poles,

gx(v) = inf{u2
1 + u2

2 | u1F1(x) + u2F2(x) = v}.

Then, given two points x0, xf on the sphere, set

d(x0, xf ) := inf
∫ tf

0

√
gx(t)(ẋ(t)) dt

where the infimum is taken over all Lipschitz trajectories x such that

ẋ(t) ∈ ∆x(t), t ∈ [0, tf ] (a.e.)

x(0) = x0, x(tf ) = xf .

The set of such horizontal trajectories is not empty as is clear from the proof of

Proposition 1. d defines a complete distance on S2 that induces the usual
topology on the sphere.

To prove this fact, one defines recursively the flag associated with ∆ by means
of the Lie bracket of vector fields,

∆1 := ∆, ∆k+1 := ∆k + [∆,∆k]

with [∆,∆k] := {[F,G] | F ∈ ∆, G ∈ ∆k}, k ≥ 1.

Lemma 2. For all x ∈ S2, ∆p+1
x = TxS2.

Proof. Outside the equator, F1 and F2 have rank two, so the verification is
restricted to ϕ = π/2 where F1 vanishes. Since R has an order p pole,

(adp F2)F1(θ, ϕ) =
dp

dϕp
[(1/ sinϕ)

√
1/R(X)]︸ ︷︷ ︸

6=0 at ϕ=π/2

∂

∂θ

so brackets of length at most p+1 span everywhere the whole tangent space.
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Proof of Proposition 1. According to lemma 2, ∆ is bracket generating so there
exist, for any pair of points on the sphere, Lipschitz curves almost everywhere
tangent to ∆ connecting them by Chow-Rashevsky theorem. On the compact
manifold S2, Filippov theorem [5] then asserts existence of time minimizing
curves among those. That the metric induces the canonical manifold topology
is another consequence of Chow-Rashevsky [24].

Remark 2. As explained in [3], generic (in the sense of Whitney) almost-Rieman-
nian metrics on the sphere are such that, for all x ∈ S2, either ∆x (regular point),
∆2

x (Grušin point) or ∆3
x (tangency point) span the tangent space. According

to Lemma 2, the situation we consider is not generic for p ≥ 3.

2 Motivating examples

The following Hamiltonian on S2 is considered in [9]:

H(θ, ϕ, pθ, pϕ) = −δ cos ϕ sinϕ pϕ +
1
2

(
p2

θ

tan2 ϕ
+ p2

ϕ

)
. (5)

It originates in quantum mechanics and partly describes the energy minimum
control of a spin 1/2 particle in a magnetic field. When the parameter δ
is zero, this Hamiltonian corresponds exactly to the metric (1) obtained for
R(X) = 1/(1 − X) (geodesics are integral curves of an appropriate quadratic
Hamiltonian—see the beginning of §3). As explained in §4, a local model near
the singularity ϕ = π/2 is the so-called Grušin metric on R2 [14, 22]

dx2 +
dy2

x2
·

For this reason, the metric defined by (5) when δ = 0 is called Grušin metric on
the sphere. In contrast to the analogous metric on the plane, it has peculiarities
(e.g., meridional cusps of conjugate loci, see §4) due to the topology of the
sphere. Like the second example, it is also connected with space mechanics (see
[11]).

Consider a controlled dynamical system of the form

dx

dl
(l) =

m∑
i=1

ui(l)Fi(l, x(l)) (6)

on a smooth n-dimensional manifold X where the Fi : R ×X → X are vector
fields parameterized by l and periodic, F (l, x) = F (l + 2π, x) for all l ∈ R and
x ∈ X. This dynamics is actually a particular case of an (autonomous) affine
in the control system, as we may define the vector fields

F̂0(x̂) := ω(x̂)
∂

∂l
, F̂i(x̂) := ω(x̂)

n∑
j=1

〈dxj , Fi〉
∂

∂xj
, i = 1, . . . ,m,

with x̂ := (l, x) ∈ X̂ := R×X and write

dx̂

dt
(t) = F̂0(x̂(t)) +

m∑
i=1

ui(t)F̂i(x̂(t)).
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The pulsation ω is any 2π-periodic in l positive function on X̂ relating the two
times of the system, t and l (the latter being understood as an angular length).
The periodic vector fields Fi induce vector fields on S1 ×X and it is appealing
to use averaging [27] to define

F i(x) :=
1
2π

∫ 2π

0

Fi(l, x) dl.

We consider instead the Hamiltonian associated with the L2dt-minimization of
the control,

H(l, x, p) =
ω(l, x)

2

m∑
i=1

〈p, Fi(l, x)〉2.

Then,

H(x, p) :=
1
2π

∫ 2π

0

H(l, x, p) dl

remains a positive quadratic form in the adjoint variable, p. Under the standard
assumption that the F̂i, i = 0, . . . ,m, are bracket generating, one expects the
rank of this quadratic form to be maximum and equal to n. The case being,
one can find n independent vector fields F i such that

H(x, p) =
1
2

n∑
i=1

〈p, F i(x)〉2.

Singularities of two types may exist though. First, such implicitly defined vector
fields need not be smooth on X, even in the analytic situation.2 In addition,
the rank of the form may not be constant on X and drop at some points.
This phenomenon accounts for the existence of an equatorial singularity in the
following case.

On X = R∗
+ ×D, D being the open unit Poincaré disk, set

F1 := − 3(1− e2)w
n1/3(1 + e cos v)2

∂

∂n
+

2(1− e2)2

n4/3(1 + e cos v)2w

[
(e + cos v)

∂

∂e
+

sin v

e

∂

∂θ

]
with

v := l − θ, w :=
√

1 + 2e cos(l − θ) + e2 ,

and

ω(l, x) :=
n(1 + e cos(l − θ))2

(1− e2)3/2
·

Here, x = (n, e, θ) ∈ R∗
+×R∗

+×R are coordinates on the positive line times the
pointed disk. They are used in space mechanics to represent the geometry of
plane elliptic trajectories in the controlled two-body problem [10]: n is the mean
motion (that is n = a−3/2 where a is the semi-major axis), e is the eccentricity,
and θ is the argument of the pericenter. The averaging procedure just described
leads to [10]

H(n, e, θ, pn, pe, pθ) =
9n1/3

2
p2

n +
1

n5/3
h(e, θ, pe, pθ)

2See, e.g., §3.2 in Bonnard, B.; Caillau, J.-B.; Picot, G. Geometric and numerical tech-
niques in optimal control of two and three-body problems. Commun. Inf. Syst. 10 (2010),
no. 4, 239–278.
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with

h(e, θ, pe, pθ) =
1
2

[
4(1− e2)3/2

1 +
√

1− e2
p2

e +
4(1− e2)

(1 +
√

1− e2)
p2

θ

e2

]
.

Proposition 2. H, h and pθ are independent first integrals in involution; in
particular, H is Liouville integrable.

Proof. The Poisson bracket of H and h is

{H, h} =
∂H

∂pn

∂h

∂n
− ∂H

∂n

∂h

∂pn
+

1
n5/3

{h, h} = 0,

the rest being obvious.

The integration of H may so be performed by integrating h. This two-di-
mensional Hamiltonian (which retains the linear first integral pθ) is lifted from
the Poincaré disk to S2 using the following compactification: In the covering
(θ, ϕ) ∈ R× (0, π) of the sphere minus poles where

e = sinϕ
√

1 + cos2 ϕ ,

one has

h(θ, ϕ, pθ, pϕ) =
1
2

[
4 cos4 ϕ

sin2 ϕ(2− sin2 ϕ)2
p2

θ + p2
ϕ

]
.

The rank of this quadratic form in (pθ, pϕ) drops from 2 to 1 when ϕ = π/2.
Actually, h is exactly associated to the metric (1) with

R(X) =
(

1−X/2
1−X

)2

=
1
4

[
1 +

2
1−X

+
1

(1−X)2

]
·

This metric with an order two equatorial singularity will be referred to as the
(1, 2, 1) case (according to coefficients involved in the series) and studied in
Section 5.

