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Abstract
Background: Confidence in pairwise alignments of biological sequences, obtained by various methods
such as Blast or Smith-Waterman, is critical for automatic analyses of genomic data. Two statistical models
have been proposed. In the asymptotic limit of long sequences, the Karlin-Altschul model is based on the
computation of a P-value, assuming that the number of high scoring matching regions above a threshold is
Poisson distributed. Alternatively, the Lipman-Pearson model is based on the computation of a Z-value
from a random score distribution obtained by a Monte-Carlo simulation. Z-values allow the deduction of
an upper bound of the P-value (1/Z-value2) following the TULIP theorem. Simulations of Z-value distribution
is known to fit with a Gumbel law. This remarkable property was not demonstrated and had no obvious
biological support.

Results: We built a model of evolution of sequences based on aging, as meant in Reliability Theory, using
the fact that the amount of information shared between an initial sequence and the sequences in its lineage
(i.e., mutual information in Information Theory) is a decreasing function of time. This quantity is simply
measured by a sequence alignment score. In systems aging, the failure rate is related to the systems
longevity. The system can be a machine with structured components, or a living entity or population.
"Reliability" refers to the ability to operate properly according to a standard. Here, the "reliability" of a
sequence refers to the ability to conserve a sufficient functional level at the folded and maturated protein
level (positive selection pressure). Homologous sequences were considered as systems 1) having a high
redundancy of information reflected by the magnitude of their alignment scores, 2) which components are
the amino acids that can independently be damaged by random DNA mutations. From these assumptions,
we deduced that information shared at each amino acid position evolved with a constant rate,
corresponding to the information hazard rate, and that pairwise sequence alignment scores should follow
a Gumbel distribution, which parameters could find some theoretical rationale. In particular, one
parameter corresponds to the information hazard rate.

Conclusion: Extreme value distribution of alignment scores, assessed from high scoring segments pairs
following the Karlin-Altschul model, can also be deduced from the Reliability Theory applied to molecular
sequences. It reflects the redundancy of information between homologous sequences, under functional
conservative pressure. This model also provides a link between concepts of biological sequence analysis
and of systems biology.
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Background
Automatic analysis of biological sequences is crucial for
the treatment of massive genomic outputs. Our under-
standing of more than 90 % of protein sequences stored
in public databases, deduced from automatic translation
of gene sequences, will not result from direct experimen-
tation, but from our ability to predict informative features
using in silico workflows [1,2]. An underlying postulate is
that the molecular sequences determined in biological
individuals or species, which have evolved from a com-
mon ancestor sequence and are therefore homologous,
have conserved enough of the original features to be sim-
ilar. Popular sequence alignment methods, such as Blast
[3] or Smith-Waterman [4] algorithms are used as a start-
ing point for homology searches. All these methods com-
putes a score s(a, b) between two sequences a and b. They
use scoring matrices to maximize the summed scores of
compared residues and find optimal local alignments,
computed with a dynamic programming procedure [3,4].
Scoring matrices have been found to be similarity matri-
ces as well [5]. Many similarity matrices are available [6-
8] and evaluation studies led to the conclusion that all can
be considered as log-odds ratio matrices, including the
BLOSUM family [7] and the PAM family [6]. Log-odds

ratio matrices are defined by  where

ω(i, j) is the joint probability of the amino acid pair (i, j),

and ν(i) and ν(j) the probabilities of the amino acids i and
j in the two aligned sequences.

Because re-examination of alignments obtained after mas-
sive comparisons is not manageable, confidence in align-
ment score probabilities is critical for automatic sequence
comparisons, clustering of orthologs and paralogs,
homology-based annotations or phylogeny reconstruc-
tions based on pairwise alignments [2]. Assessing whether
a computed alignment is evolutionarily relevant or
whether it could have arisen simply by chance is therefore
a question that has been extensively studied (for review:
[9]). Two major methods have been proposed.

