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THE DISCRETE DUALITY FINITE VOLUME METHOD FOR

CONVECTION-DIFFUSION PROBLEMS

YVES COUDIÈRE ∗ AND GIANMARCO MANZINI †

Abstract. In this paper we extend the Discrete Duality Finite Volume (DDFV) formulation to the
steady convection-diffusion equation. The discrete gradients defined in DDFV are used to define a cell-
based gradient for the control volumes of both the primal and dual meshes, in order to achieve a higher-order
accurate numerical flux for the convection term. A priori analysis is carried out to show convergence of the
approximation and a global first-order convergence rate is derived. The theoretical results are confirmed by
some numerical experiments.
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struction, diamond scheme, unstructured meshes, polygonal meshes.
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1. Introduction. The finite volume (FV) approximation to the steady convection-
diffusion equation in divergence form is based on the discretization of the convection and
diffusion fluxes.The convection and diffusion fluxes are numerically evaluated at the control
volume interfaces of a suitable mesh partition of the computational domain. A quite common
approach consists in combining an upwind numerical flux for the convection term with the
numerical diffusion flux thus resulting in the two-point flux scheme [26] or the diamond
scheme [13]. Several other approaches pertinent to this problem are also available, as,
for example, the finite volume element methods, and the mimetic finite difference methods.
Since there is a huge amount of literature concerning these latter techniques, we just refer
the interested reader to [9, 17] for a recent overwiew.

The formula for the two-point flux at a given cell interface only involves the degrees-
of-freedom of the two cells adjacent to that interface, thus offering the advantage of a very
compact computational stencil. Nonetheless, a consistent formulation relies on the notion
of admissible meshes, which requires some rather restrictive orthogonality constraint [21].
Combined with a first order convection flux, this approach is applied to the numerical
discretization of non-coercive convection-diffusion equations in [19]. Several variants are
also shown effective in the computation of anisotropic diffusion problems [20], in modeling
groundwater flows in partially saturated porous media [25] and have been recently extended
to general meshes by using some cell-based reconstruction of the solution gradient [22–24].

On its turn, the diamond scheme provides a discretization of the diffusion flux that is
consistent for more general geometries. In such a case, the numerical diffusion flux is dis-
cretized by using a formula for the discrete gradient, which requires the vertex values. These
latters are expressed by a linear interpolation of the primary unknown, i.e. the cell averages.
Implementations based on linear least squares are known to be quite accurate [8, 14, 15, 34],
and used for the numerical discretization of more complex model problems [33]. Recent ex-
tensions using non-linear averages have also been shown to provide discrete maximum and
minimum principles [7, 30–32].

A breakthrough in the diamond scheme methodology comes from [28, 29], where it is
proposed to treat the vertex values as numerical unknowns. The resulting scheme combines
two distinct finite volume schemes on two overlapping meshes, the mesh of the primal cells
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of the original diamond scheme formulation, and the mesh of the dual control volumes
built around the vertices of the primal mesh. The method can also be reformulated in
the framework of mimetic discretizations [11, 12] by introducing discrete divergence and
gradient operators. These operators satisfy a discrete duality relationship that mimics the
integration-by-parts formula (Green formula), thus motivating the wording Discrete Duality
Finite Volume (DDFV) method. The DDFV method is succesfully applied to the Laplace
equation in [18], and shown to provide a very accurate approximation to the solution gradient
on distorded meshes in [27]. A generalization to nonlinear elliptic equations is found in [3],
and to the approximation of the div-curl operator in [16].

Concerning the numerical convection flux, it is worth mentioning that upwinding is
crucial to ensure numerical stability, particularly in the convection-dominated regime [4].
The degrees-of-freedom approximate either the average of the exact solution over the mesh
control volumes or the solution value at a given set of points of the computational domain.
Thus, the finite volume method provides a piecewise constant approximation to the scalar
variable, which is intrinsecally first-order accurate if the error is measured in the L2-norm.
Higher order of accuracy can be obtained through a cell-based linear polynomial reconstruc-
tion, which requires some cell-based discretization of the solution gradient [6, 35].

To do so in the DDFV framework, we propose to express these cell-based gradients by
means of the available DDFV gradients. We carry out the a priori analysis of the resulting
method in the diffusive regime, show the consistency of the numerical fluxes, prove the
convergence of the DDFV approximation to the scalar variable and its gradient, and derive
an O (h) estimate for the convergence rate in a properly defined mesh-dependent norm. We
also propose an original approach to prove the consistency of the numerical diffusion and
convection flux, which is alternative to the more common approach based on cell averages
of Taylor expansions. More precisely, we show how the analogy of the DDFV method
with the mimetic finite differences method makes it possible to apply the error estimates
for polynomial interpolation in Sobolev spaces in a finite volume context [10]. Due to its
generality, we think that this approach may be of interest as a theoretical tool in the analysis
of many other finite volume schemes.

The outline of the paper is as follows. In Section 2 we detail the DDFV formulation.
In Section 3 we present the a priori analysis of the method. In Section 4 we show some
numerical results that confirm accuracy and convergence of the method. In Section 5 we
offer some final remarks and discuss the perspectives of future work.

2. The discrete duality finite volume method. We are concerned with the DDFV
approximation to the scalar solution p of the steady convection-diffusion equation

div (bp − K∇p) = f in Ω (2.1a)

p = g on Γ (2.1b)

defined on the bounded polygonal domain Ω ⊂ R2 with boundary Γ. We assume that
f ∈ L2(Ω), g ∈ H1/2(Γ), b ∈ (L∞(Ω))2 and div b ∈ L∞(Ω), and K ∈ (L∞(Ω))2×2. We also
assume that K is a symmetric matrix and that there exists a couple of positive constants,
namely κ∗ and κ∗, such that for every u ∈ R2 there holds

κ∗||u||
2 ≤ ||K1/2u||2 ≤ κ∗||u||2 (2.2)

almost everywhere in Ω. Under such assumptions, it is possible to show that problem (2.1)
admits a unique weak solution p ∈ H1(Ω).

As pointed out in the introduction, the DDFV method is based on two finite volume
schemes for the scalar unknowns, which are formulated on two distinct and overlapping
meshes, e.g. Th and Vh. These two finite volume schemes are coupled through the dis-
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crete solution gradients that are defined over a third mesh denoted by Dh. The mesh size
parameter labelling Th, Vh, and Dh is given by

h = max
D∈Dh

hD,

where hD is the diameter of the cell D of the mesh Dh. Thus, we will consider a family
of mesh triples, i.e. {(Th,Vh,Dh)}h, and the DDFV numerical approximation is formulated
on some sequence of these items for decreasing h. The three meshes of each triple are
not independent, but Vh and Dh are derived from Th through the construction process of
subsection 2.1. For this reason, we sometimes refer to Th as the primary mesh, and to
the formers as the secondary mesh and the diamond mesh. Moreover, we require that each
triple (Th,Vh,Dh) satisfies some regularity conditions, c.f. subsection 2.2, to perform the
convergence analysis.

2.1. Notations and mesh constructions.

The Primary Mesh. Each primary mesh Th is a conformal partition of Ω formed by
mTh

non-overlapping polygons T , mVh
vertices V , and mDh

edges e. For each polygon
T ∈ Th, we denote its two-dimensional Lebesgue measure by |T |, its boundary by ∂T , and
the position of its center of gravity by xT . The symbol ∂T also indicates the set of edges of
the polygon T . Each edge is either the intersection between two adjacent polygons T1 and
T2, i.e. e = T1 ∩ T2, or the intersection between a polygon T1 and the domain boundary Γ,
i.e. e = T1 ∩ Γ. The former case refers to an internal edge, the latter to a boundary edge.
For each edge e, we denote its one-dimensional Lebesgue measure by |e|, and its midpoint by
xe. We also distinguish between internal and boundary vertices, the formers being located
in the interior of the domain Ω and the latters at the domain boundary Γ. We will find it
useful to denote the set of boundary vertices by VBnd

h and the set of internal vertices by V Int

h .

The Secondary Mesh. To each vertex of the primary mesh Th, denoted by its position
vector xV , we associate the polygonal control volume V , c.f. Figure 2.1. The collection of
all the control volumes V forms the secondary mesh Vh. The vertices of each cell V are
the baricenters xT of the primary cells T surrounding xV , the midpoints xe of the edges
connected to xV , and, additionally, the vertex xV itself if xV ∈ Γ. For each cell V ∈ Vh, we
denote its two-dimensional Lebesgue measure by |V | and its boundary by ∂V . We emphasize
that the polygonal cells of Vh are generally non-convex subsets of Ω, even if the primary
cells are convex. Each edge of the secondary mesh Vh, usually denoted by the symbol f , is
either an interface between two adjacent cells V1 and V2, i.e. f = V1 ∩ V2, or a subset of Γ
that belongs to the boundary ∂V of some cell V .

