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Abstract

This work is about changing action domain descriptions
in dynamic logic. We here revisit the semantics of ac-
tion theory contraction, giving more robust operators
that express minimal change based on a notion of dis-
tance between models. We then define syntactical con-
traction operators and establish their correctness w.r.t.
our semantics. Finally we show that our operators sat-
isfy thePDL-counterpart of the standard postulates for
theory change adopted in the literature.

Introduction and Motivation
Let an intelligent agent be designed to perform rationally
in a dynamic world, and suppose she should reason about
the dynamics of an automatic coffee machine. Suppose that
the agent believes that a coffee is a hot beverage. Now
suppose that some day she gets a coffee and observes it is
cold. In such a case, the agent must change her beliefs
about the relationship between the propositions “I have a
coffee” and “I have a hot beverage”. This example is an
instance of the problem of changing propositional belief
bases and is largely addressed in the literature about belief
change (Gärdenfors 1988) and belief update (Katsuno and
Mendelzon 1992).

Next, let our agent believe that whenever buying a coffee
on the machine, she gets a hot beverage. This means that in
every state of the world that follows the execution of buying,
the agent possesses a hot beverage. Some day, it may hap-
pen that the machine is running out of cups, and then after
buying, the coffee runs through the shelf and so the agent
holds no hot beverage.

Imagine now the agent believes that if she has a token,
then it is always possible to buy coffee. However, during a
blackout, even with a token the agent does not manage to
order her coffee on the machine.

The last two examples illustrate situations where chang-
ing the beliefs about the behavior of the action of buying
coffee is mandatory. In the first one, buying coffee, once
believed to be deterministic, has now to be seen as nonde-
terministic, or alternatively to have a different outcome in a
more specific context (e.g. if there is no cup in the machine).
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In the second example, the executability of the action under
concern is questioned in the light of new information show-
ing a context that was not known to preclude its execution.

Such cases of theory change are very important in logical
descriptions of dynamic domains: it may always happen that
one discovers that an action actually has a behavior that is
different from that one has always believed it had.

Up to now, theory change has been studied mainly for
knowledge bases in classical logics, both in terms of revision
and update. Since (Fuhrmann 1989), only in a few recent
works it has been considered in the realm of modal logics,
viz. in epistemic logic (Hansson 1999) and in dynamic log-
ics (Herzig, Perrussel, and Varzinczak 2006), and in action
languages (Eiter et al. 2005). Some other works (Shapiro
et al. 2000; Jin and Thielscher 2005) have investigated re-
vision of beliefs aboutfactsof the world. In our scenario,
this would concern for example the truth oftokenin a given
state: the agent believes she has a token, but is wrong about
that and might subsequently be forced to revise her beliefs
about the current state of affairs. Such belief revision opera-
tions do not modify the agent’s beliefs about theaction laws.
In opposition to that, here we are interested exactly in such
modifications.

Logical Preliminaries
Our base formalism is Propositional Dynamic Logic (PDL)
without the∗ operator (Harel, Tiuryn, and Kozen 2000).

Action Theories in Dynamic Logic
Let Act = {a1, a2, . . .} be the set ofatomic actionsof a
given domain. An example of atomic action isbuy. To each
actiona there is associated a modal operator[a]. Prop =
{p1, p2, . . .} denotes the set ofpropositional constants, also
calledfluentsor atoms. Examples of those aretoken(“the
agent has a token”) andcoffee(“the agent holds a coffee”).
The set of all literals isLit = {ℓ1, ℓ2, . . .}, where eachℓi
is eitherp or ¬p, for somep ∈ Prop. If ℓ = ¬p, then we
identify¬ℓ with p. By |ℓ| we denote the atom inℓ.

We useϕ, ψ, . . . to denoteBoolean formulas, an example
of which iscoffee→ hot. Fml is the set of all Boolean for-
mulas. A propositional valuationv is amaximally consistent
set of literals. We denote byv 
 ϕ the fact thatv satisfiesϕ.
By val(ϕ) we denote the set of all valuations satisfyingϕ.



|=
CPL

is the classical consequence relation.Cn(ϕ) denotes all
logical consequences ofϕ in classical propositional logic.