The first and oldest method, proposed by Lipman and
Pearson [10] and described extensively by Comet et al.
[11] and others [12-14], uses Monte Carlo simulations to
investigate the significance of a score, s calculated from
the alignment of two real sequences a and b. This method

consists in computing η alignments of a with sequences
obtained after shuffling b [15]. The random sequence cor-

responding to the shuffled sequence b is termed B. The η
alignments allow an estimate of an empirical mean score

( ) and standard deviation ( ) from the distribution of

the random variable S(a, B). A Z-value is then defined as:

where * indicates the sequence that was submitted to ran-
domization.

In practice, the computation of Z(a, b*) is known to be
convergent and depends on the accuracy of the estimation
of μ and σ, and therefore on η, ranging usually from 100
to 1000 [11,16]. Bacro and Comet [12] showed that the
asymptotic law of the Z-value (when η → ∞) was inde-
pendent of the length and composition of sequences.
Bastien et al. [13] further demonstrated that regardless of
the distribution of the random variable S(a, B), the rela-
tion

is true. This relation, known as the TULIP theorem, shows
that the Z-value computed for pairwise sequence align-
ments 1) provides an upper bound of alignment score
probability [13], 2) can be used to reconstruct molecular
phylogenies [14] and 3) is an accurate clustering criterion
to reduce the diversity of protein sequence databases [17].
Here we call T-value the upper bound deduced from the
TULIP theorem, i.e. 1/Z(a, b*)2.

Simulations of Z-value distribution [11,18] shows that it
fits a Gumbel distribution, suggesting that the distribu-
tion of alignment scores might follow a Gumbel distribu-
tion as well [19].

The second and most popular method proposed by Karlin
and Altschul [20] is an estimate of the probability of an
observed local ungapped alignment score according to an
extreme value distribution (or EVD; for review: [19]), i.e.
a Gumbel distribution, in the asymptotic limit of long
sequences. The remarkable Karlin-Altschul formula is the
consequence of interpreting the number of highest scor-
ing matching regions above a threshold by a Poisson dis-
tribution. Briefly, considering A and B two random
sequences, m and n their lengths, given the distribution of
individual residues (i.e. amino acids), and given a scoring
matrix, the number of distinct local alignments with score
values of at least s is approximately Poisson distributed
with mean

E(s) ≈ K.m.n.exp(-λ.s) (3)

where λ and K can be calculated from the scoring matrix
and average sequence compositions based on the Poisson

s i j i j
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distribution hypothesis. E(s) is known as the E-value. As a
consequence, if s is the score obtained after aligning two
real sequences a and b (with m and n their respective
lengths), the probability of finding an ungapped segment
pair with a score lower than or equal to s, follows a Gum-
bel distribution:

P(S(A, B) ≤ s) ≈ exp(-K.m.n.exp(-λ.s)) (4)

where S(A, B) is the random variable corresponding to the
score of two random sequences. The P-value, defined as
the probability of finding an ungapped segment pair with
a score higher than s, is simply given by 1-P(S(A, B) ≤ s).
Using the Taylor Expansion of equation (4), the P-value is
approximated by the E-value when E(s) < 0.01. The valid-
ity of the Karlin-Altschul model depends on restrictive
conditions: firstly, the residue distributions in the com-
pared sequences should not be "too dissimilar" and sec-
ondly, the sequence lengths (m an n) should "grow at
roughly equal rates" [20]. The length dependency of align-
ment scores has been discussed [20,21]. In particular, it
has been demonstrated that the growth of the best match-
ing score of gapped alignments was linear when gap pen-
alties were small, becoming logarithmic when increasing
sequence length and for larger gap penalties [21].
Although the Karlin-Altschul formula given by equation
(4) is not valid for gapped alignments and although no
asymptotic score distribution has been analytically estab-
lished for local alignments allowing gaps, simulations
[11,18,22,23] showed that, for both local and global
alignments, the Gumbel law was well-suited to the distri-
bution of scores after pragmatic estimation of the λ and K
parameters.