The Diamond Mesh. The third mesh considered in the formulation of the DDFV method,
namely the mesh Dh, is formed by quadrilateral cells, the diamonds, which are denoted by D
and have two-dimensional Lebesgue measure |D|. Each diamond cell D is uniquely referred
to an edge e of the primal mesh Th, see Figure 2.1. Indeed,
- if e is an internal edge, the vertices of D are xV1 and xV2 , the end points of e, and xT1

and xT2 , the baricenters of the cells T1 and T2 sharing e;
- if e is a boundary edge, the vertices of D are xV1 and xV2 , the end points of e, xT1 , the

baricenter of the cell T1 to which e belongs, and xe, the midpoint of e.
The local numbering of these items is determined in accordance with

det(xT2 − xT1 ,xV2 − xV1) > 0,

and taking xT2 := xe if e is a boundary edge.
Furthermore, if e is an internal edge, the diamond cell D, which is associated to e,

contains exactly:
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- two interfaces between the control volumes V1 and V2, denoted by f1 and f2, which
respectively connect xT1 and xT2 to xe, and are such that f1∪f2 = V1∩V2. In such
a case, we use the symbol f to denote the straight segment connecting xT1 to xT2 ;
note that f is generally distinct from f1 ∪ f2;

- the interface e = T1 ∩ T2 of vertices xV1 and xV2 .
Instead, if e is a boundary edge, D contains exactly:

- one interface between the control volumes V1 and V2, denoted by f , which connects xT1

and xe; clearly, f = V1 ∩ V2;
- the boundary edge e ⊂ Γ that connects the vertices xV1 and xV2 ; we consider this edge as

splitted in two segments that respectively connect xV1 and xV2 to xe.
In both cases, each diamond cell D is also uniquely associated to the interface f , and, when
e is an internal edge, to the couple of internal interfaces (f1, f2). Throughout the paper,
we exploit this correspondance by using the symbols De and Df to refer to the diamond
cells related to e and f . We will also use expressions like e ∈ ∂T and f ∈ ∂V to index
summations over the set of edges forming the boundaries of T and V .

We denote the unit normal vector to e, f , f1, and f2 by ne, nf , nf1 , and nf2 . If e is
an internal edge, the vector ne points from xT1 to xT2 ; when e is a boundary edge, ne is
just the unit normal vector to e∩Γ pointing out of Ω. The other normal vectors are always
oriented from xV1 to xV2 . For consistency of notation, |σ| is the one-dimensional Lebesgue
measure of σ ∈ {f1, f2, f}. It is easy to show that when e is internal there holds

|f |nf = |f1|nf1 + |f2|nf2 . (2.3)

2.2. Mesh regularity assumptions. To formulate the mesh regularity assumptions
needed by the convergence analysis, we consider the sub-triangulation T̃Dh

= {T̃} of the
cells of Dh obtained by splitting the diamonds D ∈ Dh along their internal diagonal e. We
emphasize that we never use T̃Dh

in the practical implementation of the method, but just
to introduce the mesh regularity assumptions that follow. Then, we assume that
(M1) the triangulation T̃Dh

is non-degenerate in the sense of [10], i.e. there exists a constant
η > 0 such that, for all mesh size parameter h there holds:

ρ eT

h eT

≥ η for every T̃ ∈ T̃Dh
,

where ρ eT and h eT are the diameters of the inscribed and circumbscribed circle for

the triangle T̃ ;
(M2) there exist two constants θ > 0 and γ > 0 such that for each D ∈ Dh we have

θ ≤ θD ≤ π − θ and |f1| + |f2| ≤ γ|f |

where θD is the angle between the direction of e and f , and f1, f2 are related to f
through (2.3).

(M3) there exists ρ1 > 0 such that for all h there holds:

|D′|

|D′′|
≤ ρ1 for every D′, D′′ ∈ S(gT ), for every T ∈ Th,

|D′|

|D′′|
≤ ρ1, for every D′, D′′ ∈ S(gV ), for every V ∈ V Int

h ,

where S(gT ) and S(gV ) are the stencils of the gradients of the piecewise reconstruc-
tions detailed in subsection 2.5.

The above requirements have several consequences that can be easily verified. Among
them, we outline the following ones, which will be used later.
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• From Assumption (M1), there holds:

h2
D

|D|
≤ ρ0 for every D ∈ Dh, (2.4)

where ρ0 = 2/(πη2) is the second regularity constant used in the convergence analysis. Let
us, indeed, consider the diamond cell D ∈ Dh and the two triangles T1, T2 ∈ Th such that
|D ∩ T1| 6= 0 and |D ∩ T2| 6= 0. By definition,

hD = max
x,y∈D

|x − y| ≤ max
x∈D∩T1
y∈D∩T2

|x − y|

≤ max
x,y∈D∩T1

|x − y| + max
x,y∈D∩T2

|x − y| ≤ hT1 + hT2 . (2.5)

Noting that |D| = |D ∩ T1|+ |D∩ T2|, applying Assumption (M1), and using (2.5) gives the
inequality chain

|D| = |D ∩ T1| + |D ∩ T2| ≥ π
(
ρ2

T1
+ ρ2

T2

)
≥ πη2

(
h2

T1
+ h2

T2

)
≥

πη2

2
h2

D,

from which we get (2.4).

• Assumption (M1) also implies that there exist two positive constants, namely CAgm and
CIntp, independent of h and such that for any D ∈ Dh,

(i) for any q ∈ H1(D) and σ ∈ {e, f1, f1} there holds

||q||2L2(σ) ≤ CAgm
1∑

i=0

h2i−1
D ||q||2Hi(D); (2.6)

(ii) for any q ∈ Hk+1(D) there holds

inf
q(k)∈Pk(D)

||q − q(k)||Hi(D) ≤ CIntphk+1−i
D ||q||Hk+1(D). (2.7)

In (2.6)-(2.7), Hi(D) is the Sobolev space of functions over D that are square integrable and
whose partial derivatives of order up to the non-negative integer i are all square integrable,
i = 0 corresponds to L2(D), and Pk(D) is the space of polynomials of degree up to k.
Sometimes, we refer to (2.6) as the Agmon inequality, see for a proof [2], and to (2.7) as the
interpolation inequality, see for a proof [10].

• Assumption (M3) is only required to prove the convergence of the higher order formulation
of the DDFV method.

2.3. The mimetic framework of the DDFV method. In this subsection, we for-
mulate the DDFV method in the setting of the mimetic finite difference methods. More
precisely, we proceed in accordance with these four steps:

(i) we consider two finite dimensional spaces, namely Qh × δQh and Xh, whose elements
represent discrete scalar and vector fields. The discrete scalars are the degrees-of-freedom of
the DDFV method, while the discrete vectors are used to formulate the numerical convection
and diffusion fluxes;

(ii) we equip Qh and Xh with two suitable inner products;

(iii) we define a discrete divergence operator, a discrete gradient operator, and a boundary
trace operator acting on Qh×δQh and Xh, that satisfy a discrete duality relation mimicking
the continuous Green formula;

(iv) we define some projection operators that will be used in the a priori analysis of the
numerical approximation.
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The discrete scalar fields are associated to the mesh cells in Th and Vh through the finite
dimensional space Qh:

for every q ∈ Qh, q =
{
{qT }T∈Th

, {qV }V ∈Vh

}
with qT , qV ∈ R,

and to the boundary edges and vertices through the space δQh:

for every δq ∈ δQh, δq =
{
{qe}e⊂Γ

}
with qe,∈ R.

The discrete vector fields that form the finite dimensional space Xh are piecewise constant
vectors over the mesh cells in Dh:

for every u ∈ Xh, u =
{
{uD}D∈Dh

}
with uD ∈ R2.

In the formulation of the DDFV scheme, we also consider the affine space:

Qh,g =
{
q ∈ Qh such that qV = g(xV ) for every V ∈ VBnd

h

}
,

and the vector space Qh,0 for g = 0 on Γ. To ease notation, we denote the elements of
Qh × δQh by q = (q, δq). We also use the symbol ph to denote (ph, gJ), where ph ∈ Qh,g is
the DDFV approximation to p and gJ is a suitable representation of the boundary data g
in δQh that is defined later. The dimension of Qh,g equals the number of mesh cells in Th

and V Int

h , i.e. mTh
+ mVInt

h
, the dimension of δQh equals the number of boundary edges, i.e.

m{e⊂Γ}, and the dimension of Xh is twice the number of elements mDh
of the mesh Dh.

Then, we equip Qh and Xh with the inner products

(
p, q
)
Qh

=
1

2

(
∑

T∈Th

|T |pT qT +
∑

V ∈Vh

|V |pV qV

)
, (2.8a)

(
u,v

)
Xh

=
∑

D∈Dh

|D|uD · vD, (2.8b)

and related norms ||| · |||Qh
and ||| · |||Xh

, and define the discrete bilinear form

(u, q) ∈ Xh × (Qh × δQh) → 〈u,nq〉h,Γ =
∑

e⊂Γ

|e|ne · uDe

1

2

(
qe +

qV1 + qV2

2

)
, (2.9)

where the summation index e refers to the boundary edge with end points xV1 and xV2 and
midpoint xe.

The discrete gradient operator ∇h : Qh × δQh → Xh is defined as

∇hq =
{
{∇Dq}D∈Dh

}
∈ Xh,

where

∇Dq =
1

2|D|

(
(qV2 − qV1)|f |nf + (qT2 − qT1)|e|ne

)
. (2.10)

In equation (2.10), we take qT2 := qe when e ⊂ Γ, i.e. when the diamond cell D is adjacent
to the boundary.