With IP(ϕ) we denote the set ofprime implicants(Quine
1952) ofϕ. By π we denote a prime implicant, andatm(π)
is the set of atoms occurring inπ. For givenℓ andπ, ℓ ∈ π
abbreviates ‘ℓ is a literal ofπ’.

We will useΦ, Ψ, . . . to denote complex formulas (formu-
las with modal operators). An example of a complex for-
mula is¬coffee→ [buy]coffee. 〈a〉 is the dual operator of
[a] (〈a〉Φ =def ¬[a]¬Φ).

A PDL-modelis a tupleM = 〈W,R〉 whereW is a set
of valuations, andR maps action constantsa to accessibility

relationsRa ⊆ W× W. GivenM , |=
M

w
p (p is true at world

w of modelM ) if w 
 p; |=
M

w
[a]Φ if |=

M

w′
Φ for everyw′ s.t.

(w,w′) ∈ Ra; truth conditions for the other connectives are
as usual. ByM we will denote a set ofPDL-models.

M is a model ofΦ (noted|=
M
Φ) if and only if |=

M

w
Φ for all

w ∈ W. M is a model of a set of formulasΣ (noted|=
M

Σ)

if and only if |=
M
Φ for everyΦ ∈ Σ. Φ is aconsequence of

the global axiomsΣ in all PDL-models (notedΣ |=
PDL

Φ) if

and only if for everyM , if |=
M

Σ, then|=
M
Φ.

With PDL we can state laws describing the behavior of
actions. Following the tradition in the reasoning about ac-
tions community, we here distinguish three types of them.

Static Laws A static law is a formulaϕ ∈ Fml. It is a
formula that characterizes the possible states of the world.
An example of static law iscoffee→ hot: if the agent holds
a coffee, then she holds a hot beverage. The set of all static
laws of a domain is denoted byS .

Effect Laws An effect law for ais of the formϕ → [a]ψ,
whereϕ, ψ ∈ Fml. Effect laws are formulas relating an ac-
tion to its effects, which can be conditional. The consequent
ψ is the effect that always obtains whena is executed in a
state where the antecedentϕ holds. Ifa is a nondeterminis-
tic action, thenψ is typically a disjunction. An example of
such a law istoken→ [buy]hot: whenever the agent has a
token, after buying, she has a hot beverage. Ifψ is incon-
sistent we have a special kind of effect law that we call an
inexecutability law. For example,¬token → [buy]⊥ says
thatbuycannot be executed if the agent has no token. The
set of effect laws of a domain is denoted byE .

Executability Laws An executability law for ahas the form
ϕ→ 〈a〉⊤, with ϕ ∈ Fml. It stipulates the context in which
a is guaranteed to be executable. (InPDL, the operator〈a〉
is used to express executability,〈a〉⊤ thus reads “a’s execu-
tion is possible”.) For instance,token→ 〈buy〉⊤ says that
buying can be executed whenever the agent has a token. The
set of all executability laws of a domain is denoted byX .

Given a, Ea (resp.Xa) will denote the set of only those
effect (resp. executability) laws abouta.

Action TheoriesT = S ∪ E ∪ X is anaction theory.

For the sake of clarity, we will here abstract from the
frame problem (McCarthy and Hayes 1969) and the rami-
fication problem (Finger 1987), and assume that the agent’s
theory contains all frame axioms (cf. (Herzig, Perrussel, and
Varzinczak 2006) for a contraction approach within a solu-
tion to the frame problem). The action theory of our example
will be:

T =











coffee→ hot, token→ 〈buy〉⊤,
¬coffee→ [buy]coffee, token→ [buy]¬token,
¬token→ [buy]⊥,¬token→ [buy]¬token,

coffee→ [buy]coffee, hot→ [buy]hot











Figure 1 below shows aPDL-model for the theoryT.

t, c, h

¬t, c, h

t,¬c, h

t,¬c,¬h

b b

b

Figure 1: A model for the coffee machine scenario.b, t, c,
andh stand for, respectively,buy, token, coffee, andhot.