Noticeably, this model relies on the fact that λ is the
unique positive solution to the equation

, for the 20 × 20 combina-

tions of i and j amino acids, with νa(i) and νb(j) the prob-

abilities of amino acids i and j in sequences a and b
respectively and s(i, j) the score in the substitution matrix.
From a theoretic point of view, and regardless of the prac-
tical performance of the Karlin and Altschul [20] model,
the fact that an observed distribution (the distribution of
scores of real compared sequences) depends on a presup-
posed and pre-calculated parameter is not satisfactory. It

would be more satisfactory if λ arose as a property of a
biological process and/or features. We addressed therefore
the question of the missing biological rationale to param-

eters, particularly λ and K, that proved to be valid in prag-
matic terms.

In this paper, we deduced biological rationale for the
Gumbel-like distribution of sequence alignment scores
and Z-values, based on a limited number of assumptions
on sequences evolution. An ancestral sequence is the ori-
gin of a lineage of homologous sequences that are sub-
jected to evolutionary mechanisms. We considered
homologous sequences as entities sharing structural fea-
tures, in particular some conserved or functionally similar
amino acids detected by alignment methods. Features that
are preserved in two homologous sequences are estimated
by a shared amount of information (SAI). In this model,
the amount of information shared between an initial
sequence and the sequences in its lineage (i.e., mutual
information in Information Theory) is a decreasing func-
tion of time: over time, some substitutions of amino acids
by others having redundant properties (SAI at the residue
level) may be permitted without functional break down,
but leads to a decrease of the SAI between the sequences.
Classically, molecular evolution is formalized with Mark-
ovian models for residue substitutions, allowing the back-
ward reconstruction of sequences' evolution with the
assumption that the proteins have been selected for a
functional conservation. Here, proteins were considered
as systems, with a high level of structural redundancy,
which components may "age" over evolution, and "die"
in case of loss of the initial amount of information
required to operate accurately for a given biological func-
tion. Assumptions are therefore generalist regarding the
process of sequence evolution, should it be strictly Mark-
ovian or not, but they give a formalism to the reliability of
the sequences reflecting the functional status of the folded
and maturated protein, and being a criterion on which
positive selection pressure might act. We introduced
therefore principles of the reliability theory of aging and lon-
gevity [24], that apply to a wide range of other systems,
from artificial machines to biological population or
organisms, applied here to molecular sequences. Based on
the deduced model, we could provide biological basis for
the Z-value Gumbel distribution, and significance for the
corresponding Gumbel parameters (termed K' and λ').
Moreover, the assumption that the score between two
sequences a and b should be the highest possible score
between a and b is not necessary to observe an extreme
values distribution for sequence alignment scores.

Major points of the following demonstration are:

i. The evolution of biological sequence is formalized by
the evolution of the SAI between an initial sequence and
sequences of its lineage. It is known that for two
sequences a and b, this is measured by the mutual infor-
mation I(a; b), based on Information Theory and is exactly
the score s(a, b) computed with standard methods in
sequences comparisons [14].

n n la b
i j

i j s i j( ) ( )exp{ . ( , )}
,

=∑ 0
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ii. If a sequence evolves, the probability that it stays near
its "last" position in the sequence space is low and the
longest the sequence, the lowest this probability (conse-
quence of the concentration in a high dimensionality
space [25]). The amount of information shared between
an initial sequence and the sequences in its lineage
decreases with time: as a consequence, one can indiffer-
ently use I(a; b) as a measure of the divergence time.

Results and discussion
Assumptions for a model of sequences' evolution
A basic process in the evolution of proteins is the change
of amino acids over time. In the simplest view, these
changes lead to amino acid substitutions, insertions or
deletions. Dayhoff et al. [6] introduced the description of
this process as a continuous-time Markov chain with a
matrix of transition probabilities for the substitutions of
any amino acid into another through time. This model
allows forward and backward expressions of sequence
evolution, under time homogeneity assumption, and is
therefore an important tool for phylogeny reconstruc-
tions. Given a transition matrix and an equilibrium distri-
bution of amino acids, then a matrix of amino acid
substitution scores, in the sense of sequences' compari-
son, can be deduced [26,27].