The discrete divergence operator divh : Xh → Qh is defined as

divhu =
{
{divTu}T∈Th

, {divV u}V ∈Vh

}
∈ Qh (2.11)
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for every u ∈ Xh, where

divTu =
1

|T |

∑

e∈∂T

|e|ne · uDe
, for T ∈ Th, (2.12a)

divV u =
1

|V |

∑

f∈∂V

|f |nf · uDf
, for V ∈ Vh, (2.12b)

and De and Df are the diamond cells related to e and f , respectively.

Lemma 2.1 below states the discrete duality relationship that holds between divh and
∇h with respect to the inner products (2.8a)-(2.8b) and the bilinear form (2.9). This relation
mimics the Gauss-Green formula of the diffferential calculus through the discrete integration-
by-parts formula (2.13).

Lemma 2.1. For all q ∈ Qh × δQh and u ∈ Xh, there holds that
(
divhu, q

)
Qh

+
(
u,∇hq

)
Xh

= 〈u,nq〉h,Γ . (2.13)

Proof. Note that

(
divhu, q

)
Qh

=
1

2

∑

T∈Th

qT

∑

e∈∂T

|e|ne · uDe
+

1

2

∑

V ∈Vh

qV

∑

f∈∂V

|f |nf · uDf
.

Rearranging the summation terms in the previous formula and summing and substracting
the term with qe yields:

∑

T∈Th

qT

∑

e∈∂T

|e|ne · uDe
=

∑

e⊂T1∩T2

|e|ne · uDe
(qT1 − qT2)

+
∑

e⊂Γ

|e|ne · uDe
(qT1 − qe) +

∑

e⊂Γ

|e|ne · uDe
qe

= T1 + T2 + T3.

Likewise,
∑

V ∈Vh

qV

∑

f∈∂V

|f |nf · uDf
=

∑

f⊂V1∩V2

|f |nf · uDf
(qV1 − qV2)

+
∑

e⊂Γ

|e|ne · uDe

qV1 + qV2

2
= V1 + V2

The proof of the discrete Gauss-Green formula in (2.13) terminates by noting that:
(
u,∇hq

)
Xh

= T1 + T2 + V1, and 〈u,nq〉h,Γ = T3 + V2.

For q ∈ L1(Ω), the cell-average operator onto Qh is given by:

qI =
{{

qIT
}

T∈Th
,
{
qIV
}

V ∈Vh

}
∈ Qh (2.14)

where

qIT =
1

|T |

∫

T

qdV for all T ∈ Th and qIV =
1

|V |

∫

V

qdV for all V ∈ Vh. (2.15)

The pointwise projection from C0(Ω) onto Qh × δQh is given by:

qJ|Qh
=
{{

qJT
}

T∈Th
,
{
qJV
}

V ∈Vh

}
=
{
{q(xT )}T∈Th

, {q(xV )}V ∈Vh

}
, (2.16a)
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and

qJ|δQh
=
{{

qJe
}

e⊂Γ

}
=
{
{q(xe)}e⊂Γ

}
. (2.16b)

For u ∈ (H1(Ω))2, the projection operator onto Xh is given by

uI =
{
uI

D

}
D∈Dh

∈ Xh (2.17)

where

ne · u
I

D =
1

|e|

∫

e

ne · udS,

nf · uI

D =
1

|f |

(∫

f1

nf1· udS +

∫

f2

nf2· udS

)
.

Definitions (2.11)-(2.12) are consistent with the Gauss divergence theorem since from (2.15)-
(2.17) we easily obtain the result stated in Lemma 2.2 below.

Lemma 2.2. For every u ∈ (H1(Ω))2 there holds that:

(divu)IT = divTuI for every T ∈ Th,

(divu)IV = divV uI for every V ∈ V Int

h .

Proof. For every T ∈ Th:

(divu)IT =
1

|T |

∫

T

divudV =
1

|T |

∫

∂T

nT · udS =
1

|T |

∑

e∈∂T

|e|(u)Ie = divT (uI).

Similarly, we find that (divu)IV = divV (uI) for every V ∈ V Int

h .
Lemma 2.3 below focuses on the consistency of the discrete gradient with respect to the

J-interpolation.
Lemma 2.3. For every D ∈ Dh and q(1) ∈ P1(D) there holds:

∇D(q(1))J = (∇q(1))ID.

Proof. As q(1) is a linear function over D, its gradient is a constant vector, thus implying
that (∇q)Iσ = nσ · ∇q for σ ∈ {e, f1, f2}. The lemma is an obvious consequence of this fact.

2.4. The numerical diffusion flux. We assume that there exists a positive constant
CK independent of h such that for every D ∈ Dh we can find a constant matrix KD verifying

max
i,j=1,2

ess sup
x∈D|(KD)ij − Kij(x)| ≤ CKhD, (2.18)

where the constant CK may depend on the regularity of the components of K. For instance,
if Kij ∈ W 1,p(Ω) with p > 2 and D is convex or Kij ∈ W 1,∞(Ω) we can choose

(KD)ij =
1

|D|

∫

D

K(x)dV.

Let Kh = diag {KD}D∈Dh
be the block-diagonal matrix collecting the matrices KD. The

numerical diffusion flux Φd
h(ph) ∈ Xh is given by:

Φd
h(ph) = Kh∇hph =

{
KD∇Dph

}
D∈Dh

.
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2.5. The numerical convection flux. In this section, we present the DDFV dis-
cretization of the convection term of equation (2.1a). For each internal diamond D with
diagonals e and f , we consider the edge fluxes Φc,k

σ (ph) for σ ∈ {e, f1, f2}, k = 0, 1, and the

total flux Φc,k
f (ph) given by

|f |Φc,k
f (ph) = |f1|Φ

c,k
f1

(ph) + |f2|Φ
c,k
f2

(ph). (2.19)

The numerical convection flux in Xh is given by

Φc,k
h (ph) =

{
{Φc,k

D (ph)}D∈Dh

}
∈ Xh,

where, by definition,

ne · Φ
c,k
D (ph) = Φc,k

e (ph), and nf · Φc,k
D (ph) = Φc,k

f (ph).

To define the edge fluxes, we introduce the average flux integrals of the velocity field b

bσ =
1

|σ|

∫

σ

nσ · bdS for σ ∈ {e, f1, f2},

and the upwind (+) and downwind(−) velocities b±σ = (bσ ± |bσ|)/2. The cell-wise recon-
structions Rk

T ph and Rk
V ph of the unknown ph are piecewise constant (k = 0) or piecewise

linear (k = 1) polynomials on, respectively, Th and Vh. Now, let φ ∈ [1/2, 1] be a user-
input parameter. The numerical convection flux is a convex combination of the upwind and
downwind contributions evaluated using Rk

T ph and Rk
V ph:

Φc,k
e (ph) = b+

e

(
φRk

T1
ph(xe) + (1 − φ)Rk

T2
ph(xe)

)

+b−e
(
φRk

T2
ph(xe) + (1 − φ)Rk

T1
ph(xe)

)
(2.20a)

and this formula is modified by substituting the reconstructed value Rk
T2

ph(xe) with (ph)e =
gJe when e is on the boundary. The fluxes across fi for i = 1, 2 are given by:

Φc,k
fi

(ph) = b+
fi

(
φRk

V1
ph(xfi

) + (1 − φ)Rk
V2

ph(xfi
)
)

+b−fi

(
φRk

V2
ph(xfi

) + (1 − φ)Rk
V1

ph(xfi
)
)
. (2.20b)

The choices φ = 1/2 and φ = 1 respectively correspond to the central scheme and to the
fully upwind scheme, while the constraint 1/2 ≤ φ ≤ 1 is required to prove that the method
is non-negative, c.f. Lemma 3.11 of Section 3.

Let q ∈ Qh × δQh. The polynomial reconstructions Rk
T q and Rk

V q are given by:

k = 0 (piecewise constant)

R0
T q(x) = qT for x ∈ T and every T ∈ Th; (2.21a)

R0
V q(x) = qV for x ∈ V and every V ∈ Vh. (2.21b)

k = 1 (piecewise linear)

R1
T q(x) = qT + (x − xT ) · gT (∇hq) for x ∈ T and every T ∈ Th; (2.22a)

R1
V q(x) = qV + (x − xV ) · gV (∇hq) for x ∈ V and every V ∈ Vh. (2.22b)

Given a discrete vector u = {uD}D∈Dh
∈ Xh, the vectors gT (u) and gV (u) used in the

piecewise linear reconstructions are convex combinations of the vector terms uD

gT (u) =
∑

D∈Dh

αT,DuD and gV (u) =
∑

D∈Dh

αV,DuD,

where the scalar coefficients α =
{
{αT,D}T∈Th,D∈Dh

, {αV,D}V ∈Vh,D∈Dh

}
satisfy:
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(G1) non-negativity and normalization of the coefficients :

αT,D ≥ 0 for every T ∈ Th, D ∈ Dh and
∑

D∈Dh

αT,D = 1 for every T ∈ Th;

αV,D ≥ 0 for every V ∈ Vh, D ∈ Dh and
∑

D∈Dh

αV,D = 1 for every V ∈ Vh;

(G2) local supports : there exists a positive integer number NS independent of h such that

NT (D) := #
{
T ∈ Th such that D ∈ S(gT )

}
≤ NS ,

NV (D) := #
{
V ∈ Vh such that D ∈ S(gV )

}
≤ NS

for every D ∈ Dh, where S(gT ) = ∪αT,D>0D and S(gV ) = ∪αV,D>0D are the supports of
gT (·) and gV (·), and #{·} is the cardinality of the set {·}.