Sometimes it will be useful to consider models whose
possible worlds areall the possible worlds allowed byS :

Definition 1 LetT = S ∪ E ∪ X be an action theory. Then
M = 〈W,R〉 is thebig modelof T if and only if:

• W = val(S ); and

• Ra = {(w,w′) : ∀.ϕ→ [a]ψ ∈ Ea, if |=
M

w
ϕ then |=

M

w′
ψ}.

Figure 2 below depicts the big model ofT.

t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

b b

b

Figure 2: The big model for the coffee machine scenario.

Elementary Atoms
Givenϕ ∈ Fml, E(ϕ) denotes the elementary atomsactu-
ally occurring inϕ. For example,E(¬p1 ∧ (¬p1 ∨ p2)) =
{p1, p2}. An atomp is essentialtoϕ if and only if p ∈ E(ϕ′)
for all ϕ′ such that|=

CPL
ϕ↔ ϕ′. For instance,p1 is essential

to¬p1∧(¬p1∨p2). E!(ϕ) will denote the essential atoms of
ϕ. (If ϕ is a tautology or a contradiction, thenE!(ϕ) = ∅.)

For ϕ ∈ Fml, ϕ∗ is the set of allϕ′ ∈ Fml such that
ϕ |=

CPL
ϕ′ and E(ϕ′) ⊆ E!(ϕ). For instance,p1 ∨ p2 /∈



p1∗, asp1 |=
CPL

p1 ∨ p2 but E(p1 ∨ p2) 6⊆ E!(p1). Clearly,
E(

∧

ϕ∗) = E!(
∧

ϕ∗). Moreover, whenever|=
CPL

ϕ ↔ ϕ′,
thenE!(ϕ) = E!(ϕ′) and alsoϕ∗ = ϕ′∗.

Theorem 1 (Least atom-set theorem (Parikh 1999))
|=
CPL

ϕ ↔
∧

ϕ∗, and E(ϕ∗) ⊆ E(ϕ′) for everyϕ′ s.t.
|=
CPL

ϕ↔ ϕ′.

Thus for everyϕ ∈ Fml there is a unique least set of
elementary atoms such thatϕmay equivalently be expressed
using only atoms from that set.1 Hence,Cn(ϕ) = Cn(ϕ∗).

Prime Valuations

Given a valuationv, v′ ⊆ v is a subvaluation. For W a set
of valuations, a subvaluationv′ satisfiesϕ ∈ Fml moduloW
(notedv′ 


W
ϕ) if and only if v 
 ϕ for all v ∈ W such that

v′ ⊆ v. A subvaluationv essentially satisfiesϕ moduloW

(v 

!

W
ϕ) if and only if v 


W
ϕ and{|ℓ| : ℓ ∈ v} ⊆ E!(ϕ).

Definition 2 Letϕ ∈ Fml and W be a set of valuations. A
subvaluation v is aprime subvaluationof ϕ (modulo W) if

and only if v

!

W
ϕ and there is no v′ ⊆ v s.t. v′ 


!

W
ϕ.

A prime subvaluation of a formulaϕ is one of the weakest
states of truth in whichϕ is true. (Notice the similarity with
the syntactical notion of prime implicant (Quine 1952).)

By base(ϕ,W) we denote the set of all prime subvalua-
tions ofϕ moduloW.

Theorem 2 Letϕ ∈ Fml and W be a set of valuations. Then
for all w ∈ W,w 
 ϕ if and only ifw 


∨

v∈base(ϕ,W)

∧

ℓ∈v ℓ.

Closeness Between Models

When contracting a formula from a model, we will perform
a change in its structure. Because there can be several differ-
ent ways of modifying a model (not all of them minimal), we
need a notion of distance between models to identify those
that are closest to the original one.