Remark 3. The Hamiltonian (5) in the first example can either be interpre-
tated as stemming from an affine controlled system, or as defining a pseudo-
Riemannian metric (see [9]). In constrast with the sub-Riemannian case that
is characterized by linearity in the control, time minimization (with a bounded
control) and minimization of the L2-norm (with a prescribed final time) of affine
systems cease to be equivalent.

3 Integrability properties

As time minimizing curves of the control system (3), geodesics satisfy Pontrjagin
maximum principle [5, 13]: If x is a shortest time trajectory generated by the
optimal control u : [0, tf ] → R2, there exist a nonpositive constant p0 ≤ 0 and a
Lipschitzian lift (x, p) : [0, tf ] → T ∗S2 of the trajectory to the cotangent bundle
such that (p0, p) 6= (0, 0) and

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)), ṗ(t) = −∂H

∂x
(x(t), p(t), u(t)), t ∈ [0, tf ] (a.e.),
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where

H : T ∗S2 ×R2 → R, H(x, p, u) := p0 + u1H1(x, p) + u2H2(x, p).

The Hi : T ∗S2 → R are the Hamiltonian lifts of the two vector fields (4),

Hi(x, p) := 〈p, Fi(x)〉, i = 1, 2.

Besides, the following maximization condition holds,

H(x(t), p(t), u(t)) = max
|v|≤1

H(x(t), p(t), v), t ∈ [0, tf ] (a.e.)

As a result, the Hamiltonian evaluated along the extremal (x, p, u) is almost
everywhere equal to a constant; since the final time is free, this constant is
zero. The previous relations are homogeneous in (p0, p) and there are two cases:
Either p0 = 0 (abnormal case), or p0 < 0 (normal case).

Lemma 3. Abnormal trajectories are stationary equatorial curves.

Proof. Assume p0 = 0. Then H = u1H1 + u2H2 has to be zero and maximized
along the extremal; necessarily, the two Lipschitz functions H1 and H2 must
vanish identically on [0, tf ] (the maximum would otherwise be positive). As a
result, for any time t, p(t) is orthogonal to the span at x(t) of F1 and F2. If
there exists t ∈ [0, tf ] such that ϕ(t) 6= π/2, the span at such an x(t) is the whole
tangent space, so p(t) = 0. As p is solution of the linear differential equation

ṗ(t) = −∂H

∂x
(x(t), p(t), u(t)) = −p(t) [F ′

1(x(t)) + F ′
2(x(t))] ,

p is identically zero, which contradicts (p0, p) 6= (0, 0). So ϕ ≡ π/2; then

θ̇(t) = u1(t)
√

1/R(X) |X=1 = 0

so θ is also constant.

We disregard theses trivial curves and normalize p0 to −1.

Scholium. Geodesics of (1) are integral curves of the quadratic Hamiltonian

h(θ, ϕ, pθ, pϕ) :=
1
2

(
p2

θ

XR(X)
+ p2

ϕ

)
(7)

restricted to the level set {h = 1/2}.

Proof. Let u be a minimum time control, and let (x, p, u) be the associated
extremal. The normal Hamiltonian −1+u1H1+u2H2 is zero along the extremal,
so (H1,H2) does not vanish. Because of the maximization condition,

u(t) =
(H1,H2)√
H2

1 + H2
2

(x(t), p(t)) a.e.

Then,

ẋ(t) = u1(t)F1(x(t)) + u2(t)F2(x(t)) (8)
= H1(x(t), p(t))F1(x(t)) + H2(x(t), p(t))F2(x(t))
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since H2
1 + H2

2 = 1 on {H = 0} (that is {h = 1/2}), so

ẋ(t) =
∂h

∂p
(x(t), p(t)) a.e.

One similarly verifies that

ṗ(t) = −∂h

∂x
(x(t), p(t)) a.e.

Remark 4. Such geodesics are arc length parameterized as (8) implies that

gx(t)(ẋ(t)) = u2
1(t) + u2

2(t) = 1 a.e.

As θ is a cyclic variable (symmetry of revolution—see [7] for a general reference)
of h, pθ is a linear first integral and

Proposition 3. h is Liouville integrable. The coordinate ϕ is parameterized by
a hyperelliptic curve of genus at most p.

Proof. X = sin2 ϕ, so Ẋ2 = 4X(1−X)ϕ̇2. On {h = 1/2},

Ẋ2 = 4X(1−X)
(

1− p2
θ

XR(X)

)
,

so

Y 2 = 4(1−X)(ap + · · ·+a0(1−X)p)[X(ap + · · ·+a0(1−X)p)−p2
θ(1−X)p] (9)

with Y = (ap + · · · + a0(1 −X)p)Ẋ. The right hand side of (9) has degree at
most 2(p + 1), so the genus of the complex curve is at most p.

Set
Γ(ϕ) :=

1
XR(X)

, ϕ ∈ (0, π).

Consider the extremal departing from ϕ0 6= 0 (π) (not a pole), θ0 being normal-
ized to 0 and defined by a positive pθ (the degenerate case pθ = 0 corresponding
to meridians—which are the only extremals passing through the poles) and non-
negative pϕ0 =

√
1− Γ(ϕ0)p2

θ. Along the extremal, ϕ̇ first vanishes when ϕ is
equal to ϕ1 := π − Γ−1(p−2

θ ) since

Lemma 4. Γ is a strictly decreasing one-to-one mapping between (0, π/2] and
R+ such that Γ(π − ϕ) = Γ(ϕ).

Proof. One has
dΓ
dX

= −R(X) + XR′(X)
(XR(X))2

with

R′(X) =
p∑

k=1

kak

(1−X)k+1
·

Since dX/dϕ = 2 sin ϕ cos ϕ is positive on (0, π/2), the conclusion follows.
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As Γ′ does not vanish on (0, π/2),

1− Γ(ϕ)p2
θ = O(ϕ1 − ϕ)

in the neighbourhood of π−Γ−1(p−2
θ ), and the following integral (depending on

pθ and ϕ0) is well-defined,

t1 :=
∫ π−Γ−1(p−2

θ )

ϕ0

dϕ√
1− Γ(ϕ)p2

θ

·

Lemma 5. The axial symmetry σ1 with respect to θ(t1) is an inner symmetry
of the extremal.

Proof. Set

θ̂(t) := 2θ(t1)− θ(2t1 − t), p̂θ(t) := pθ(t),
ϕ̂(t) := ϕ(2t1 − t), p̂ϕ(t) := −pϕ(2t1 − t),

and check that new curve is still an extremal, passing through the same point
of the cotangent bundle at t1 since pϕ(t1) = 0.

Necessarily, π − Γ−1(p−2
θ ) ≥ π − ϕ0, so there also exists t′1 ≤ t1 such that

ϕ(t′1) = π − ϕ0. Using the previous axial symmetry, we deduce the existence of
t2 := 2t1 − t′1 ≥ t1 such that, again, ϕ(t2) = π − ϕ0. Using now the equatorial
symmetry of Γ,

Γ(π − ϕ) = Γ(ϕ),

the following is clear.

Lemma 6. The central symmetry s2 with respect to (θ(t2)/2, π/2) defines an-
other extremal with the same initial condition.

Proof. Set

θ̂(t) := θ(t2)− θ(t2 − t), p̂θ(t) := pθ(t),
ϕ̂(t) := π − ϕ(t2 − t), p̂ϕ(t) := pϕ(t2 − t).

The new curve is still an extremal since

˙̂
θ(t) = Γ(π − ϕ̂(t))pθ = Γ(ϕ̂(t))p̂θ, ˙̂pϕ(t) =

1
2
Γ′(π − ϕ̂(t))p2

θ = −1
2
Γ′(ϕ̂(t))p̂2

θ,

and θ̂0 = 0 = θ0, ϕ̂0 = π − (π − ϕ0) = ϕ0.