In the generalist model described here, assumptions
regarding the process of sequence evolution were not for-
malized, should this process be strictly Markovian or not.
Given two sequences, one can, one the one hand, com-
pute a score using dynamic algorithms [3,4] and deduce
the distribution of random scores from transition matri-
ces under the hypothesis that the two sequences have
evolved according to a continuous-time Markov chains
process. On the other hand, Henikoff et al. [7] demon-
strated the possibility to calculate efficient log-odd matri-
ces without the need of this assumption. Altschul [28] and
Bastien et al. [14] demonstrated that log-odd matrices
could be reformulated in the Information Theory frame-
work. In particular, a score between two amino acids i and
j can be interpreted as the mutual information between
these two residues. At the 3D folded protein level, a
molecular function emerges from the information
encrypted in the amino acid sequence, and positive selec-
tion pressure acts therefore at the sequence level, main-
taining a sufficient portion of the initial information, and
consequently the functional status of the folded and mat-
urated protein. We therefore focused on the evolution of
the information shared between an initial sequence and
the sequences of its lineage through time.

Reliability theory and biological sequences evolution
The Reliability Theory is a general theory about systems
aging, in which the failure rate (the rate by which systems
deteriorate) is related to the systems longevity (For review,

[24]). The system can be a machine with structured com-
ponents, or a living entity or population. "Reliability" of a
system (or of one of its components) refers to its ability to
operate properly according to a standard [29]. The rela-
tion between the age of a system and its failure rate shows
that aging is a direct consequence of redundancies within
the system. For instance, when applied to a biological sys-
tem in which redundant vital structures ensure a function,
damage of a component that is compensated by another
redundant intact one, does not lead to a complete impair-
ment of the system. Defects do accumulate, resulting in
redundancy exhaustion and giving rise to the phenome-
non of aging. As the system (or one of its components)
degenerates into a system with no redundancy, new
defects can eventually lead to death. Reliability of the sys-
tem (or component) is described by the "reliability func-
tion" R(x), also named "survival function", which is the
probability that the system (or component) will carry out
its mission through time x [30], expressed as the probabil-
ity that the failure time X is beyond time x:

R(x) = P(X > x) = 1 - P(X ≤ x) = 1 - F(x) (5)

where F(x) = P(X ≤ x) is a cumulative distribution function
[24] reflecting the resistance of the system to failures (at
time x, distribution of the probability that the system
could have failed previously). R(x) evaluates therefore the
probability that the systems becomes completely defective
after a time x (x can be a direct measure of time t or an
increasing function of time).

The "hazard rate"h(x), also called "failure rate", is defined
as the relative rate for reliability function decline:

Hazard rate is equivalent to mortality force in demogra-
phy [31,32]. When h(x) is a constant h, the system does
not deteriorate more often with age, and is therefore a
non-aging system. In this case, a simple integration of
equation (6) leads to

R(x) = R(0)exp(-h.x) (7)

which is the exponential distribution that characterizes
non-aging systems. Interestingly, a system with redundant
non-aging components can be an aging system. That is to say
the hazard rate of a system of components depends can
depends of time whereas the hazard rate of components
do not

As discussed by Gavrilov and Gravrilova [24], the "relia-
bility theory" provided explanations for some fundamen-
tal problems regarding aging, longevity, death of

h x
dR x

R x dx
d R x

dx
( )

( )
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organisms within populations. Organisms or populations
are considered as systems in which categories of compo-
nents (molecules, biological processes, cells, individuals,
etc.) can be highly redundant, and be key elements for the
system longevity.

Here, we propose to consider the particular case of protein
sequences as a system, in which redundancy is ensured:

i. by the number of residue positions involved in the evo-
lution process.

ii. at the residue level by the existence of functionally
redundant amino acids (e.g. after a DNA damage that
leads to a genetic mutation, an aspartic acid may be sub-
stituted by a functionally redundant glutamic acid), i.e.
the existence of a SAI for all amino acids pairs.

In this model, evolutionary time is negatively correlated
to the amount of information shared between an initial
sequence and sequences in its lineage (SAI decreases with
time, see below).