As we are going to see in more depth in the sequel, chang-
ing a model amounts to modifying its possible worlds or
its accessibility relation. Hence, the distance between two
PDL-models will depend upon the distance between their
sets of worlds and accessibility relations. These here willbe
based on thesymmetric differencebetween sets, defined as
X−̇Y = (X \ Y ) ∪ (Y \X).

Definition 3 Let M = 〈W,R〉 be a model.M ′ = 〈W′,R′〉
is as close toM asM ′′ = 〈W′′,R′′〉, notedM ′ �M M ′′,
if and only if

• either W−̇W′ ⊆ W−̇W′′

• or W−̇W′ = W−̇W′′ and R−̇R′ ⊆ R−̇R′′

(Notice that other distance notions are also possible, like
e.g. considering thecardinalityof symmetric differences.)

1The dual notion (redundant atoms) is also addressed in the lit-
erature, e.g. in (Herzig and Rifi 1999), with similar purposes.

Semantics of Contraction
When contracting a lawΦ we must ensure thatΦ becomes
invalid in at least one (possibly new) model of the dynamic
domain. Because there can be lots of models to consider,
we start with asetM of models in whichΦ is (potentially)
valid. Thus contractingΦ amounts to make it no longer valid
in this set of models. What are the operations that must be
carried out to achieve that? Throwing models out ofM does
not work, sinceΦ will keep on being valid in all models of
the remaining set. Thus we shouldaddnew models toM.
Which models? Well, models in whichΦ is not true. But
not any of such models: taking models falsifyingΦ that are
too different from our original models will certainly violate
minimal change.

Hence, we shall take some modelM ∈ M as basis and
manipulate it to get a new modelM ′ in whichΦ is not true.
In PDL, the removal of a lawΦ from a modelM amounts to
modifying the possible worlds or the accessibility relation in
M so thatΦ becomes false. Such an operation gives as re-
sult asetM−

Φ of models, each of which is no longer a model
of Φ. But if there are several candidates, which ones should
we choose? We shall take those that areminimalmodifica-
tions of the originalM . Note that there can be more than
oneM ′ that is minimal. Because adding just one of these
new models is enough to invalidateΦ, we take all possible
combinationsM∪{M ′} of expanding our set of models by
one minimal model. The result will be aset of sets of models.
In each set of models there will be oneM ′ falsifyingΦ.

Contraction of Executability Laws
Intuitively, to contract an executability lawϕ→ 〈a〉⊤ in one
model, weremove arrowsleavingϕ-worlds. To success the
operation, we have to guarantee that in the resulting model
there is at least oneϕ-world with no departinga-arrow.

Definition 4 Let M = 〈W,R〉 be a PDL-model. Then
M ′ = 〈W′,R′〉 ∈ M

−
ϕ→〈a〉⊤ if and only if

• W′ = W

• R′ ⊆ R

• If (w,w′) ∈ R\ R′, then|=
M

w
ϕ

• There isw ∈ W′ s.t. 6|=
M

′

w
ϕ→ 〈a〉⊤

To get minimal change, we want such an operation to be
minimal w.r.t. the original model: we should remove a min-
imum set of arrows sufficient to get the desired result.

Definition 5 Let M be a PDL-model andϕ → 〈a〉⊤ an
executability law. Then

contraction(M , ϕ→ 〈a〉⊤) =
⋃

min{M−
ϕ→〈a〉⊤,�M}

And now we define the sets of possible models resulting
from the contraction of an executability in a set of models:

Definition 6 LetM be a set of models, andϕ → 〈a〉⊤ an
executability law. ThenM−

ϕ→〈a〉⊤ = {M′ : M′ = M ∪

{M ′},M ′ ∈ contraction(M , ϕ→ 〈a〉⊤),M ∈ M}.