Finally denote t3 the point such that ϕ(t3) = π/2 ≤ π−ϕ0, and remark that the
central symmetry σ2 with respect to (θ(t3), π/2) leaves the extremal invariant.
Since the axial symmetry s1 with respect to θ = 0 obviously defines another
extremal originating from the same point, we conclude that the group generated
by s1 and s2 acts on the set of extremals with same initial condition, while the
group generated by σ1 and σ2 defines inner symmetries of each extremal. The
composition rules indicate in both cases that the underlying group is the four-
order abelian Klein group,

V = Z/2Z× Z/2Z ' {id, s1, s2, s1s2} ' {id, σ1, σ2, σ1σ2}.
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Proposition 4. Given any initial condition, the Klein group acts on the set
of extremals issuing from the point. It also defines inner symmetries of any
extremal.

An extremal is said to be a pseudo-equator whenever ϕ̇(0) = pϕ(0) is equal to
zero, whereas the equator itself cannot be an extremal because of the singularity.

Lemma 7. Every extremal that is not a meridian is a pseudo-equator.

Proof. For pθ positive and pϕ0 nonnegative (the other cases are deduced by sym-
metry), there exists ϕ̃0 = Γ−1(p−2

θ ) such that, up to a time shift, the extremal
is the pseudo-equator with initial condition ϕ̃0.

Conversely, any pseudo-equator meets ϕ = π/2 as one understands from the
analysis of symmetries. Taking ϕ̃0 = π/2 as new initial condition and retaining
the same value for pθ provides the same geodesic, up again to a time shift. As
a result, rather than parameterizing extremals using both ϕ0—we set θ0 = 0
thanks to the symmetry of revolution—and pθ, one may either parameterize by
ϕ0 ∈ (0, π/2) alone using the fact all geodesics (with the exception of meridians,
pθ = 0) are pseudo-equators (then, implicitly, p2

θ = 1/Γ(ϕ0), ϕ0 6= π/2 since the
equator is not a geodesic), or parameterize by their Clairaut constant pθ ∈ R∗

+,
considering only the initial condition at singularity, ϕ0 = π/2. The second point
of view reduces the study of geodesics to those starting at singularity.

Proposition 5. On every extremal, the coordinate ϕ is periodic with period

T (pθ) = 4
∫ π/2

Γ−1(p−2
θ )

dϕ√
1− Γ(ϕ)p2

θ

,

and θ(t + T ) = θ(t)±∆θ (sign depending on the sign of pθ) with quasi-period

∆θ(pθ) = 4
∫ π/2

Γ−1(p−2
θ )

Γ(ϕ)pθdϕ√
1− Γ(ϕ)p2

θ

·

Proof. According to the previous analysis, it is enough to check the result on
pseudo-equators. But then, t1 = t2 = t3 = 2t4, so setting T := 2t1 and using
the axial symmetry with respect to θ(t1) gives the result since ϕ(T ) = ϕ(0),
pϕ(T ) = −pϕ(0) = 0 = pϕ(0). So θ̇ = Γ(ϕ)pθ is also periodic, which concludes
the proof.

As functions of ϕ0,

T (ϕ0) = 4
∫ π/2

ϕ0

dϕ√
1− Γ(ϕ)/Γ(ϕ0)

, (10)

and

∆θ(ϕ0) = 4
∫ π/2

ϕ0

Γ(ϕ)dϕ√
Γ(ϕ0)− Γ(ϕ)

· (11)

These relations actually cover the case of meridians pθ = 0 (i.e. ϕ0 = 0) for
which T = 2π and ∆θ = 2π (two instantaneous rotations of angle π when
crossing poles at t = π and t = 2π). We end the section with the following
result that will be used for §5 computations.
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Proposition 6. T ′ = pθ∆θ′.

Proof. Write as in [11]

T (pθ) = pθ∆θ(pθ) + 4
∫ π/2

Γ−1(p−2
θ )

√
1− Γ(ϕ)p2

θ dϕ,

so

T ′(pθ) = ∆θ(pθ) + pθ∆θ′(pθ) + 4
∫ π/2

Γ−1(p−2
θ )

∂

∂pθ

(√
1− Γ(ϕ)p2

θ

)
dϕ

−8(Γ−1)′(p−2
θ )pθ

√
1− Γ(ϕ)p2

θ |ϕ=Γ−1(p−2
θ )︸ ︷︷ ︸

0

= pθ∆θ′(pθ).

4 Cut and conjugate loci

The cut time along a geodesic x, that is along an extremal of the minimum time
problem (3), is the supremum of times t such that the curve restricted to [0, t]
is a shortest time trajectory between x(0) and x(tf ):

tcut := sup{t ≥ 0 | x is minimizing on [0, t]}.

When tcut < ∞, x(tcut) is called a cut point. The set of all cut points on
geodesics departing from a given intial point x0 is the cut locus of x0. A sepa-
rating point along the geodesic is a point x(tM ), tM > 0, such that there exists
a different geodesic, y, reaching the point at the same time: x(tM ) = y(tM ).
The exponential mapping of a fixed point x0 ∈ S2 is

expx0
: R∗

+ × T ∗
x0

S2 ∩ {h = 1/2} → S2 (12)

(t, p0) 7→ x(t, x0, p0) := Π ◦ exp t
−→
h (x0, p0)

where Π : T ∗S2 → S2 is the canonical projection and exp t
−→
h the one-parameter

global subgroup generated by the symplectic gradient of the quadratic Hamil-
tonian (7),

−→
h (x, p) =

∂h

∂p
(x, p)

∂

∂x
− ∂h

∂x
(x, p)

∂

∂p
·

The intersection of the fibre T ∗
x0

S2 with {h = 1/2} is a compact oval diffeo-
morphic to S1 outside the equator, or the union two lines {pϕ0 = ±1} for an
equatorial point. That the subgroup is globally defined in the second case comes
from the analysis of Section 3: For any pθ ∈ R and pϕ0 = ±1, the coordinates ϕ
and θ are periodic or quasi-periodic, respectively. A conjugate point along the
geodesic x is a critical value of expx(0); if (tc, p0) is the corresponding critical
point, tc is the conjugate time. When tc > 0 is the first conjugate time along
the geodesic, x(tc) is called a first conjugate point. The set of first conjugate
points on geodesics departing from x0 is the conjugate locus of x0. Results of
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optimal control ensure that local optimality is lost after conjugate points [33].
Besides, extremals of such problems have to be smooth so that broken curves
that are concatenations of minimizing geodesics cannot be minimizing, entailing
that optimality cannot be preserved after separating points, such as those gen-
erated by the symmetries between extremals described in the previous section.
Separating and conjugate times are so upper bounds of cut times. The following
standard result remains valid in our setting with singularities.

Proposition 7. Cut points of the metric (1) are either conjugate or separating
points.

Lemma 8. Both T and ∆θ vanish when |pθ| → ∞.

Proof. Directly follows from estimates of integrals (10-11) using the fact that Γ
does not vanish identically at ϕ = π/2.

Proof of Proposition 7. Let γ(tcut) be the cut point along the geodesic γ starting
from x0 = (θ0, ϕ0) and generated by the adjoint vector p0. If the cut point is
not a conjugate point, the exponential mapping is a diffeomorphism in a small
enough neighbourhood V0 of (tcut, p0). Since the metric is complete, there are
minimizing extremals γn joining x0 to γn(tn) = γ(tcut + 1/n), tn < tcut + 1/n,
for n ≥ 1. First assume that ϕ0 6= π/2. Then the oval h−1(θ0, ϕ0, ·)({1/2}) is
compact, and one can extract a converging subsequence of the (p0n)n generating
the extremals γn, and thus conclude classically (see, e.g., [32]): p0n → p̃0 and
γn(tn) → γ(tcut); assuming by contradiction that the point is not a separating
one, that is assuming that p̃0 = p0, implies that for n large enough γn(tn)
belongs to expx0

(V0), so that tn = tcut + 1/n, whence the contradiction. Let
now ϕ0 = π/2. Though h−1(θ0, ϕ0, ·)({1/2}) = {pϕ0 = ±1} is not compact
anymore, the associated sequence (pθn)n still has to be bounded otherwise there
would exist a subsequence such that |pθn| → ∞. Assume by contradiction that
this is the case. Because of the central symmetry s2, (∆θ(pθn)/2, π/2) is a
separating point on γn = (θn, ϕn), so tn < T (pθn)/2 and θn(tn) < ∆θ(pθn)/2;
as |ϕ̇n| = |pϕn| ≤ 1, |ϕn(tn)− π/2| ≤ T (pθn)/2 and (θn(tn), ϕn(tn)) → (0, π/2)
according to Lemma 8. Since γ(tcut + 1/n) = γn(tn), this implies γ(tcut) = x0,
which is contradictory. The sequence (pθn)n is hence bounded, and we can
conclude as previously.