Assumptions (G1)-(G2) do not uniquely determine the coefficients α. In the numerical
experiments of Section 4 we consider the following choice:

αT,D = |D ∩ T |/|T | for every T ∈ Th, D ∈ Dh;

αV,D = |D ∩ V |/|V | for every V ∈ Th, D ∈ Dh.

It is easy to show that both (G1) and (G2) are satisfied, and, in particular, that NT (D), NV (D) ≤
2 for every D ∈ Dh.

Lemma 2.4 (k-exactness). Let us consider the function q(k) ∈ Pk(Ω), and its pointwise
interpolation (q(k))J ∈ Qh × δQh defined in accordance with (2.16a)-(2.16b). Then,

Rk
T (q(k))J(x) = q(k)(x) for x ∈ T and every T ∈ Th; (2.23a)

Rk
V (q(k))J(x) = q(k)(x) for x ∈ V and every V ∈ Vh. (2.23b)

Proof. The case k = 0 is trivial. In the case k = 1, the gradient of q(1) is a constant
vector on Ω and for every D ∈ Dh it must be equal to the discrete gradient of formula (2.10),
i.e. ∇D(q(1))J = ∇q(1). It is easy to see that for every T ∈ Th and V ∈ Vh there holds
gT (∇h(q(1))J) = gV (∇h(q(1))J) = ∇q(1), due to the normalization of the coefficients α

according to (G1). As (q(1))JT = q(1)(xT ), we have

R1
T (q(1))J(x) = q(1)(xT ) + (x − xT ) · ∇q(1) = q(1)(x)

for every x ∈ T , and every T ∈ Th, thus proving (2.23a), and a similar calculation applies
to R1

V (q(1))J to prove (2.23b).

2.6. The DDFV scheme. Let f I ∈ Qh be the interpolation of f given by (2.14)-
(2.15), and gJ ∈ δQh the interpolation of g given by (2.16a)-(2.16b). Then, the formulation
of the DDFV method reads as follows.

Problem 2.1 (DDFV method).

Find ph ∈ Qh,g such that

divh

(
Φc,k

h (ph) − Φd
h(ph)

)
= f I in Qh,0 (2.24)

with ph = (ph, gJ) ∈ Qh × δQh.

An alternative formulation, which is based on testing (2.24) on the elements of Qh,0, reads
as follows.
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Problem 2.2 (Discrete weak formulation).

Find ph ∈ Qh,g such that:
(
Φd

h(ph) − Φc,k
h (ph),∇h(q, 0)

)

Xh

=
(
f I, q

)
Qh

for every q ∈ Qh,0

with ph = (ph, gJ) ∈ Qh × δQh.

(2.25)

The equivalence of these formulations is a consequence of the discrete Green relation (2.13).

3. Convergence of the DDFV method. One of the major ingredients in the a pri-
ori analysis of finite volume methods consists in controlling the local consistency errors
introduced by the numerical fluxes. To this purpose, the usual approach requires Taylor
developments properly averaged on the mesh control volumes. In this work, we propose an
alternative methodology based on the fact that the consistency errors are linear functionals
vanishing for polynomial functions of degree k (k = 0 or k = 1 in our case). One might use
the Bramble-Hilbert lemma and some suitably adapted scaling argument, like in the a priori
analysis of finite element methods [10]. Nonetheless, a non-trivial issue is encountered along
this line: the Bramble-Hilbert lemma holds true, but the scaling argument cannot be easily
generalized as the supports of the local consistency errors are not affine-equivalent to a sim-
ple reference element. We circumvent this difficulty in Lemma 3.1 below by requiring that
the euclidean norm of the error functional is uniformly bounded through a mesh-independent
positive constant C, c.f. lemma’s condition (ii). This constraint will be explicitly proved
for both functionals expressing the local consistency error of diffusion and convection flux
by applying lemmas 3.2-3.8. The main results of this section concerning the convergence
of the DDFV approximation are eventually given in Theorems 3.15-3.17 for scalar solutions
in H2(Ω) and their gradients. It is worth noting that the continuous Sobolev embedding
H2(Ω) →֒ C0(Ω) [1] allows us to use the J interpolation, and also to derive point-wise esti-
mates such as in Lemma 3.2 of subsection 3.1. An optimal convergence rate for the solution
gradient and non-optimal convergence rate for the scalar unknown are also determined.

Lemma 3.1. Let S ⊂ Dh, and take a diamond-shaped cell D ⊂ S. Let also J :
Hk+1(S) → R2 be a linear vector-valued functional satisfying:
(i) J (q(k)) = 0 for every q(k) ∈ Pk(S);
(ii) there exists a constant C independent of h such that for every q ∈ Hk+1(S) there holds

|D|||J (q)||2 ≤ C

k∑

i=0

h
2(i−α)
S ||q||2Hi(S),

where α = 0, 1 and hS = maxD⊂S hD.
Then, for every q ∈ Hk+1(S) we have:

|D|||J (q)||2 ≤ CCIntph
2(k+1−α)
S ||q||2Hk+1(S). (3.1)

Proof. Let q(k) ∈ Pk(S). From Assumption (i)-(ii) we immediately have that

|D|||J (q)||2 = |D|||J (q − q(k))||2 ≤ C

k∑

i=0

h
2(i−α)
S ||q − q(k)||2Hi(S).

In view of Assumption (M1), we can apply interpolation inequality (2.7) to obtain:

||q − q(k)||2Hi(S) =
∑

D∈S

||q − q(k)||2Hi(D) ≤ CIntph
2(k+1−i)
S ||q||2Hk+1(S),

from which inequality (3.1) follows.
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3.1. Six easy pieces. In this subsection, we present six technical lemmas that prove
some useful properties of scalar and vector functions defined over the diamond cells D ∈ Dh.
Remind that e and f indicate the diagonals of the current diamond cell D, and f1 and f2

are related to f by (2.3).
Lemma 3.2. For any cell D ∈ Dh, q ∈ H2(D) and x ∈ D there holds

|D||q(x)|2 ≤ 3

2∑

i=0

h2i
D||q||2Hi(D). (3.2)

Proof. For any diamond cell D, let us consider q ∈ C∞(D) and x ∈ D. There exists
a ball B(r,x) = {y ∈ D, such that ||y − x|| < r} centered at x of radius r that is entirely
contained within D. The Taylor’s development of q around x

q(x) = q(y) + ∇q(y) · (x − y)

+

∫ 1

0

∇2q(y + s(x − y)) · (x − y)(x − y)(1 − s)ds.

holds for any y ∈ B(r,x). As a consequence, with ||x − y|| ≤ r ≤ hD

|q(x)|2 ≤ 3

(
|q(y)|2 + h2

D|∇q(y)|2 + h4
D

∫ 1

0

|∇2q(y + s(x − y))(1 − s)|2ds

)
.

Integrating y over D yields inequality (3.2) for the restriction of q to B(r,x), and, thus, over
the whole domain D since B(r,x) ⊂ D. The lemma’s inequality is true for every q ∈ H2(D)
by density and because of the continuous embedding of H2(D) in C0(D) [1].

Lemma 3.3. For any D ∈ Dh and any constant vector u ∈ R2 such that ue = ne · u
and uf = nf · u there holds:

|D|||u||2 ≤
|e| |f |

sin θD

(
|ue|

2 + |uf |
2
)

=
2|D|

sin2 θD

(
|ue|

2 + |uf |
2
)

where θD is the angle between the direction of e and f introduced in Assumption (M2).
Proof. Let τσ = n⊥

σ for σ ∈ {e, f}, where (·)⊥ indicates the counterclock-wise rotation,
and observe that det

[
nT

e ,nT
f

]
= sin θD. Since

(ue, uf )T =
[
nT

e ,nT
f

]
u,

we immediately have that

u =
[
nT

e ,nT
f

]−1
(ue, uf )T =

1

sin θD

[
− τ

T
f , τT

e

]
(ue, uf)T .

As τe · τf = ne · nf = cos θD, a straightforward calculation yields:

||u||2 =
1

sin2 θD

(ue, uf )
[
− τ

T
f , τT

e

]T [
− τ

T
f , τT

e

]
(ue, uf)T

=
1

sin2 θD

(
|ue|

2 + |uf |
2 − 2ueuf cos θD

)

≤
1 + | cos θD|

sin2 θD

(
|ue|

2 + |uf |
2
)
.

The lemma follows by noting that 1+| cos θD| ≤ 2 and multiplying by |D| = (1/2)|e||f | sin θD.
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Lemma 3.4. For any D ∈ Dh and any vector field u ∈ (H1(D))2 there holds:

|D|||(u)ID||2 ≤
(1 + 2γ)CAgm

sin θD

1∑

i=0

h2i
D||u||2Hi(D).