In our example, considerM = {M }, whereM is the
model in Figure 2. When the agent discovers that even with
a token she does not manage to buy a coffee anymore, she
has to change her models in order to admit models with
states wheretoken is the case but from which there is no
buy-transition at all. Because having just one of such worlds
in each new model is enough, taking those resulting models
whose accessibility relations are maximal guarantees mini-
mal change. Hence we getM−

token→〈buy〉⊤ = {M∪ {M ′
i } :

1 ≤ i ≤ 3}, where eachM ′
i is depicted in Figure 3.

M ′
1 : t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

b

b

M ′
2 :

t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

b

b

M ′
3 :

t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

b b

Figure 3: Models resulting from contracting the executabil-
ity law token→ 〈buy〉⊤ in the modelM of Figure 2.

Contraction of Effect Laws
When the agent discovers that there may be cases when after
buying she gets no hot beverage, she must give up the law
token→ [buy]hot in her models. This means thattoken∧
〈buy〉¬hot shall now be admitted in at least one world of
some of her new models of beliefs. Hence, to contract an
effect lawϕ → [a]ψ from a given model, we have toput
new arrowsleavingϕ-worlds to worlds satisfying¬ψ.

In our example, when contractingtoken → [buy]hot in
the model of Figure 2, we add arrows fromtoken-worlds
to ¬hot-worlds. The challenge in such an operation is in
guaranteeing minimal change: becausecoffee→ hot, and
then¬hot → ¬coffee, this should also give〈buy〉¬coffee

(¬coffeeis relevant to ¬hot). Hence, we can add arrows
from token-worlds to¬hot∧¬coffee∧ token-worlds, as well
as to¬hot∧ ¬coffee∧ ¬token(Figure 4). Pointing the ar-
row to ¬hot∧ ¬coffee∧ tokenwould make us lose the ef-
fect¬token, true after every execution ofbuy in the original
model. How to preserve this law while allowing for the new
transition to a¬hot-world?

M : t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

b b

b

Figure 4: Candidate¬hot-worlds to receive arrows from
token-worlds.

When pointing a new arrow leaving a worldw it is enough
to preserve old effects only inw (because the remaining
structure of the model keeps unchanged after adding this
new arrow). The operation we must carry out is observing
what is true inw and in the candidate target worldw′: what
changes fromw to w′ (w′ \ w) must be what is obliged to
do so; what does not change fromw tow′ (w ∩w′) must be
what is either obliged or allowed to do so.

This means that the only things allowed to change w.r.t.
w in the candidate target world are those that are forced to
change: they are relevant to¬ψ or to another effect that ap-
plies inw. Every change outside that is not an intended one.
Similarly, we want the literals preserved in the target world
to be those that are relevant to¬ψ or to some other effect
that applies inw or that are usually preserved inw. Every
preservation outside those may make us lose some law.

Here is where prime subvaluations play their role: the
worlds one should aim the new arrow at are those whose
difference w.r.t.w are literals that are relevant, and whose
similarity w.r.t.w are literals we know may not change.

Definition 7 LetM = 〈W,R〉, w,w′ ∈ W,M be such that
M ∈ M, andϕ→ [a]ψ an effect law. Thenw′ is a relevant
target world ofw w.r.t.ϕ→ [a]ψ for M in M if and only if

• |=
M

w
ϕ, 6|=

M

w′
ψ

• for all ℓ ∈ w′ \ w

– either there is v∈ base(¬ψ,W) s.t. v⊆ w′ andℓ ∈ v
– or there areψ′ ∈ Fml, v′ ∈ base(ψ′,W) s.t. v′ ⊆ w′,

ℓ ∈ v′, and|=
Mi

w
[a]ψ′ for everyMi ∈ M

• for all ℓ ∈ w ∩ w′

– either there is v∈ base(¬ψ,W) s.t. v⊆ w′ andℓ ∈ v
– or there areψ′ ∈ Fml, v′ ∈ base(ψ′,W) s.t. v′ ⊆ w′,

ℓ ∈ v′, and|=
Mi

w
[a]ψ′ for everyMi ∈ M

– or there isMi ∈ M such that6|=
Mi

w
[a]¬ℓ

By RelTgt(w,ϕ → [a]ψ,M ,M) we denote the set of all rel-
evant target worlds ofw w.r.t.ϕ→ [a]ψ for M in M.