Cut loci for an analytical Riemannian metric on the sphere are known to be finite
trees whose extremities are conjugate points after the work of Poincaré [28, 29,
31]. In our case, cut loci have peculiarities due to the symmetry of revolution
and the equatorial singularity (see also Corollary 3 in §6; more generally on
surface of revolutions, see [34]).

Theorem 1. Under the assumption that ∆θ is strictly decreasing for pθ > 0,
cut loci of the metric (1) are antipodal subarcs. The cut locus of a pole is reduced
to the opposite pole, is equal to the equator minus the point for an equatorial
point, and to a proper closed subarc of the antipodal parallel otherwise.

Proof. The case of poles is obvious and does not depend on any assumption
on ∆θ since the only extremals through them are meridians. Consider now the
situation ϕ0 = π/2, and show that the exponential mapping is injective on the
quadrant ⋃

pθ>0

(0, T (pθ)/2]× {(pθ, 1)},
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that is show that subarcs of extremals defined by t ∈ [0, T (pθ)/2], positive pθ and
pϕ = +1 do not intersect. If p′θ > pθ, the arc associated with p′θ is strictly below
the one associated with pθ. Indeed, note that on the first half of such an arc
t ∈ [0, T (pθ)/4) and ϕ̇ does not vanish so that the curve can be parameterized
by ϕ instead of time. There,

f(ϕ, pθ) :=
dθ

dϕ
=

Γ(ϕ)pθ√
1− Γ(ϕ)p2

θ

is an increasing function of pθ since

∂f

∂pθ
(ϕ, pθ) =

Γ(ϕ)
(1− Γ(ϕ)p2

θ)3/2
> 0.

As geodesics starting from ϕ0 = π/2 cross again the equator at ∆θ(pθ)/2,
the assumption ensures that the aforementioned subarcs do not intersect. We
conclude by remarking that the full set of extremals is obtained by considering
the action of the Klein group on geodesics with same initial condition (see §3).
First, the central symmetry s2 that generates intersections at t = T (pθ)/2, then
the axial symmetry s1 with respect to θ = 0 that generates intersections at
θ = π, thus not prior to the previous ones since θ(T (pθ)/2) = ∆θ(pθ)/2, and
since ∆θ(pθ) < 2π for pθ > 0 (by assumption, ∆θ is decreasing, and equal
to 2π on meridians, i.e. when pθ = 0). So extremals are optimal up to t =
T (pθ)/2, and the corresponding point is a separating point. Since the metric
is complete, each point of the equator is reached by such an extremal and the
set of separating points, hence the cut locus, is the equator minus the initial
point itself. Consider finally the case when the initial point is neither polar nor
equatorial. Then p2

θ belongs to (0, 1/Γ(ϕ0)), and extremals are again optimal
up to t = T (pθ)/2. Indeed, there would otherwise exist shorter extremals,
which would lead to the existence of shorter extremals for the initial condition
ϕ0 = π/2 too, contradicting the previous fact. The central symmetry s2 still
generates an intersection at t = T (pθ)/2, and ϕ(T (pθ)/2) = π − ϕ0 so the
corresponding separating point belongs to the antipodal parallel of the starting
point. Since ∆θ is decreasing, the extremities of the cut are obtained letting pθ

tend to ±(Γ(ϕ0))−1/2 (now finite, since ϕ0 6= π/2), and the subarc is closed.

To study the conjugate loci, we start with some properties of the local model
at singularity. Setting x := π/2 − ϕ and y := θ, since 1 − sin2 ϕ ∼ (π/2 − ϕ)2

when ϕ tends to π/2, a local model for the metric (1) is

ds2 = dx2 +
dy2

x2p
(13)

where p is the order of the pole. The equatorial symmetry of Γ translates
into (−x)2p = x2p, so the discrete symmetry group is preserved. Such almost-
Riemannian metrics are related to sub-Riemannian distributions. For p = 1,
the local model is the Grušin metric ds2 = dx2 + dy2/x2, which is actually
obtained by projecting the Heisenberg sub-Riemannian distribution [13]. This
distribution is indeed defined, up to a renormalization, by the following two
vector fields on R3,

F1(x, y, z) :=
∂

∂x
− y

∂

∂z
, F2(x, y, z) :=

∂

∂x
+ x

∂

∂z
,
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and the corresponding sub-Riemannian Hamiltonian is

H(x, y, z, px, py, pz) :=
1
2

[
(p2

x + p2
y) + 2pz(xpy − ypx) + (x2 + y2)p2

z

]
,

which suggests to use cylindrical coordinates. In these variables

H(r, θ, z, pr, pθ, pz) =
1
2

[
p2

r + (pθ/r + rpz)2
]
.

As θ and z are cyclic, the system is integrable in dimension three, and projects
onto a Hamiltonian in the (r, z)-space with the desired singularity,

h(r, z, pr, pz) :=
1
2
(p2

r + r2p2
z),

when restricting to pθ = 0. For p = 2, the local model is ds2 = dx2 + dy2/x4,
which is connected to the flat Martinet sub-Riemannian distribution. Consider
indeed the two vector fields on R3 (see [2])

F1(x, y, z) :=
∂

∂x
+ y2 ∂

∂z
, F2(x, y, z) :=

∂

∂y
,

so the sub-Riemannian Hamiltonian is

H(x, y, z, px, py, pz) :=
1
2

[
p2

y + (px + y2pz)2
]
.

The two coordinates x and z are cyclic, and the Hamiltonian projects onto
h(y, z, py, pz) := (1/2)(p2

y + y4p2
z) in the (y, z)-space when restricting to px = 0,

providing the higher order singularity. Going back to the general case, we
compute geodesics issuing from the origin on the level set {h = 1/2} of the
Hamiltonian

h(x, y, px, py) :=
1
2
(p2

x + x2pp2
y)

so that the initial adjoint state belongs to the union of the two lines, {px = ±1}.
We set λ := py and restrict to positive λ by symmetry (the trivial geodesics
(±t, 0) being obtained for λ = 0). The coordinate x is then

x(t) =
1

p
√

λ
q(t p

√
λ) , (14)

where q is the solution of

q′2 + q2p = 1, q(0) = 0, q′(0) = 1. (15)

Equivalently,

q−1(u) =
∫ u

0

dv
p
√

1− v2p
, u ∈ [−1, 1].

For p = 1, q is harmonic, elliptic for p = 2, hyperelliptic and reciprocal to a
hypergeometric function in general. More precisely,

q−1(u) = 2F1(1/2, 1/(2p); 1 + 1/(2p);u2p) · u (16)



Metrics with equatorial singularities on the sphere 16

where 2F1(a, b; c; z) is the hypergeometric series

2F1(a, b; c; z) =
∑
n≥0

αn
zn

n!
,

and
α0 := 1,

αn+1/αn := (n + a)(n + b)/(n + c).

The reciprocal of q is hence equal to

q−1(u) =
∑
n≥0

αn
u2np+1

n!

with αn = (a)n(b)n/(c)n for a = 1/2, b = 1/(2p) and c = 1 + 1/(2p), the
notation (a)n standing for the Pochhammer symbol

(a)n := a(a + 1) · · · (a + n− 1).