The conservation rate: a mathematical tool to study the 
evolution of the information shared by biological 
sequences
To measure the rate of conservation of a shared structure/
function relationship at time x within a system of homol-
ogous proteins (i.e. the time of observation), we consid-
ered that the decay of information shared between an
original sequence and sequences of its lineage was a func-
tion of time, and therefore a mean to measure time. Evo-
lutionary time is therefore measured here in information
units. We defined an information conservation rate Ψ as fol-
lows:

Definition
Given the cumulative distribution function F(x) = P(X ≤ x)
(Probability that the system shared less than x informa-
tion units with a reference), supposed continuously differ-
entiable, the conservation rate Ψ is given by:

The conservation rate is simply related to the hazard func-
tion, measuring a quantity that decreases over time
(shared information) instead of a quantity that increases
over time (age). Given f(x) = dF(x)/dx the density function
of x, this conservation rate has the following properties.

and as corollaries:

Derivation of the distribution of sequence alignment scores 
based on the distribution of mutual information between 
amino acids
Dobzhansky [33] and Wu et al. [34] established that infor-
mation harbored by a protein 1) emerged from the three-
dimensional self organization of its residues (i.e. the
sequence of amino acids) and had to do with information
harbored by amino acids, and 2) was submitted through
time to evolutionary pressure (achievement of a minimal
functional level fitting environmental and species survival
conditions). Using previous empirical results [6,7,35],
Bastien et al. [14] have shown that the alignment score of
two homologous sequences a and b was proportional to
the estimate of the SAI due to their common origin and
parallel evolution under similar conservative pressure, i.e.
the mutual information I(a; b) between the two events a and
b in the sense of Hartley [36,37]:

s(a, b) = ξ.I (a; b) (13)

with ξ a constant defining the unity (ξ = 1, in bits) and s(a,
b) the sum of the elementary scores for all aligned posi-
tions (including gap opening and gap extension penal-
ties). Mutual information between two events a and b
(differing from the mutual information defined between
random variables, see [14,38]) measures the information
gained by the knowledge of event a on the occurrence of
event b. The mutual information being additive, I(a; b) is
the sum of the mutual information of aligned residues,
reflecting the magnitude of the redundancy between the
sequences at the amino acid level. Mutual information
between residues is therefore simply deduced from the 20
× 20 amino acid substitution matrix [6-8,35] used to com-
pute the alignment.

Inside a given sequence, mutual information was also
shown to reflect the dependency of close or remote amino
acids, a phenomenon known as the residue co-evolution,
due to their co-contribution to the sequence function
[39,40].

y ( ) lim
( / )

x
P x dx X x X x

dxdx
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Considering a protein as a system, which components are
amino acids, we examined the mutual information
between the original components and their descendants,
and how amino acid mutation affected the evolution of
mutual information between proteins. We simply
hypothesized that an amino acid may mutate over time
following random DNA mutations and look at the behav-
ior of the entire system, namely the protein which can be
measured here by the mutual information between the
initial residues and the new ones, i.e. the corresponding
substitution scores in a 20 × 20 substitution matrix. The
substitution matrix is considered as an estimate of the
mutual information between residues because it was com-
puted from real sequences' data [6-8,35].

Over time, an amino acid i is either conserved or substi-
tuted. The similarity of i in an initial sequence compared
with residues at the same position in protein descendants
is therefore either that of identity (the diagonal term in
the scoring matrix) or a lower value(no score is higher
than that of identity). In average, the magnitude of the
similarity of i compared with its descendants, related to
mutual information following equation (13), is therefore
a decreasing function of elapsed time. On a functional
point of view, the probability that i was mutated into a
residue with a score Si lower than a threshold si defined to
allow the component to operate like i, can be deduced
from the distribution of substitution scores. For most
amino acids (F, P, W, Y, V, E, G, H, I, L, K, R, N, D and C),
the distribution of scores deduced from BLOSUM 62 fits
an exponential distribution (see the case of valine in Fig-
ure 1A. For five amino acids (M, S, T, A and Q), the distri-
bution of scores does not fit an exponential distribution
(see the case of Threonine in Figure 1B). Taking the aver-
age situation, the distribution of scores deduced from the
BLOSUM 62 matrix is exponential-like (Figure 1C) sup-
porting a general model for amino acids mutual informa-
tion distribution: The probability Pr that a residue i is
mutated into a residue with mutual information below si
is:

Pr(Si ≤ si) = 1-exp(-λi.si) (14)

where λi is the constant information hazard rate, or failure
rate, for reliability function decline of the amino acid mutual
information.