We need the set of modelsM (and here we can suppose
it contains all models of the theory we want to change) be-
cause preserving effects depends on what other effects hold
in the other models that interest us. One needs to take them
into account in the local operation of changing one model:2

Definition 8 Let M = 〈W,R〉 be aPDL-model andM be
such thatM ∈ M. ThenM ′ = 〈W′,R′〉 ∈ M

−
ϕ→[a]ψ if and

only if

• W′ = W
• R⊆ R′

• (w,w′) ∈ R′ \ R impliesw′ ∈ RelTgt(w,ϕ→ [a]ψ,M ,M)

• There isw ∈ W′ s.t. 6|=
M

′

w
ϕ→ [a]ψ

As having just one world where the law is no longer
true in each model is enough, taking those resulting mod-
els whose difference w.r.t. the original accessibility relation
is minimal guarantees minimal change:

Definition 9 Let M be a PDL-model andϕ → [a]ψ an
effect law. Then

contraction(M , ϕ→ [a]ψ) =
⋃

min{M−
ϕ→[a]ψ,�M}

Now we can define the possible sets of models resulting
from contracting an effect law from a set of models:

Definition 10 Let M be a set of models, andϕ → [a]ψ
an effect law. ThenM−

ϕ→[a]ψ = {M′ : M′ = M ∪

{M ′},M ′ ∈ contraction(M , ϕ→ [a]ψ),M ∈ M}.

Taking againM = {M }, for M as in Figure 2, after
contracting the effect lawtoken→ [buy]hot fromM, we get
M−

token→[buy]hot = {M∪{M ′
i} : 1 ≤ i ≤ 3}, where allM ′

i s
are as depicted in Figure 5.

If ϕ is not satisfied byM orψ is true inM , of course we
do not succeed in falsifyingϕ → [a]ψ. In these cases, prior
to do that we must change our set of possible states.

Contraction of Static Laws
When contracting a static law in a model, we want to admit
at least one possible state falsifying it. Intuitively thismeans
that we should add new worlds to the original model. This
is quite easy. A delicate issue however is what to do with
the accessibility relation: should new arrows leave/arrive at
the new world? If no arrow leaves the new added world,
we may lose an executability law. If some arrow leaves it,
we may lose an effect law, the same holding if we add an
arrow pointing to the new world. If no arrow arrives at the
new world, what about the intuition? Do we want to have an
unreachable state?

All this discussion shows how drastic a change in the
static laws may be: it is a change in the underlying struc-
ture (possible states) of the world! Changing it may have as
consequence the loss of an effect law or an executability law.

2We do not needM in the local contraction of executabilities
M

−
ϕ→〈a〉⊤ as all effects are preserved along the removal of arrows.

M ′
1 : t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

b b

b

b

M ′
2 :

t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

b b

b

b

M ′
3 :

t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

b b

b

b

Figure 5: Models resulting from contracting the effect law
token→ [buy]hot in the modelM of Figure 2. The new
arrows are the dashed ones.

What we can do is choose which laws we accept to lose and
postpone their change (by the other operators).

The tradition in the reasoning about actions community
says that executability laws are, in general, more difficultto
state than effect laws, and hence are more likely to be incor-
rect. Relying on this, in (Herzig, Perrussel, and Varzinczak
2006) no change in the accessibility relation is made, what
means preserving effect laws and postponing correction of
executability laws. We here embrace this solution. It is con-
troversial whether this approach is in line with the intuition
or not (see (Varzinczak 2008a) for an alternative). Anyway,
with the information we have at hand, this is the safest way
of contracting static laws.