Here,

α0 = 1, α1 =
1
2
· 1
2p + 1

, α2 =
3
4
· 2p + 1
8p2 + 6p + 1

· · ·

which gives the usual Taylor series of the reciprocal of the sine function for
p = 1, arcsinu = u + u3/6 + 3u5/40 + 5u7/112... Eventually, ẏ = λx2p, so

y(t) =
1

( p
√

λ)p+1
r(t p

√
λ), (17)

where r is defined by a second quadrature,

r(s) :=
∫ s

0

q2p.

Lemma 9.
r =

1
p + 1

(s− qq′).

Proof. Differentiating and using (15),

1
p + 1

(s− qq′)′ =
1

p + 1
(1− q′2 − qq′′)

= q2p,

hence the result since r(0) = 0.

For any p ≥ 1, symmetry reasons imply that non-trivial minimizing geodesics
emanating from the origin first intersect on the y-axis (see, e.g., Fig. 1). As a
consequence, the cut locus at the origin of the local model is the axis minus the
origin itself (compare with the metric on the sphere, Theorem 1). The conjugate
locus of the origin is obtained from the set of critical values of the exponential
mapping

exp(0,0)(t, λ) = (x(t, λ), y(t, λ)), (t, λ) ∈ (R∗
+)2.

Let t1c(λ) denote the first conjugate time along the geodesic defined by λ > 0.
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Figure 1: Grušin metric, dx2 +dy2/x2 (p = 1); sphere, wavefront and conjugate
locus of the origin. The wavefront (in blue) is the image of the exponential
mapping for a fixed time, t; it is made of endpoints at time t of geodesics. The
subset obtained by ruling out the part after the two first self-intersection points
of the wavefront on the y-axis is the sphere; it is made of points at distance
(minimum time) t of the origin. The conjugate locus (in red) is partly drawn
(here, it is the set y = ±C1x

2 minus the origin); it is made of critical values of
the exponential (it contains so the first singularity of the wavefront portrayed).
Compare with the Heisenberg metric in [21].

Lemma 10. t1c(λ) = sp/
p
√

λ where sp is the first positive root of the envelope
equation q = sq′.

Proof. Using (14) and (17), a pair (t, λ) is a critical point of the exponential if
and only if t p

√
λ is a solution to

qr′ − (p + 1)q′r = 0.

Expressing r according to Lemma 9, one gets the result.

Proposition 8. The conjugate locus at the origin of ds2 = dx2 + dy2/x2p is
the set y = ±Cpx

p+1 minus the origin where

Cp ∼
2
√

2
p

, p →∞.
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Proof. According to Lemma 10,

x(t1c(λ)) =
1

p
√

λ
q(sp), y(t1c(λ)) =

1
( p
√

λ)p+1
r(sp),

so points in the conjugate locus lie on the curve y = ±Cpx
p+1 where Cp =

r(sp)/qp+1(sp). The whole curve minus (0, 0) is obtained because of symmetries,
and conjugate points accumulate towards the origin when |λ| → ∞. It is clear
from (15) that, as p →∞, q pointwisely converges towards the Lipschitz function
equal to s 7→ s on [0, 1], s 7→ 2 − s on [1, 3]. In particular, the solution sp to
the envelope equation is such that sp → 3−; so q′(sp) → −1/3, q2p(sp) =
1− q′2(sp) → 8/9, and qp−1(sp) → 2

√
2/3. Now, by virtue of Lemmas 9 and 10,

Cp =
1

p + 1
sp − q(sp)q′(sp)

qp+1(sp)
=

sp

p + 1
qp−1(sp) ∼

2
√

2
p

, p →∞.

Remark 5. For p = 1, q(s) = sin s, r(s) = (1/2)(s − sin t cos t); t1c(λ) = s1/λ
where s1 is the first positive root of

sin s = s cos s.

For p = 2, one obtains

q(s) =
√

2
2

sn
dn

(s
√

2), r(s) =
1
3

[
s +

√
2

2
cn sn
dn3 (s

√
2)

]
,

in terms of Jacobi functions of modulus k =
√

2/2; t1c(λ) = s2/
√

λ where
τ = s2

√
2 (with s2 < 3) is the first root solution of

sn τ dn τ = τ cn τ.

(Compare with the flat Martinet case in [2].)

Before stating the structure result on the conjugate locus, we finally recall
the following.

Scholium. Along a Jacobi field tangent to the level set of a Hamiltonian qua-
dratic in the momentum, the Liouville form is constant.

Proof. In coordinates z = (x, p) ∈ R2n, let H(x, p) = (1/2)(A(x)p|p) with A(x)
symmetric; let γ(t) = (z(t), δz(t)) be a Jacobi field, that is ż(t) =

−→
H (z(t)) and

δż(t) =
−→
H ′(z(t))δz(t).

Along γ, the time derivative of the Liouville form p dx is

d
dt

(p|δx) = (ṗ|δx) + (p|δẋ)

= −(∇xH|δx) + (p|∇2
xpH δx)︸ ︷︷ ︸

2(∇xH|δx)

+(p|∇2
ppH δp)︸ ︷︷ ︸

(∇pH|δp)

= (∇xH|δx) + (∇pH|δp).
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Let now z0(σ) be a local parameterization of the level set {H = c}; for a
Hamiltonian curve z(t, z0(σ)) with initial condition z0(σ), H(z(t, z0(σ))) = c,
so

H ′(z(t, z0(σ)))
∂z

∂z0
(t, z0(σ))z′0(σ)︸ ︷︷ ︸

=:δz(t)

= 0.

Along the curve (z(t, σ), δz(t)), the Liouville form is hence constant.

Here, the level set {h = 1/2} of the quadratic Hamiltonian (7) on S2 is locally
parameterized by pθ and the exponential (12) writes

expϕ0
(t, pθ) = (θ(t, pθ), ϕ(t, pθ)),

so
pθ

∂θ

∂pθ
(t, pθ) + pϕ(t, pθ)

∂ϕ

∂pθ
(t, pθ) = 0 (18)

since ∂θ(0, pθ)/∂pθ = ∂ϕ(0, pθ)/∂pθ = 0.

Lemma 11. Critical points (t, pθ) of the exponential are characterized either
by ∂θ(t, pθ)/∂pθ = 0 when ϕ̇ 6= 0, or by ∂ϕ(t, pθ)/∂pθ = 0 when pθ 6= 0.

Proof. The point (t, pθ) is critical if and only if

θ̇(t, pθ)
∂ϕ

∂pθ
(t, pθ)− ϕ̇(t, pθ)

∂θ

∂pθ
(t, pθ) = 0.

When pϕ(t, pθ) = ϕ̇(t, pθ) 6= 0, one can multiply both sides by pϕ and use (18)
to get

∂θ

∂pθ
(t, pθ)

(
pθ θ̇(t, pθ) + pϕ(t, pθ)ϕ̇(t, pθ)

)
︸ ︷︷ ︸

=h=1/2

= 0

whence the result. Similar computation when pθ 6= 0.

Theorem 2. Under the assumption that ∆θ is strictly decreasing and convex
for pθ > 0, conjugate loci of the metric (1) are reduced to the opposite pole for
poles, have four cusps otherwise.