Given a sequence a, what is the probability that any of its
m residues (termed i) had previously mutated into the n
residues (termed j) of a sequence b and leads to the
observed mutual information between sequence a and

sequence b? We can consider m ≠ n due to insertion or
deletion events. If m and n are large, we can state the fol-

lowing asymptotic approximations: S ≈ m Si , with

 and s ≈ m si , with  where s

(respectively S) is the score between the sequence a
(respectively A) and the sequence b (respectively B) (for
discussion of these approximations, see [41]). In the
asymptotic limit of long sequences, we can envisage dif-
ferent scenarios for the evolution of a into b:

〈 〉 =
→∞

Si m
S
mlim 〈 〉 =

→+∞
si m

s
mlim

Aging properties of amino acidsFigure 1
Aging properties of amino acids. Protein sequences are 
considered as systems, which components are amino acids. 
Over time, either amino acids are conserved (similarity of a 
residue with its descendant is that of identity, diagonal term 
of a substitution matrix) or modified due to random DNA 
mutations. Similarity decreases therefore with time, since no 
similarity is higher than that of identity. When the similarity 
falls below a threshold that is necessary for the residue to 
operate according to a standard (functional conservation), 
the component is damaged. (A) Score distribution corre-
sponding to valine substitution. In this case, the score 
distribution is exponential, suggesting that valine (V) is a non-
aging component. Based on BLOSUM62, residues of this type 
are V, F, P, W, Y, E, G, H, I, L, K, R, N, D and C (B) Score 
distribution corresponding to threonine substitu-
tion. The score distribution shows a peak, indicating a prob-
able accelerated process of aging (functional damage) when 
the residue is substituted by random mutation in some other 
amino acids. Based on BLOSUM62, residues of this type are 
T, S, M, A and Q. (C) Score distribution in the 
BLOSUM62 similarity matrix. The complete distribution 
in the BLOSUM62 matrix is exponential (0.287.exp(-
0.287.(s+4))), supporting a general model of amino acids as 
nonaging components. The exponential law for positive 
scores is characterized by the same parameter (λ' = 0.287). 
The original residue is termed i; its descent is termed j.
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In a first step (Figure 2, step 1), the probability that one
residue a1 is mutated into a residue b1 with mutual infor-
mation below si is given:

Pr(Si ≤ si) = Pr(Si ≤ s(a1,b1)) ≈ Pr( Si  ≤ si ) (15)

Considering one possible evolutionary scenario, i.e. one
alignment (Figure 2, step 2), residues are considered as
independent and the probability is the product of elemen-
tary probabilities for each positions aligned in this sce-
nario. For the alignment of the m amino acids of sequence
a, we obtain the following probability:

Pscenario1 (S ≤ s) = (Pr( Si  ≤ si ))m (16)

Alternative scenarios are also possible (Figure 2, step 3).
The final probability is therefore computed taking into
account all possible evolutionary paths (all possible align-
ments, Figure 2, step 3) and using K'<1 a correcting factor
for edge effects, deletion and insertion points:

P(S ≤ s) = (Pr( Si  ≤ si ))K'mn (17)

Considering the approximation of Si  and si  respectively
by S/m and s/m, we deduce the final formula:

P(S ≤ s) = (Pr(S ≤ s))K'.m.n (18)

The density function f(s) is therefore given by:

with  the density of the probability Pr(S ≤ s)

that a residue is mutated into another

with mutual information below s. We can then deduce the
homology longevity rate Ψ, defined earlier as a function of
the pairwise alignment score:

Using the expression of Pi(Si ≤ si) given by Equation (14)
implies that:

Asymptotically, the information conservation rate is
therefore given by

ψ(s) = K'.m.n.λ'.exp(-λ'.s) (22)

Using equation (12), we deduce that the distribution of
alignment scores should respect the general form of the
Karlin-Altschul formula:

P(S ≤ s) ≈ exp(K'.m.n.exp(-λ'.s)) (23)

Applications and Conclusion
We built a model of evolution of the information shared
between an initial molecular sequence and the sequences
of its lineage (i.e. homologous sequences). Sequences
were considered as systems, which components are the
amino acids that can independently be damaged by ran-
dom DNA mutations. Residues harbor a functional
redundancy reflected by the amino acid substitution
scores.

From these assumptions, we deduced that the pairwise
sequence alignment score should follow a Gumbel distri-

f s
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Computing of the probability that the amount of information shared by two sequences, S, is lower than a threshold sFigure 2
Computing of the probability that the amount of 
information shared by two sequences, S, is lower 
than a threshold s. Given an initial sequence a, we can 
envisage different scenarios for its evolution into another 
sequence b. In a first step (Step 1), an elementary probability 
is computed by taking into account the evolution of just one 
residue (here a1 into b1). Considering one possible evolution-
ary scenario (Step 2), residues are considered as independ-
ent and the probability is the product of elementary 
probabilities for each positions aligned in this scenario, with 
approximations in the asymptotic limit of long sequences. 
The final probability (Step 3) is then estimated by taking into 
account all the possible evolutionary scenarios.

Step 1, evolution of one residue: a1 b1

a1 a2 a3

b1 b2 b3
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Step 2, one evolutionary scenario given by one alignment
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Step 3, taking into account alternative alignments
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bution (equation (22)). The λ' parameter is the informa-
tion hazard rate for the reliability of amino acids' mutual
information: it depends 1) on the distribution of the
amino acids and 2) on the distribution of amino acid sim-
ilarities deduced from a substitution matrix. The K'
parameter has a more complex meaning, because it
depends on likelihood of an alignment of two sequences,
with edge effects, gaps, length difference and repartition
of the information (the local score) in the alignment. It
reflects therefore internal structural constraints on the
evolution of sequences.

The Gumbel parameters for score alignments can be esti-
mated by two kinds of simulations. First is by adjusting
EVD to the simulated distribution of scores [19,22]. In
that case, it is simpler to express the Gumbel law as

with  and . The estimate of

Gumbel parameters is achieved by determining β and θ,

allowing an easy estimate of the λ' and K' parameters of
equation (23). Second estimation of the Gumbel parame-
ters is by computing the Z-value corresponding to the sim-
ulation of score distribution. Using the fact that for a

Gumbel distribution, μ = θ + γβ and , then

the Z-value allows a computation of the β and θ constants.

Simulations of Z-value distribution [11,18] showed that it
fitted with a Gumbel law. Based on the Gumbel distribu-
tion of scores (equations (24) and (25)) and by an appro-
priate change of variable with equation (1), then the
distribution of Z-values should respect the following
equality:

with γ the Euler-Mascheroni constant (γ ≈ 0.5772). Equa-
tion (25) is the precise expression of the distribution of Z-
values deduced by Pearson [18] from simulations. It is
important to note that this expression of the Z-value dis-
tribution is independent of sequence lengths and amino
acid distributions.