Proof. We apply the Jensen’s inequality and the Agmon inequality, c.f. (2.6), to derive

|uσ|
2 =

∣∣∣∣
1

|σ|

∫

σ

u · nσdS

∣∣∣∣
2

≤
1

|σ|

∫

σ

|u|2dS ≤
CAgm

|σ|

1∑

i=0

h2i−1
D ||u||2Hi(D), (3.3)

which holds for σ ∈ {e, f1, f2}. Equation (2.3) implies that |f |uf = |f1|uf1 + |f2|uf2 , and
then

|uf |
2 ≤

|f1| + |f2|

|f |

2∑

i=1

|fi|

|f |
|ufi

|2 ≤
2CAgmγ

|f |

1∑

i=0

h2i−1
D ||u||2Hi(D). (3.4)

Starting from the result of Lemma 3.3 and bounding ue and uf through inequalities (3.3)-
(3.4), we obtain

|D| ||uI

D||2 ≤
|e| |f |

sin θD

(
|ue|

2 + |uf |
2
)
≤ CAgm |e| |f |

sin θD

(
1

|e|
+

2γ

|f |

) 1∑

i=0

h2i−1
D ||u||2Hi(D)

from which the lemma follows since |f | + 2γ|e| ≤ (1 + 2γ)hD.
Definition 3.5. For every q ∈ Qh × δQh, let us introduce the quantity:

G2
D(q) =

1

4|D|

(
|e|2
(
qT2 − qT1

)2
+ |f |2

(
qV2 − qV1

)2)
(3.5)

with qT2 = qe when e ⊂ Γ.
The quantity G2

D(q) satisfies the useful properties stated in the two following lemmas.
Lemma 3.6. For any D ∈ Dh and q ∈ Qh × δQh there holds

(1 − | cos θD|) G2
D(q) ≤ |D|||∇Dq||2 ≤ (1 + | cos θD|) G2

D(q).

Proof. By definition (2.10) and since ne · nf = cos θD,

||∇Dq||2 =
1

4|D|2

(
|e|2(qT2 − qT1)

2 + |f |2(qV2 − qV1)
2

+2|e||f |(qT2 − qT1)(qV2 − qV1) cos θD

)
.

The result follows from 2|e||f ||qT2 − qT1 ||qV2 − qV1 | ≤ 4|D|G2
D(q).

Lemma 3.7. For any D ∈ Dh, q ∈ H2(Ω), and qJ ∈ Qh × δQh the interpolation of q
defined in accordance with (2.16a)-(2.16b), there holds

|D|G2
D(qJ) ≤ 6ρ0

2∑

i=0

h2i
D||q||2Hi(D). (3.6)

Proof. By definition (3.5), recalling that qJTi
= q(xTi

) and qJVi
= q(xVi

) for i = 1, 2,
noting that max(|e|, |f |) ≤ hD, and using the result of Lemma 3.2 yields:

|D|G2
D(qJ) ≤

h2
D

2|D|

2∑

i=1

|D|
(
|qJTi

|2 + |qJVi
|2
)
≤

6h2
D

|D|

2∑

i=0

h2i
D||q||2Hi(D).

We get inequality (3.6) by introducing the mesh regularity constant ρ0, c.f. (2.4).
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Lemma 3.8. Let q ∈ H2(Ω), qJ ∈ Qh×δQh its interpolation in accordance with (2.16a)-
(2.16b), C = 3 if k = 0, and C = 6+24ρ2

1ρ
2
0 if k = 1 where ρ0 and ρ1 are the mesh regularity

constants defined in (M1) and (2.4). Then,
(i) for every T ∈ Th and e ∈ ∂T there holds

|De|
∣∣R1

T qJ(xe)
∣∣2 ≤ C

2∑

i=0

h2i
S ||q||2Hi(S(gT )),

where De is the diamond associated to e and hS = maxD∈S(gT ) hD;
(ii) for every V ∈ Vh and fi ∈ ∂V with i = 1, 2 there holds

|Dfi
|
∣∣R1

V qJ(xfi
)
∣∣2 ≤ C

2∑

i=0

h2i
S ||q||2Hi(S(gV )), (3.7)

where Dfi
is the diamond associated to fi, and hS = maxD∈S(gV ) hD.

Proof. We start proving the inequality of item (i). Using the piecewise linear recon-
struction of qJ, c.f. (2.22a), yields:

∣∣R1
T qJ(xe)

∣∣2 ≤ 2
(∣∣qJT

∣∣2 + ||gT (∇hqJ)||2 |xe − xT |
2
)

. (3.8)

As, by definition, qJT = q(xT ), c.f. (2.16a), and xT ∈ D we apply Lemma 3.2 to derive the
inequality:

|De|
∣∣qJT
∣∣2 ≤ 3

2∑

i=0

h2i
De

||q||2Hi(De), (3.9)

which allows us to control the first term of the right-hand side of (3.8). To derive a similar
bound for the other term in (3.8), we start from gradient definition (2.10), we note that
αT,D > 0 from (G1), we introduce the symbol G2

D(qJ), c.f. (3.5) and apply Lemma 3.6 (with
1 + | cos θD| ≤ 2):

||gT (∇hqJ)||2 ≤
∑

D∈S(gT )

αT,D||∇DqJ||2 ≤ 2
∑

D∈S(gT )

1

|D|
G2

D(qJ). (3.10)

Using inequality (3.6) from Lemma 3.7 into (3.10) yields

||gT (∇hqJ)||2 ≤ 12ρ0

∑

D∈S(gT )

1

|D|2

2∑

i=0

h2i
D||q||Hi(D).

Note that |De|h
2
De

/|D|2 = (h2
De/|De|)(|De|/|D|)2 ≤ ρ0ρ

2
1, where ρ1 is the constant of As-

sumption (M3). Therefore, by multiplying both sides of (3.10) by |De|h
2
De

, rearranging the
summations and introducing hS = maxD∈S(gT ) hD yields:

|De|h
2
De

||gT (∇hqJ)||2 ≤ 12ρ2
0ρ

2
1

2∑

i=0

h2i
S ||q||2Hi(S(gT )). (3.11)

Combining (3.9) and (3.11) into (3.8), and noting that |xe − xT | ≤ hDe
yields

|De|
∣∣R1

T qJ(xe)
∣∣2 ≤ 6

2∑

i=0

h2i
De

||q||2Hi(De) + 24ρ2
0ρ

2
1

2∑

i=0

h2i
S ||q||2Hi(S(gT )),

from which it is easy to derive the first lemma’s inequality with the given expression of the
constant C.

Lemma’s inequality (3.7) follows by adapting the previous argument to the reconstruc-
tion R1

V qJ that is defined over the dual cells V ∈ Vh.
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3.2. Consistency of numerical fluxes.

Lemma 3.9. There exists a positive constant Cd, which is independent of h, such that
for every q ∈ H2(Ω), there holds

||(K∇q)I − Kh∇hqJ||L2(Ω) ≤ Cdh||q||H2(Ω). (3.12)

Proof. Let us consider a diamond-shaped cell D ∈ Dh. Adding and substracting the
term KD(∇q)I to the local consistency error of the cell D yields

(K∇q)ID − KD∇DqJ ≤
(
(K − KD)∇q

)I
D
− KD

(
(∇q)I −∇DqJ

)
.

Following the proof of Lemma 3.4 with u = ∇q, and recalling (2.18), it is easy to show that

|D|||
(
(K − KD)∇q

)I
D
||2 ≤ ||K − KD||2L∞(D)

(1 + 2γ)CAgm

sin θD

1∑

i=0

h2i
D||∇q||2Hi(D)

≤

(
(1 + 2γ)CAgmC2

K

sin θD

)
h2

D

(
||q||2H1(D) + h2

D||q||2H2(D)

)
. (3.13)

Now, let us consider the vector functional J : H2(D) → R2 defined by

J (q) = KD

(
(∇q)ID −∇D(q)J

)
.

Lemma 2.3 implies that J (q(1)) = 0 for every q(1) ∈ P1(D). Therefore, J (·) satisfies
condition (i) of Lemma 3.1 for k = 1. To check condition (ii), we start noting that:

|D|||J (q)||2 ≤ 2|D|
(
||(KD∇q)ID||2 + ||KD∇D(q)J||2

)
. (3.14)

We control both terms in the right-hand side of (3.14) through condition (2.2) and Lem-
mas 3.4, 3.6 and 3.7. After translating the range of the summation index i to start from 1
in the final expression, the bound of the first term is:

|D|||(KD∇q)ID||2 ≤ (κ∗)2|D|||(∇q)ID||2 ≤
(1 + 2γ)CAgm(κ∗)2

sin θD

2∑

i=1

h
2(i−1)
D ||q||2Hi(D). (3.15)

Likewise, after noting that |D|−1 ≤ ρ0h
−2
D , for the second term we get:

|D|||KD∇D(q)J||2 ≤ 2

(
(κ∗)2

|D|

)(
|D|G2

D(qJ)
)
≤

12(κ∗)2ρ0

|D|

2∑

i=0

h2i
D||q||2Hi(D)

≤ 12(κ∗ρ0)
2

2∑

i=0

h
2(i−1)
D ||q||2Hi(D).

(3.16)

Finally, we verify the second hypothesys of Lemma 3.1 by substituting (3.15) and (3.16)
into (3.14). The estimates are

|D|||J (q)||2 ≤ (κ∗)2
(

(1 + 2γ)CAgm

sin θD
+ 12(ρ0)

2

)
CIntph2

D||q||2H2(D),

and, combined with (3.13),

||(K∇q)I − KD∇DqJ||L2(D) ≤ CdhD||q||H2(D), (3.17)

with

(Cd)2 =

((
(1 + 2γ)(κ∗)2 + 3(CK)2

)CAgm

sin θ
+ 12(κ∗)2(ρ0)

2

)
CIntp,
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since sin θD ≥ sin θ > 0 from Assumption (M2). The constant Cd depends on K, ρ0, θD,
and γ and on the constants CAgm and CIntp. Inequality (3.12) eventually follows from the
summation over D ∈ Dh of (3.17).