Proof. Let ϕ0 = π/2. Consider an extremal defined by a positive pθ and pϕ0 =
+1. For t in (T (pθ)/4, 3T (pθ)/4), ϕ̇ 6= 0 and the extremal can be parameterized
by ϕ according to

θ(ϕ, pθ) =
∆θ(pθ)

2
+

∫ π/2

ϕ

f(φ, pθ) dφ,

where, as before,

f(ϕ, pθ) =
dθ

dϕ
=

Γ(ϕ)pθ√
1− Γ(ϕ)p2

θ

·

The conjugacy condition is ∂θ/∂pθ = 0 (Lemma 11) so the coordinate ϕ1c(pθ)
of the first conjugate point is solution of∫ π/2

ϕ1c(pθ)

∂f

∂pθ
(ϕ, pθ) dϕ = −∆θ′(pθ)

2
> 0,
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in order that ϕ1c(pθ) < π/2 (since ∂f/∂pθ > 0). By differentiating the previous
equality, one gets

ϕ′1c(pθ) =
[

∂f

∂pθ
(ϕ1c(pθ), pθ)

]−1
[

∆θ′′

2
(pθ) +

∫ π/2

ϕ1c(pθ)

∂2f

∂p2
θ

(ϕ, pθ) dϕ

]
,

which is positive first because ϕ1c(pθ) < π/2, then because

∂2f

∂p2
θ

=
3Γ2(ϕ)pθ

(1− Γ(ϕ)p2
θ)5/2

> 0,

and by virtue of the nonnegativeness of ∆θ′′. In particular, the parameterization
pθ 7→ (θ(ϕ1c(pθ), pθ), ϕ1c(pθ)) of the conjugate locus is regular, and the set has
no cusp for positive pθ. The tangent vector along the conjugate locus is(

∂θ

∂ϕ
ϕ′1c +

∂θ

∂pθ︸︷︷︸
0

)
∂

∂θ
+ ϕ′1c

∂

∂ϕ
,

which is proportional to f(ϕ1c(pθ), pθ)∂/∂θ + ∂/∂ϕ. On the one hand, as in
the regular case discussed in [11], f(ϕ1c(pθ), pθ) tends to 0 when pθ → 0+,
and the locus has a first meridional cusp because of the axial symmetry s1.
On the other hand, when pθ goes to +∞, the analysis on the local model
(Proposition 8) shows that, contrary to the regular case, the conjugate locus has
two tangential contacts with the meridian that, combined again with symmetry
s1, form a second meridional cusp at the initial point where conjugate points
accumulate. The central symmetry s2 gives the symmetric part, whence the
result. When ϕ0 6= π/2, the same reasoning shows that there is no cusp for
pθ ∈ (0, 1/

√
Γ(ϕ0)); there are two meridional cusps due again to symmetry s1,

and two cusps tangent to the antipodal parallel containing the cut locus (see
Theorem 3.6 of [11]).

5 The (1, 2, 1) case

The results of Section 4 are applied to the second example discussed in §3 (the
application to the first example, the Grušin metric on the sphere, is straight-
forward; see [18]). Consider the metric (1) with p = 2 and (a0, a1, a2) =
(1/4)(1, 2, 1), that is

R(X) =
(

1−X/2
1−X

)2

=
1
4

[
1 +

2
1−X

+
1

(1−X)2

]
·

Lemma 12. The coordinate ϕ is parameterized by the family of elliptic curves

Cpθ
: Y 2 = 4(1−X)[X(2−X)2 − 4p2

θ(1−X)2], pθ ∈ R. (19)

Proof. Set Y := (2 − X)Ẋ on the level set 1/2 of the quadratic Hamiltonian
(7).

In the sequel, ℘ denotes the Weierstraß function with invariants g2, g3 (see [25]).
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Proposition 9.

sin2 ϕ =
℘(z)− 4/3
℘(z)− 1/3

, z ∈ R,

t = z +
1

℘′(a)

[
2ζ(a)z + ln

σ(z − a)
σ(z + a)

]z

0

with a such that ℘(a) = 1/3 and invariants

g2 =
16
3

+ 16p2
θ, g3 =

64
27

− 16
3

p2
θ. (20)

Proof. The rational transform

u =
1
3

+
1

1−X
, v = u2Y,

sends to infinity the fixed root X = 1 in the right hand side of (19), and allows
to recast the equation of Cpθ

under the canonical form v2 = 4u3− g2u− g3 with
invariants (20). When parameterizing the elliptic curve Cpθ

by the Weierstraß
function, (u, v) = (℘(z), ℘′(z)), only the unbounded component of the real cubic
has to be used since X = sin2 ϕ ∈ (0, 1] (that is ℘(z) > 4/3), so z ∈ R. In this
parameterization, the change of time from z to t verifies

dt

dz
= 1 +

1
℘(z)− 1/3

> 0. (21)

Introducing Weierstraß functions ζ and σ (℘ = −ζ ′ and ζ = σ′/σ), one has (see
[23]) ∫

℘′(a) dz

℘(z)− ℘(a)
= 2ζ(a)z + ln

σ(z − a)
σ(z + a)

·

For a geodesic originating from the singularity, ϕ = π/2 at t = 0 which corres-
ponds to z = 0.

As a function of z, the coordinate ϕ is a doubly periodic meromorphic function.
Its lattice of periods 2ωZ+ 2ω′Z depends on pθ (the Weierstraß half-periods ω,
ω′ are functions of pθ) and is real rectangular: ω ∈ R, ω′ ∈ iR, and the periods
can be choosen so that their ratio τ := ω′/ω belongs to the Poincaré upper
half-plane H = {x + iy ∈ C, y > 0}. Lattices are classified up to conformal
transformations; these transformations are Möbius transforms in the Fuschian
modular subgroup PSL(2,Z) = SL(2,Z)/ ± id of automorphisms of H, so the
moduli space of congruences of lattices is H/PSL(2,Z). The modular function j
establishes a one-to-one correspondence between these moduli and the complex
plane; in terms of the invariants of the elliptic curve,

j(τ) =
g3
2

∆

where ∆ = g3
2−27g2

3 is the discriminant of the elliptic curve with ratio of periods
τ . For the family of elliptic curves Cpθ

(see (20)),

j(τ(pθ)) =
16(1 + 3p2

θ)
3

27p2
θ(8 + 13p2

θ + 16p4
θ)
· (22)
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Corollary 1. The number of conformal classes associated with Cpθ
is

– equal to 1 for pθ ∈ (0, 1/2) ∪ {2/3},

– equal to 2 for pθ ∈ {1/2,
√

2},

– equal to 3 for pθ ∈ (1/2, 2/3) ∪ (2/3,
√

2) ∪ (
√

2,∞).

The only square lattice is obtained for pθ = 2/3.

Proof. The rational fraction (22) has exactly one global minimum at pθ = 2/3
and one local maximum at pθ =

√
2. Moreover,

j(τ(pθ)) =
28
27

− 16(p2
θ − 1/4)(p2

θ − 2)2

27p2
θ(8 + 13p2

θ + 16p4
θ)

showing that the value of the local maximum is also attained when pθ = 1/2.

Proposition 10.
T (pθ)

4
= (1 + β)ω − bη mod

π

2
where η := ζ(ω), b := Im a and β := Im ζ(a).

Lemma 13. For all pθ > 0, (1/3,±2i) belongs to the bounded component of the
imaginary cubic Cpθ

.

Proof.

4(1/3)3 − (1/3)g2 − g3 =
4
27

− 1
3

(
16
3

+ 16p2
θ

)
−

(
64
27

− 16
3

p2
θ

)
= (±2i)2.

Proof of Proposition 10. As X = sin2 ϕ, the period of X is half the period of ϕ
so

T (pθ)
2

=
∫ 2ω

0

dt

dz
= 2ω +

1
℘′(a)

[
2ζ(a)z + ln

σ(z − a)
σ(z + a)

]2ω

0

. (23)

According to [23, p. 170],

ln
[
σ(2ω − a)

σ(−a)
σ(a)

σ(2ω + a)

]
= ln e−4ηa = −4ηa mod 2iπ.

The term in brackets in (23) has to be positive because of (21), so ℘′(a) = +2i
by the previous lemma (℘(a) = 1/3) and

T (pθ)
4

= ω +
ωζ(a)− ηa

i
mod

π

2
·

The bounded component of the imaginary cubic is parameterized by z ∈ ω + iR
so a = ω + ib and ζ(a) = η + iβ for some real b and β.

In order to verify the assumptions of Theorems 1 and 2, one has to differentiate
the quasi-period ∆θ with respect to pθ. By means of Proposition 6, it suffices
to compute derivatives of the period T . Define

∂ :=
1
δ

d
dpθ

, δ :=
∆

256pθ
= pθ(8 + 13p2

θ + 16p4
θ).
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Lemma 14.