This consideration has practical implications, since it
allows a refined estimate of the P-value based on Z-value
computation, and a real gain over available methods, par-
ticularly in some documented cases where the Karlin-Alt-
schul formula failed to assess the significance of an
alignment. Table 1 shows for instance the different statis-
tical estimates for the alignment of two homologous

TFIIA gamma sequences from Plasmodium falciparum and
Arabidopsis thaliana. The compositional bias in the pro-
teome of Plasmodium falciparum, the malarial parasite, is
known to limit the use of Karlin-Altschul statistics for
pairwise comparisons with unbiased proteins such as
those of Arabidopsis thaliana [42]. The TFIIA gamma subu-
nit sequence of Plasmodium could not be deduced from
BLASTP-based homology searches [43]. The Blastp appar-
ent search failure was due to the overestimate of the P-
value following the Karlin-Altschul formula (0.008, using
unfiltered BLASTP, see Table 1). Alignment score Z-value,
computed with either Blastp (P. Ortet, unpublished algo-
rithm) or Smith-Waterman was above 10. The upper
bound for the P-value based on the TULIP theorem, given
by the formula T-value = 1/Z-value2 [13], was therefore
below 10-2. Eventually, the P-value deduced from the Z-
value Gumbel distribution was below 10-6 (see Table 1)
indicating that, for both the Blastp and Smith-Waterman
methods, the homology could be statistically assessed,
even in the limit case of unbiased vs biased sequence com-
parisons. We noticed that the asymmetric DirAtPf100
matrix specified for Plasmodium vs. Arabidopsis compari-
sons that we developed earlier [8] allowed an additional
gain in estimating this missed homology.

Besides a theoretical support for pragmatic observations,
this report shows therefore that the alignment score Gum-
bel distribution is a particular and general evolutionary
law for molecular sequences taken as dynamical systems.
This model can be parameterized using the Karlin-Alts-
chul or the Z-Value form. If Karlin-Altschul model param-
eters are well-estimated (using simulations for example),
both forms are equivalent in practice as reported by

P S s
s

( ) exp( exp( ))≤ ≈ − − −q
b

(24)

b l= ′
1 q l l= ′ ′ ′1 log( . . . )K m n

s bp2 22

6=

P Z z z( ) exp( .exp( ))≤ = − − −p g
6

(25)

Table 1: Alignment statistics of the homologous Transcription 
initiation factor IIA (TFIIA) gamma chain sequences from 
Plasmodium falciparum and Arabidopsis thaliana.

Alignment method Blastp Smith-Waterman

Substitution matrix BLOSUM62 BLOSUM62 DirAtPf100

Statistics
P-value (Karlin-Altschul) 0.008 NA NA

Z-value (Pearson-Lipman) 10 11 12
T-value (TULIP theorem) 0.01 8.10-3 7.10-3

P-value (this work) 1.5.10-6 3.7.10-7 1.10-7

TFIIA gamma sequences from Plasmodium (UniProtKB 
Q8I4S7_PLAF7) and Arabidopsis (UniProtKB T2AG_ARATH) were 
aligned with Blastp and Smith-Waterman methods. Statistics were 
computed following the Karlin-Altschul model (as implemented in the 
Blastp algorithm) or the Lipman-Pearson Z-value model. The upper 
bound for the P-value based on the TULIP theorem is given following 
the formula: T-value = 1/Z-value2. The P-value deduced from the Z-value 
Gumbel distribution was computed following the model presented 
here. Substitution matrices were either BLOSUM62, or the 
asymmetric DirAtPf100 matrix specified for Plasmodium vs. Arabidopsis 
comparisons. NA: not applicable.
Page 8 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:332 http://www.biomedcentral.com/1471-2105/9/332
Hulsen et al. [44]. This model shows that an extreme value
distribution of alignment scores can arise not only by con-
sidering high scoring segments pairs. Indeed, derivation
of a Gumbel distribution from maximum independent
random variables is a well-known technique [19] and the
Karlin-Altschul theorem was first demonstrated, based on
this consideration [20]. We can now state that this distri-
bution allows a different interpretation in the light of the
Reliability Theory, reflecting the redundancy of informa-
tion between sequences due to both the number of resi-
dues and the shared information between these residues.
The model elaboration described here additionally pro-
vides a link between concepts of biological sequence anal-
ysis and the emerging field of systems biology, with a
generalization of the aging concepts to all scales of the liv-
ing world.

Methods
Mathematical demonstrations are detailed in the Results
section. Histograms and curves were built using the R
package software (Statistics Department of the University
of Auckland).
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