Lemma 3.10. Let b be a constant vector on Ω. Then, there exists a positive constant
Cc which is independent of h such that for every q ∈ H1+k(Ω) there holds:

||(bq)I − Φc,k
h (qJ)||L2(Ω) ≤ Cch1+k||q||H1+k(Ω),

where k = 0, 1 is the order of the polynomial reconstruction used to define the numerical
convection flux.

Proof. For every D ∈ Dh we consider the functional

J (q) = (bq)ID − Φc,k
D (qJ),

which is well defined for every q ∈ H1+k(S)∩C0(S) and S = D for k = 0 and S = S(gT1)∪
S(gT2) ∪ S(gV1) ∪ S(gV2) for k = 1. Moreover, we conventionally take S(gTi

) = S(gVi
) = D

in the case k = 0 and S(gT2) = D if e ⊂ Γ for k = 0, 1. In view of Lemma 2.4, there holds
that J (q(k)) = 0 for every q(k) ∈ Pk(S), implying that the first hypothesys of Lemma 3.1,
i.e. condition (i), is satisfied. To verify the second hypothesys of Lemma 3.1, we start
splitting the functional J (·) in two terms:

|D|||J (q)||2 ≤ 2|D|
(
||(bq)ID||2 + ||Φc,k

D (qJ)||2
)

. (3.18)

We bound the first term in the right-hand side of (3.18) thanks to the result of Lemma 3.4:

|D|||(bq)ID||2 ≤ ||b||2L∞(Ω) (1 + 2γ)
CAgm

sin θD

1∑

i=0

h2i
D||q||2Hi(D). (3.19)

Using (2.19) and applying Lemma 3.3, we get

|D|||Φc,k
D (qJ)||2 ≤

2|D|

sin2 θD

(
|Φc,k

e |2 + γ

(
|f1|

|f |
|Φc,k

f1
|2 +

|f2|

|f |
|Φc,k

f2
|2

))
.

These terms are all defined in subsection 2.5. Since 0 ≤ θD ≤ 1 and using (2.20a),

|D||Φc,k
e (qJ)|2 ≤ |D||be|

2
(
|Rk

T1
qJ(xe)|

2 + |Rk
T2

qJ(xe)|
2
)

≤ C|be|
2

2∑

i=0

h2i
S

(
||q||2Hi(S(gT1)) + ||q||2Hi(S(gT2))

)
. (3.20)

For k = 1, |R1
T1

qJ(xe)| and |R1
T2

qJ(xe)| are bounded by Lemma 3.8 for any internal edge,
and |R1

T2
qJ(xe)| is bounded by Lemma 3.2 for any boundary edge, and the constant is

C = 6 + 24ρ2
0ρ

2
1. For k = 0, both terms are bounded using Lemma 3.2 and the constant is

C = 3. The same argument applies to the other two terms, which refers to the convection
flux across f1 and f2, to obtain the similar bound

|D||Φc,k
fi

(qJ)|2 ≤ C|bfi
|2

2∑

i=0

h2i
S

(
||q||2Hi(S(gV1 )) + ||q||2Hi(S(gV2))

)
. (3.21)

Combining inequalities (3.20)-(3.21) yields

|D|||Φc,k
D (qJ)||2 ≤

2C||b||2L∞(Ω)

sin2 θD

2∑

i=0

h2i
S

2∑

j=1

(
||q||2Hi(S(gTj

)) + γ2||q||2Hi(S(gVj
))

)

≤
2C||b||2L∞(Ω)

sin2 θD

NS max(1, γ2)

2∑

i=0

h2i
S ||q||2Hi(S), (3.22)

16



because
2∑

j=1

(
||q||2Hi(S(gTj

)) + γ2||q||2Hi(S(gVj
))

)
≤ NS max(1, γ2)

∑

D∈S

||q||2Hi(D)

= NS max(1, γ2)||q||2Hi(S).

Finally, we get condition (ii) of Lemma 3.1 by substituting (3.19) and (3.22) into (3.18).
The global inequality of the lemma is eventually obtained from the summation over

D ∈ Dh by using Assumption (M2) to bound sin θD from below and Lemma 3.1 with α = 0.
Remark that the summation over D is obvious when k = 0 because S = D. Instead, when
k = 1 we take S = S(gT1) ∪ S(gT2) ∪ S(gV1) ∪ S(gV2), and the supports overlap in the
summation process. However, Assumption (G2) implies that

#
{
D′ ∈ Dh such that D′ ⊂ S(D)

}
≤ NT1(D) + NT2(D) + NV1(D) + NV2(D) ≤ 4NS

and, thus, for all integers i ∈ [0, 2] we have
∑

D∈Dh

||q||2Hi(S) ≤ 4NS ||q||
2
Hi(Ω).

Lemma 3.11. Let q = (q, δq) be an element of Qh × δQh with δq = 0. If φ ∈ [1/2, 1],
then
(i) for k = 0 there holds:

−
(
Φc,0

h (q),∇hq
)

Xh

≥ 0; (3.23)

(ii) for k = 1 there exists a positive constant C such that there holds:

−
(
Φc,1

h (q),∇hq
)

Xh

≥ Ch||∇hq||2Xh
.

Proof. Let us take qT2 = qe = 0 for e ⊂ Γ and qV1 = qV2 = 0 for V1, V2 ∈ VBnd

h .
In this proof we will find it convenient to use the symbol DBnd

h to denote the collection of
boundary diamond-shaped cells, i.e. those diamonds such that e ⊂ Γ and that degenerate
into a triangle. We will also use DInt

h = Dh\D
Bnd

h , i.e. those diamond-shaped cells such that
e = T1 ∩ T2.

(i). For k = 0, a classical calculation yields:

−
(
Φc,0

h (q),∇hq
)

Xh

= (φ −
1

2
)

(
∑

T∈Th

|qT |
2

∫

T

div(b)dV +
∑

V ∈Vh

|qV |2
∫

V

div(b)dV

+
∑

D∈Dh

(
|e||be|

(
qT1 − qT2

)2
+

2∑

i=1

|fi||bfi
|
(
qV1 − qV2

)2
.
))

,

and the coercivity condition div(b) ≥ 0 implies (3.23) for 1/2 ≤ φ ≤ 1.

(ii). Let us observe that the flux for k = 1 can be written by adding a correction term to
the flux for k = 0, c.f. the linearity of the definitions given in subsection 2.5. Formally,

Φc,1
h (q) = Φc,0

h (q) + rh(q).
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Of course, the result proved in (i) implies the development:

−
(
Φc,1

h (q),∇hq
)

Xh

= −
(
Φc,0

h (q) + rh(q),∇hq
)

Xh

≥ − (rh(q),∇hq)Xh
,

and the Cauchy-Shwarz inequality gives:
∣∣(rh(q),∇hq)Xh

∣∣ ≤ |||∇hq|||Xh
|||rh(q)|||Xh

.

To derive a bound for |||rh(q)|||Xh
, we start applying Lemma 3.3,

||rD(q)||2 ≤
2

sin2 θD

(
||re(q)||

2 + γ

(
|f1|

|f |
||rf1 (q)||

2 +
|f2|

|f |
||rf2 (q)||

2

))
, (3.24)

and then we separately control the three terms in the right-hand side of (3.24) by the same
argument. We obtain an expression for rσ, σ ∈ {e, f1, f2}, by directly substituting the
formulas for the reconstructions R1

T and R1
V in the formulas of the numerical convection

flux, c.f. subsection 2.5. For example, when e is an internal edge, the correction term takes
the form

re(q) = b+
e

(
φgT1(∇hq) · (xe − xT1) + (1 − φ)gT2(∇hq) · (xe − xT2 )

)

+b−
e

(
φgT2(∇hq) · (xe − xT2) + (1 − φ)gT1(∇hq) · (xe − xT1)

)
, (3.25)

from which it is immediate to obtain:

||re(q)||
2 ≤ ||be||

2
(
||gT1(∇hq)||2|xe − xT1 |

2 + ||gT2(∇hq)||2|xe − xT2 |
2
)
. (3.26)

When e is a boundary edge, equations (3.25)-(3.26) are modifed by simply eliminating all
the terms that refer to T2.

Using (3.26) and the similar inequalities that are obtained by repeating the previous
argument for rf1 and rf2 , gives

∑

D∈Dh

|D|||rD(q)||2 ≤ ||b||2L∞(Ω)

∑

D∈DInt
h

2|D|

sin2 θD

h2
D

2∑

i=1

(
||gTi

(∇hq)||2 + γ2||gVi
(∇hq)||2

)

+||b||2L∞(Ω)

∑

D∈DBnd
h

2|D|

sin2 θD

h2
D

(
||gT1(∇hq)||2 + γ2

2∑

i=1

||gVi
(∇hq)||2

)
. (3.27)

Now observe that Assumptions (G1)-(G2) imply

||gT (∇hq)||2 ≤
∑

D∈S(gT )

αT,D||∇Dq||2 ≤
∑

D∈S(gT )

||∇Dq||2,

and summing over Dh yields

∑

D∈Dh

|D|
(
||gT1(∇hq)||2 + ||gT2(∇hq)||2

)
≤
∑

D∈Dh

|D|

2∑

i=1

∑

bD∈S(gTi
)

||∇ bDq||2

≤ ρ1

∑

D∈Dh

2∑

i=1

∑

bD∈S(gTi
)

|D̂|||∇ bDq||2 ≤ ρ1

∑

bD∈S(gTi
)

NT (D̂)|D̂|||∇ bDq||2 ≤ ρ1NS |||∇hq|||2Xh
.