∂ω = −Aω −Bη, ∂b = −Ab−Bβ + D,
∂η = Cω + Aη, ∂β = Cb + Aβ + E,

with A, B, C, D, E in R[pθ],

A =
1
3
(4 + 13p2

θ + 24p4
θ), B = −2 + p2

θ, C =
4
9
(−2− 5p2

θ + 3p4
θ),

D = 2 + 6p2
θ, E =

1
3
(−4 + 9p2

θ).

Proof. The derivatives of the (half) period and quasi-period ω and η = ζ(ω) of
℘ and ζ, respectively, with respect to the invariants g2, g3 are known (see [23,
p. 307]), and

∂ =
32
3

(
3

∂

∂g2
− ∂

∂g3

)
according to (20). Moreover,

℘(a) = ℘(a(pθ), pθ) =
1
3

implies ℘′(a)∂a + ∂℘(a) = 0,

so ∂a = − 1
2i

∂℘(a)

(because ℘′(a) = 2i), and one also knows the derivatives of ℘ (and ζ) with
respect to g2, g3 (see [23, p. 298]). Then ∂b = Im ∂a. Similarly,

∂[ζ(a(pθ), pθ)] = −℘(a)∂a + ∂ζ(a) = −1
3
∂a + ∂ζ(a)

and ∂β is obtained taking the imaginary part.

Lemma 15. ∂T is R[pθ]-linear in (ω, η),

∂T (pθ)
4

= −(A + E)ω − (B + D)η.

Proof. Applying Lemma 14 rules to T , which is bilinear in (ω, η, b, β), one ob-
serves that the coefficients of b and β cancel.

Proposition 11.

∆θ′(pθ) = − 4
8 + 13p2

θ + 16p4
θ

[
2
3
(11 + 12p2

θ)ω + 7η

]
,

∆θ′′(pθ) =
4

pθ(8 + 13p2
θ + 16p4

θ)2
×[

2
3
(24 + 181p2

θ + 830p4
θ + 480p6

θ)ω + (−24 + 143p2
θ + 400p4

θ)η
]

.

Proof. Lemma 15 combined with Proposition 6 gives the first order derivative
of the quasi-period; the second order one is obtained by applying the previous
rules anew.
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The penultimate result of the section ensures that the cut and conjugate loci in
the (1, 2, 1) case have the structure described in Theorem 1 and Theorem 2.

Theorem 3. ∆θ′ < 0 ≤ ∆θ′′ in the (1, 2, 1) case.

Proof. The first derivative ∆θ′, expressed as linear combination of the nonneg-
ative (quasi-)periods ω and η, is obviously negative. To obtain nonnegativity of
∆θ′′, one has to check the sign of

2
3
(24 + 181p2

θ + 830p4
θ + 480p6

θ)ω + (−24 + 143p2
θ + 400p4

θ)η

= 24(
2
3
ω − η) + (

2
3
181ω + 143η)p2

θ + (
2
3
830ω + 400η)p4

θ +
2
3
480ωp6

θ

= 24(
2
3
ω − η + p2

θ) + (
2
3
181ω + 143η − 24)p2

θ + (
2
3
830ω + 400η)p4

θ +
2
3
480ωp6

θ.

Let us denote

pθ1 :=
1
20

√
−143 + 7

√
1201

2

the positive root of −24 + 143p2
θ + 400p4

θ, it is enough to verify that

2
3
ω − η + p2

θ ≥ 0 and
2
3
181ω + 143η − 24 ≥ 0

on [0, pθ1]. Now, as pθ tends to 0, η/ω degenerates to (3/2)g3/g2|pθ=0 = 2/3
(see [23]), so 2ω/3− η + p2

θ vanishes when pθ → 0. Moreover, (2ω/3− η + p2
θ)
′

is equal to

1
pθ(8 + 13p2

θ + 16p4
θ)

[
(16− 2

3
ω − 5η)p2

θ + (26− 20
3

ω − 8η)p4
θ + 32p6

θ

]
.

Using the coarse estimates ω ∈ [1, 2] and η ∈ [1/2, 1] on [0, pθ1], one has

16− 2
3
ω − 5η ≥ 25

3
and 26− 20

3
ω − 8η ≥ 14

3
,

so nonnegativity of the derivative and the function (2/3)ω − η + p2
θ follows on

this interval. The same holds for (2/3)181ω + 143η − 24 that is bounded below
by 1009/6 on [0, pθ1], whence the result.

The condition for a geodesic to be closed is ∆θ ∈ πQ (rationality of ∆θ/π),
so that asymptotics when pθ → ∞ measure the density of closed curves in the
neighbourhood of the equator. This is also related to optimality conditions
through injectivity radius (see [8] in the Riemannian case). The asymptotics
below use quadratures by means of elliptic integrals detailed in the appendix.

Proposition 12. In the neighbourhood of meridians,

T ∼ 2π(1− 3
√

2
8

p2
θ +

105
√

2
512

p4
θ), ∆θ ∼ 2π(1− 3

√
2

4
pθ +

35
√

2
128

p3
θ), pθ → 0.

and in the neighbourhood of the equator,

T ∼ 4(2−
√

2)K(3−2
√

2)p−1/2
θ , ∆θ ∼ 4

3
(2−

√
2)K(3−2

√
2)p−3/2

θ , pθ →∞.
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Figure 2: (1, 2, 1) case; geodesics, cut and conjugate loci on the sphere. Symmet-
ric geodesics (in blue) from opposite hemispheres intersect on the equator that,
deprived of the origin, forms the cut locus (in black; Theorem 1). The envelope
of geodesics generate the conjugate locus (red dots) which has for meridional
cusps (Theorem 2).

6 Deformation of the round sphere

We consider the following deformation of the metric (1):

XR(λX)dθ2 + dϕ2 (X = sin2 ϕ), λ ∈ [0, 1]. (24)

For λ = 0, one gets the canonical metric on the sphere as R(0) is normalized to
one, so we have an homotopy connecting the round metric to the singular one.
For λ < 1, the metric is Riemannian (no equatorial singularity). In the case
R(X) = 1/(1 −X), such a deformation of the round metric appears in [8, 19].
See also [20] for perturbation results of the round sphere.

Proposition 13. The curvature of the metric (24) is a rational fraction homo-
geneous in R; for λ ∈ [0, 1),

Kλ(X) = 1 + λ(4X − 3)
R′(λX)
R(λX)

+ λ2X(1−X)
[
R′2(λX)
R2(λX)

− 2R′′(λX)
R(λX)

]
.
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Proof. The result follows from the fact that, given a metric Γ(ϕ)dθ2 + dϕ2 on
S2, the Gaussian curvature is K = −(

√
Γ)′′/

√
Γ.

Corollary 2 (Concentration of curvature). The following curvature estimates
hold for the metric (24):

Kλ(X) = 1 + λR′(0)(4X − 3) + O(λ2) when λ → 0,

K1(X) ∼ −p(p + 1)
1−X

when X → 1, Kλ(1) ∼ p

1− λ
when λ → 1,

where p is the order of the pole of R.

Corollary 3. Cut loci of the metric (24) are closed antipodal subarcs for λ close
enough to zero.

Proof. Since K ′
λ(X) ∼ 4λ(R′/R)(0)+O(λ2) with (R′/R)(0) > 0 by virtue of (2),

the curvature is monotone non-decreasing along half-meridians and the result
follows from [35] main theorem.

The existence of conjugate points for metrics with singularities is typical of the
almost-Riemannian setting where conjugate points may exist although curvature
remains negative whenever defined (see, e.g., [4]). In the (1, 2, 1) case of §5 for
instance,

K1(X) = − (1 + X)(4−X)
(2−X)(1−X)

< 0 (X = sin2 ϕ).