A similar expression can be derived for the “V ”-terms. Therefore, the desired bound is
derived from (3.27) and Assumption (M2):

|||rh(q)|||2Xh
=
∑

D∈Dh

|D|||rD(q)||2 ≤

(
2(1 + γ2)||b||2L∞(Ω)ρ1NS

sin2 θ

)
h2|||∇hq|||2Xh

.
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3.3. Convergence analysis. The following analysis is classical to compute error es-
timates in the linear case [21].

Definition 3.12 (Consistency errors).
The consistency errors for the convection and diffusion flux are defined in Xh for any q ∈
H2(Ω) by:

Rc
h(q) = (bq)I − Φc,k

h (qJ) and Rd
h(q) = (K∇q)I − Φd

h(qJ). (3.28)

Definition 3.13 (Approximation errors). The error Eh ∈ Qh × δQh is given by

Eh = ph − pJ = (Eh, 0) with Eh ∈ Qh,0

because we took ph|δQh
= gJ = pJ|δQh

and ph ∈ Qh,g implies that pV = g(xV ) = pJV for
every V ∈ V Int

h .
Proposition 3.14 (Error equation).

(
Φd

h(Eh) − Φc,k
h (Eh),∇hEh

)

Xh

=
(
Rd

h(p) −Rc
h(p),∇hEh

)
Xh

. (3.29)

Proof. From (2.25) with q = Eh ∈ Qh,0 we have
(
Φd

h(ph) − Φc,k
h (ph),∇hEh

)

Xh

=
(
f I, Eh

)
Qh

(3.30)

Using the flux interpolation operators, the result of Lemma 2.2, and the discrete integration-
by-part formula stated in Lemma 2.1 yield:

(
f I, Eh

)
Qh

=
((

div
(
bp − K∇p

))I
, Eh

)

Qh

=
(
divh

(
bp − K∇p

)I
, Eh

)

Qh

=
((

K∇p − bp
)I

,∇hEh

)

Xh

. (3.31)

We terminate the derivation of (3.29) by comparing (3.30) and (3.31), substracting from

both sides the quantity
(
Φd

h(pJ) − Φc,k
h (pJ),∇hEh

)

Xh

, and using equations (3.28).

Theorem 3.15. Let p ∈ H2(Ω) be the exact solution of problem (2.1) and ph ∈ Qh its
DDFV approximations on a family of meshes {Th}h satisfying the mesh regularity assump-
tions (M1)-(M3). Then, there exists a positive constant C independent of h such that

|||∇hEh|||Xh
≤ C

(
h||p||H2(Ω) + h1+k||p||H1+k(Ω)

)
for k = 0, 1. (3.32)

Proof. Using the ellipticity of K, the error equation, the Cauchy-Schwarz inequality and
the non-negativity result of Lemma 3.11 yields:

κ∗|||∇hEh|||
2
Xh

≤
(
Kh∇hEh,∇hEh

)
Xh

=
(
Φd

h(Eh),∇hEh

)
Xh

≤
(
Rd

h(p) −Rc
h(p),∇hEh

)
Xh

+
(
Φc,k

h (Eh),∇hEh

)

Xh

≤
(
|||Rd

h(p) −Rc
h(p)|||Xh

+ Ckh|||∇hEh|||Xh

)
|||∇hEh|||Xh

.

From (3.32) we obtain that:

(κ∗ − Ckh)|||∇hEh|||Xh
≤ |||Rd

h(p) −Rc
h(p)|||Xh

. (3.33)

Then, we apply the triangle inequality to the right-hand side of (3.33), and use the results
of Lemmas 3.9 and 3.10 to obtain (3.32), for all h if k = 0 and for all h ≤ κ∗/C if k = 1
with C = ||b||L∞(Ω)(2(1 + γ2)ρ1NS)1/2/sin θD), which is the constant of Lemma 3.11.
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Lemma 3.16. Under Assumptions (M1)-(M2) there exists a positive constant C inde-
pendent of h such that for every q = (q, 0) ∈ Qh × δQh

|||q|||Qh
≤ C|||∇hq|||Xh

.

Proof. From 3.6 there holds:

|D|||∇Dq||2 ≥ (1 − | cos θD|)
1

4|D|

(
|e|2
(
qT2 − qT1

)2
+ |f |2

(
qV2 − qV1

)2)
.

The result follows from the classical discrete Poincaré inequality [21] applied separately to
Th and Vh, and Assumption (M2) to bound cos θD.

Theorem 3.17. Let us identify ∇hph ∈ Xh with the vector-valued function

∇hph(x) =
∑

D∈Dh

∇DphχD(x),

and consider the scalar function

p̂h(x) =
1

2

(
∑

T∈Th

pT χT (x) +
∑

V ∈Vh

pV χV (x)

)

for x ∈ Ω, where χD, χT , and χV are the characteristic functions of D, T , and V , respec-
tively. Then, there exists a positive constant C such that

||p − p̂h||L2(Ω) + ||∇p −∇hph||L2(Ω) ≤ Ch||p||H2(Ω).

Proof. Following the proof of Lemma 3.9, we have

||∇p −∇hpJ||L2(Ω) ≤ Ch||p||H2(Ω). (3.34)

Thus, by adding and substracting ∇hpJ, applying the triangle inequality, using (3.34), noting
that ||∇h(pJ − ph)||L2(Ω) = |||∇hEh|||Xh

and applying (3.32), we obtain

||∇p −∇hph||L2(Ω) ≤ ||∇p −∇hpJ||L2(Ω) + ||∇h(pJ − ph)||L2(Ω) ≤ Ch||p||H2(Ω).

Moreover,

||p − p̂h||
2
L2(Ω) ≤

∫

Ω

∣∣∣
∑

T∈Th

(p(x) − pT )χT (x)
∣∣∣
2

dV +

∫

Ω

∣∣∣
∑

V ∈Vh

(p(x) − pV )χV (x)
∣∣∣
2

dV

≤ 2

∫

Ω

∣∣∣p(x) −
∑

T∈Th

p(xT )χT (x))
∣∣∣
2

dV + 2

∫

Ω

∣∣∣p(x) −
∑

V ∈Vh

p(xV )χV (x))
∣∣∣
2

dV

+4|||pJ − ph|||
2
Qh

≤ Ch2||p||2H2(Ω).

4. Numerical experiments. The numerical experiments presented in this section
aim to confirm the behavior of the current DDFV formulation expected from the theoretical
considerations of the previous section. To this purpose, we solve (2.1) on the domain Ω =
]0, 1[×]0, 1[ by applying the DDFV scheme with φ = 0.5, i.e. the central scheme, and φ = 1,
i.e the fully upwind scheme, to equation (2.1) with diffusion tensor K = I and velocity field
bT = (1, 3)T . The forcing term f and the boundary function g are taken according to the
exact solution

p(x, y) =
(
x − e2(x−1)

)(
y2 − e3(y−1)

)
.
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We consider two different sets of successively refined meshes, namely M1 and M2. Mesh
family M1 is taken from the FVCA-5 benchmark for anisotropic problems and its construc-
tion is detailed in [27]. Mesh family M2 is an example of a non-conforming refinement; more
details are in [18]. The first two meshes of each mesh family are also shown in Figure 4.1,
while Table 4.1 reports the number of cells in Th, Vh, and Dh, and the value of the mesh
size h. These examples are solved by a C++ program based on a variant of P2MESH [5], a
public domain library designed to manage data structures of two-dimensional unstructured
meshes.

The approximation errors are measured by the following quantities:

EQh
(ph) =

|||pI − ph|||Qh

|||pI|||Qh

and

EDh
(∇hph) =

( ∑

D∈Dh

∫

D

|∇p −∇Dph|
2dV

)1/2

|p|H1(Ω)
.

We report these errors and the corresponding convergence rates in Tables 4.2-4.5.
The results for the approximation of the scalar variable shows a quadratic convergence

rate for the central scheme given by φ = 0.5 and k = 0, 1, and for the second-order fully
upwind scheme given by φ = 1 and k = 1. This behavior is in agreement with that expected
from a second-order accurate method, thus suggesting that the O (h)-estimate provided in
Theorem 3.17 is not sharp. Instead, the numerical approximation to the scalar unknown
provided by the first-order upwind scheme, i.e. by setting φ = 1 and k = 0, is only linearly
convergent, as expected.

Moreover, a super-convergence effect is visible in the approximation of the solution
gradient when the second-order implementations of the DDFV scheme mentioned above are
applied to the meshes of M1, c.f. Tables 4.2 and 4.3. This effect disappears when the DDFV
method is applied to the meshes in M2. We explain this behavior as follows. If the diamond-
shaped cell D is a parallelogram, and K and b are constant fields, the local consistency errors
||(K∇q)I − Kh∇hqJ||L2(Ω) and ||(bq)I − Φc,1

h (qJ)||L2(Ω) can be shown to vanish for functions
q ∈ P2(D). As a consequence, the global error estimate can be improved like in [18]:

|||∇hEh|||Xh
≤ C

(
h||p||H2(Ω0

h
) + h2||p||H3(Ω1

h
)

)
,

where

Ω1
h = ∪

{
D ∈ Dh such that D is a parallelogram

}
,

and Ω0
h = Ω\Ω1

h. From Hölder inequality and the Sobolev injection H2(Ω0
h) →֒ Lp(Ω0

h),
which holds for all 1 ≤ p < ∞ in 2-D [1], we get

||p||H2(Ω0
h
) ≤ CSob|Ω0

h|
1
2 (1−

1
p )||p||H3(Ω).

Therefore, for every ǫ > 0 there follows

|||∇hEh|||Xh
≤ C

(
h2 + h|Ω0

h|
1
2−ǫ
)
||p||H3(Ω),

and requiring that |Ω0
h| ≤ λh is sufficient to provide the observed superconvergence behavior

for the gradient appproximation:

|||∇hEh|||Xh
≤ Ch

3
2−ǫ||p||H3(Ω).

The above condition, which has already been pointed out in [18] for pure diffusion problems
on triangular meshes, simply states that the size of the region covered by diamond-shaped
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cells that are not parallelograms is decreasing at least like h. This occurs when some shape
regularization in the mesh refinement process takes place, such as, for example, in mesh
family M1, or in the homothetic refinement of triangle-based meshes investigated in [18].

On the other hand, the refinement algorithm of M2 is such that |Ω0
h| = 7

8 |Ω|, and the
superconvergence effect is lost. Here, the remarkable fact is that a O

(
h2
)
-convergence rate

is still observed for the second-order DDFV approximations to the scalar variable, see the
column EQh

(ph) for k = 1 of Tables 4.4-4.5. Hence, we may conjecture that the second-order
of accuracy of the DDFV method (and, likewise, of many other FV methods) is independent
of the requirement that the diamond cells of the meshes are all becoming parallelograms when
h tends to zero. Furthermore, a noteworthy consequence of this behavior is that a suitable
post-processing of the numerical solution can still provide a piecewise-linear approximation
to the scalar solution that is quadratically convergent in the L2(Ω)-norm.

5. Conclusion. We considered a steady convection-diffusion problem with a full ten-
sor coefficient discretized with the DDFV method. Under quite general assumptions on
polygonal meshes, which can have non-conforming and non-convex elements, we proved the
convergence of the scalar variable and its gradient. The numerical experiments confirm
the theoretical prediction concerning the approximation of the gradient. In particular, the
assumption that the domain is covered by diamond cells that asymptotically tend to be
parallelograms seems necessary to obtain the superconvergent rate h3/2. Instead, better
accuracy is observed for the scalar solution even without this assumption, which is used in
the proof proposed by [18]. How this condition could be relaxed to obtain a more general
proof is still an open issue.
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sur des maillages de triangles non structurés. C. R. Math. Acad. Sci. Paris, 341(12):787–792,
2005.
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Fig. 2.1. Construction of the mesh Vh (dashed and dotted lines) from mesh Th (solid lines). The plot
on the left shows the case of an internal vertex, the plot on the right of a boundary vertex. The shaded
region is the cell associated to the vertex V , its boundary ∂V being plotted by using dotted lines.
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Fig. 2.2. Construction of the mesh Dh (dashed lines) from mesh Th (solid lines). The plot on the left
shows the case of an internal vertex, the plot on the right of a boundary vertex. The shaded region is the
diamond cell D; in both cases the diagonals f , f1, f2 are plotted in dotted lines.
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The first two meshes of mesh family M1

The first two meshes of mesh family M2

Fig. 4.1. The first two meshes of mesh family M1 (top) and M2 (bottom); each plot shows the primal
mesh Th (solid line) and the dual mesh Vh (dashed line).

Table 4.1
Mesh families M1 and M2: mTh

is the number of cells of Th, mVh
is the number of cells of Vh, mDh

is the number of cells of Dh, and h is the mesh size.

M1 M2

# mTh
mVh

mDh
h mTh

mVh
mDh

h
1 289 324 612 2.711 10−1 40 65 104 2.500 10−1

2 1156 1225 2380 1.355 10−1 160 241 400 1.250 10−1

3 2601 2704 5304 9.036 10−2 640 929 1568 6.250 10−2

4 4624 4761 9384 6.777 10−2 2560 3649 6208 3.125 10−2

5 7225 7396 14620 5.422 10−2 10240 14465 24704 1.563 10−2

6 10404 10609 21012 4.518 10−2 40960 57601 98560 7.813 10−3
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Table 4.2
Relative errors and convergence rates for the scalar solution, EQh

(ph), and the solution gradient,
EDh

(∇hph); the central DDFV scheme for φ = 0.5 and k = 0 and 1 is applied to the meshes of M1.

k = 0 k = 1

# EQh
(ph) Rate EDh

(∇hph) Rate EQh
(ph) Rate EDh

(∇hph) Rate

1 2.209 10−2 −− 6.567 10−2 −− 1.871 10−2 −− 5.876 10−2 −−

2 5.483 10−3 2.010 2.198 10−2 1.579 4.764 10−3 1.973 1.949 10−2 1.592

3 2.446 10−3 1.990 1.164 10−2 1.567 2.136 10−3 1.978 1.032 10−2 1.568

4 1.380 10−3 1.991 7.448 10−3 1.553 1.208 10−3 1.981 6.600 10−3 1.552

5 8.842 10−4 1.993 5.278 10−3 1.543 7.756 10−4 1.985 4.678 10−3 1.542

6 6.146 10−4 1.995 3.988 10−3 1.536 5.398 10−4 1.987 3.536 10−3 1.535

Table 4.3
Relative errors and convergence rates for the scalar solution, EQh

(ph), and the solution gradient,
EDh

(∇hph); the fully upwind DDFV scheme for φ = 1 and k = 0 and 1 is applied to the meshes of M1.

k = 0 k = 1

# EQh
(ph) Rate EDh

(∇hph) Rate EQh
(ph) Rate EDh

(∇hph) Rate

1 3.816 10−2 −− 8.624 10−2 −− 1.773 10−2 −− 5.684 10−2 −−

2 1.918 10−2 0.992 4.113 10−2 1.067 4.502 10−3 1.977 1.904 10−2 1.577

3 1.335 10−2 0.894 2.750 10−2 0.993 2.036 10−3 1.957 1.014 10−2 1.554

4 1.030 10−2 0.901 2.075 10−2 0.978 1.160 10−3 1.955 6.511 10−3 1.539

5 8.393 10−3 0.915 1.670 10−2 0.975 7.492 10−4 1.959 4.626 10−3 1.531

6 7.088 10−3 0.926 1.398 10−2 0.975 5.238 10−4 1.963 3.503 10−3 1.525

Table 4.4
Relative errors and convergence rates for the scalar solution, EQh

(ph), and the solution gradient,
EDh

(∇hph); the central DDFV scheme for φ = 0.5 and k = 0 and 1 is applied to the meshes of M2.

k = 0 k = 1

# EQh
(ph) Rate EDh

(∇hph) Rate EQh
(ph) Rate EDh

(∇hph) Rate

1 6.007 10−2 −− 1.107 10−1 −− 6.821 10−2 −− 1.229 10−1 −−

2 1.659 10−2 1.856 5.176 10−2 1.096 2.013 10−2 1.760 6.228 10−2 0.980

3 4.275 10−3 1.956 2.440 10−2 1.085 5.199 10−3 1.952 2.972 10−2 1.067

4 1.080 10−3 1.984 1.173 10−2 1.056 1.304 10−3 1.995 1.414 10−2 1.071

5 2.713 10−4 1.993 5.735 10−3 1.032 3.253 10−4 2.002 6.826 10−3 1.050

6 6.797 10−5 1.997 2.833 10−3 1.017 8.116 10−5 2.002 3.343 10−3 1.029

Table 4.5
Relative errors and convergence rates for the scalar solution, EQh

(ph), and the solution gradient,
EDh

(∇hph); the fully upwind DDFV scheme for φ = 1 and k = 0 and 1 is applied to the meshes of M2.

k = 0 k = 1

# EQh
(ph) Rate EDh

(∇hph) Rate EQh
(ph) Rate EDh

(∇hph) Rate

1 4.392 10−2 −− 1.140 10−1 −− 5.047 10−2 −− 9.356 10−2 −−

2 2.341 10−2 0.907 6.684 10−2 0.769 1.729 10−2 1.545 5.202 10−2 0.846

3 1.333 10−2 0.812 3.734 10−2 0.840 4.827 10−3 1.840 2.693 10−2 0.949

4 7.364 10−3 0.856 1.980 10−2 0.914 1.257 10−3 1.941 1.343 10−2 1.004

5 3.900 10−3 0.917 1.020 10−2 0.957 3.195 10−4 1.976 6.648 10−3 1.014

6 2.010 10−3 0.956 5.175 10−3 0.978 8.044 10−5 1.989 3.299 10−3 1.011
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