Corollary 2 establishes that although curvature is negative in the neighbourhood
of the singularity and even tends to −∞ when ϕ → π/2, there is a concentration
of positive curvature on the singularity itself as Kλ(1) → +∞ when λ → 1−,
responsible for the existence of conjugate points after crossing the singularity
(cut, and thus conjugate points being located after the equator by antipodality).
An alternative interpretation of the singularity comes from the following fact.

Proposition 14. For R(X) = 1/(1 − X) and λ ∈ [0, 1), the metric (24) is
conformal to the canonical metric on a oblate ellipsoid of revolution of unit
semi-major axis and

√
1− λ semi-minor axis.

Proof. A parameterization of such an ellipsoid of semi-minor axis µ is

x = sinϕ cos θ, y = sinϕ sin θ, z = µ cos ϕ.

In these coordinates, the restriction of the flat R3 metric reads

sin2 ϕ dθ2 + (1− (1− µ2) sin2 ϕ)dϕ2 = (1− λX)[XR(λX)dθ2 + dϕ2]

with λ = 1− µ2.

When λ tends to 1, µ =
√

1− λ tends to zero so the oblate ellipsoid collapses
onto a two-sided Poincaré disk, each face being endowed with the flat metric.

Corollary 4. For R(X) = 1/(1 − X), the metric (1) is conformal to the fol-
lowing constant curvature metrics on the Poincaré disk: (i) the flat metric
dρ2 +ρ2dθ2 (K = 0), (ii) the canonical Poincaré metric (dρ2 +ρ2dθ2)/(1−ρ2)2

(K = −1), where (ρ, θ) are polar coordinates on D.
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Proof. Setting ρ = sinϕ, one retrieves the standard polar coordinates on the
disk. In these coordinates, dρ2 = (1−X)dϕ2, so

X

1−X
dθ2 + dϕ2 =

dρ2 + ρ2dθ2

1− ρ2
·

In this case, crossing the equatorial singularity can thus be interpretated as
crossing the boundary of the disk to go from one side of D to the other. This
can also be seen, like in the flat case, as generating reflections of geodesics with
the boundary. As for the canonical Poincaré metric, those reflections turn out
to be orthogonal in general.

Proposition 15. For the metric (1), crossing the equatorial singularity is inter-
pretated on the Poincaré disk as reflecting on the boundary. Reflections on the
boundary of the metric (24) are tangential (except for meridians) when λ < 1,
and orthogonal when λ = 1.

Proof. In polar coordinates on D, the Hamiltonian (7) reads

h(ρ, θ, pρ, pθ) =
1
2

[
(1−X)p2

ρ +
p2

θ

XR(X)

]
, X = sin2 ϕ = ρ2.

In particular,

θ̇ ∼ pθ

ap
(1−X)p and |ρ̇| = (1−X)|pρ| ∼

√
1−X

when X → 1 since

p2
ρ = (1−X)−1

[
1− p2

θ

XR(X)

]
∼ (1−X)−1

on {h = 1/2}. Reparameterizing time according to dτ = dt
√

1−X we get

dθ

dτ
∼ pθ

ap
(1−X)p−1/2 → 0 and

∣∣∣∣dρ

dτ

∣∣∣∣ ∼ 1, X → 1,

so contacts with ∂D (i.e. for ρ2 = X = 1) are orthogonal reflections. Besides,
using homotopy (24) to replace the singular metric by a Riemannian one when
λ < 1 changes the contact for pθ 6= 0 (meridians, obtained for pθ = 0, obviously
remain perpendicular to the boundary). Indeed, the deformed Hamiltonian is

hλ(ρ, θ, pρ, pθ) :=
1
2

[
(1−X)p2

ρ +
p2

θ

XR(λX)

]
,

and, when X → 1,
θ̇ ∼ pθ

R(λ)
and ρ̇ = pϕ

√
1−X

since pϕ = pρ

√
1−X, which remains finite. So θ̇ 6= 0 if pθ 6= 0 while ρ̇ = 0 at

X = 1, and contacts with the boundary are tangential outside meridians.
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Figure 3: (1, 2, 1) case; geodesics, cut and conjugate loci on the disk. On the
left, metric obtained by homotopy from the round one for λ < 1; the initial
condition is on the boundary, tangential contacts of the geodesics (in blue) with
∂D are observed. On the right, singular metric (λ = 1) for the same initial
condition (compare with Fig. 2); contacts with ∂D are orthogonal. In both
cases, the conjugate locus (red dots) is the catacaustic generated by reflections
of geodesics on the boundary [17]. (In the case of the flat metric on the disk,
the catacaustic of geodesics—that is of straight lines—originating from a point
on the boundary, i.e. at the singularity, would be a cardioid.) Since reflections
are orthogonal (or specular), the figure can also be interpretated as a billiard
on the disk endowed with a particular Riemannian metric.

A Asymptotics in the (1, 2, 1) case

Let α, β, γ and δ = 1 be the roots of the degree four polynomial P (X, pθ)
involved in the computation (compare with (19)),

P (X, pθ) := (1−X)(X(2−X)2 − 4p2
θ(1−X)2).

An alternative quadrature for the period is

T (pθ) =
4√

A2B1

[
Π(ν, k) +

2− p

p− q
K(k)

]
(25)

where K and Π are respectively complete elliptic integrals of first and third
kind,

Π(ν, k) :=
∫ 1

0

dv

(1− νv2)
√

1− v2
√

1− k2v2
, K(k) := Π(0, k),

and

∆ := 4(β − α)(β − δ)(γ − α)(γ − δ), σ := (α + δ)(β + γ)− 2(αδ + βγ),

l1 :=
σ −

√
∆

(β − γ)2
, l2 :=

σ +
√

∆
(β − γ)2

,
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p :=
(α + δ)− l1(β + γ)

2(1− l1)
, q :=

(α + δ)− l2(β + γ)
2(1− l2)

,

A1 := −l2
1− l1
l2 − l1

, B1 := −l1
1− l2
l2 − l1

, A2 :=
1− l1
l2 − l1

, B2 :=
1− l2
l2 − l1

,

a :=
√

A2

B2
, b :=

√
A1

B1
, k :=

b

a
, ν := b2.

With the same notation as before,

±t =
1

2
√

A2B1

[
Π(v, ν, k) +

2− p

p− q
sn−1(v, k)

+
√

A2B1 arctan
(√

A1A2

√
(1− v2)(1− k2v2)−

√
B1B2(1− νv2)

)]1

v
,

where the elliptic integral of third kind is now incomplete, and where

v := b−1 X − q

p−X
∈ [−1, 1] (X = sin2 ϕ).

Similarly,

∆θ(pθ) =
4pθ√
A2B1

[
2Π(κ, k)

pq
− 2Π(µ, k)

(2− p)(2− q)
+

4(1− p)2

p(2− p)(p− q)
K(k)

]
(26)

with, moreover,

c :=
q

p
, d :=

2− q

2− p
, κ :=

ν

c2
, µ :=

ν

d2
·

In order to compute the asymptotics of Proposition 12, we need expansions of
these roots in the neighbourhood of pθ = 0 and pθ = ∞. Such expansions,
which are propagated to T using (25), are available in

√
ε-scale as both

Q(X, ε) := X(2−X)2− 4ε(1−X)2 and Q̃(X, ε) := 4(1−X)2− εX(2−X)2

possess either simple or order two roots for ε = 0, and allow to obtain the
asymptotics in Proposition 12.

Lemma 16. When pθ → 0,

α = p2
θ + o(p2

θ),

β = 2− pθ

√
2 +

3
2
p2

θ −
13
√

2
16

p3
θ +

1
2
p4

θ + o(p4
θ),

γ = 2 + pθ

√
2 +

3
2
p2

θ +
13
√

2
16

p3
θ +

1
2
p4

θ + o(p4
θ).

When pθ →∞,

α = 1− 1
2
p−1

θ − 1
8
p−2

θ + o(p−2
θ ), β = 1 +

1
2
p−1

θ − 1
8
p−2

θ + o(p−2
θ ),

γ = 4p2
θ + 2 +

1
4
p−2

θ + o(p−2
θ ).
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