Definition 11 Let M = 〈W,R〉 be a PDL-model. Then
M ′ = 〈W′,R′〉 ∈ M−

ϕ if and only if

• W⊆ W′

• R = R′

• There isw ∈ W′ s.t. 6|=
M

′

w
ϕ

The minimal modifications of one model are as expected:

Definition 12 LetM be a model andϕ a static law. Then

contraction(M , ϕ) =
⋃

min{M−
ϕ ,�M}



And we define the sets of models resulting from contract-
ing a static law from one set of models:

Definition 13 Let M be a set of models, andϕ a static
law. ThenM−

ϕ = {M′ : M′ = M ∪ {M ′},M ′ ∈
contraction(M , ϕ),M ∈ M}.

In our example, contracting the static lawcoffee→ hot
from M = {M }, with M as in Figure 2, will give us
M−

coffee→hot = {M∪ {M ′
1},M∪ {M ′

2}}, where eachM ′
i

is as depicted in Figure 6.

M ′
1 :

t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

t, c,¬h

b b

b

M ′
2 :

t, c, h

¬t, c, h

t,¬c, h

¬t,¬c,¬h ¬t,¬c, ht,¬c,¬h

¬t, c,¬h

b b

b

Figure 6: Models resulting from contracting the static law
coffee→ hot in the modelM of Figure 2. The new added
coffee∧ ¬hot-worlds are dashed.

Notice that by not modifying the accessibility relation all
the effect laws are preserved with minimal change. More-
over, our approach is also intuitive: when learning that a
new state is now possible, we do not necessarily know all
the behavior of the action in the new added state.

Syntactic Operators for Contraction
We now turn our attention to the definition of a syntacti-
cal counterpart of our semantic operators. As (Nebel 1989)
says, “[. . . ] finite bases usually represent [. . . ] laws, and
when we are forced to change the theory we would like to
stay as close as possible to the original [. . . ] base.” Hence,
besides the definition of syntactical operators, we should
also guarantee that they perform minimal change.

By T−
Φ we denote in the sequel the result of contracting a

lawΦ from the set of lawsT.

Contracting Executability Laws
For the case of contracting an executability lawϕ → 〈a〉⊤
from an action theory, the first thing we do is to ensure that
the actiona is still executable (if that was so) in all those

contexts where¬ϕ is the case. Second, in order to get min-
imality, we must makea executable insomecontexts where
ϕ is true, viz. allϕ-worlds but one. This means that we can
have several action theories as outcome.

Algorithm 1 gives a syntactical operator to achieve this.

Algorithm 1 Contraction of an executability law
input: T, ϕ→ 〈a〉⊤
output: T−

ϕ→〈a〉⊤ /* a set of theories */
if T |=

PDL
ϕ → 〈a〉⊤ then

for all π ∈ IP(S ∧ ϕ) do
for all A ⊆ atm(π) do
ϕA:=

V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

if S 6|=
CPL

(π ∧ ϕA) → ⊥ then

T ′:=
(T \ Xa) ∪
{(ϕi ∧ ¬(π ∧ ϕA)) → 〈a〉⊤ : ϕi → 〈a〉⊤ ∈ Xa}

T−
ϕ→〈a〉⊤

:= T−
ϕ→〈a〉⊤ ∪ {T ′}

else
T−
ϕ→〈a〉⊤

:= {T}

As an example, contractingtoken → 〈buy〉⊤ from our
theoryT would give us three theories. One of them is:

T ′
1 =



























coffee→ hot, ¬coffee→ [buy]coffee,
token→ [buy]¬token, ¬token→ [buy]⊥,

¬token→ [buy]¬token, coffee→ [buy]coffee,
hot→ [buy]hot,

(token∧ ¬coffee∧ hot) → 〈buy〉⊤,
(token∧ ¬coffee∧ ¬hot) → 〈buy〉⊤



























Contracting Effect Laws
When contracting an effect lawϕ → [a]ψ from a theoryT,
intuitively we should change some effect laws that preclude
¬ψ in target worlds. In order to cope with minimality, we
must change only those laws that are relevant toϕ→ [a]ψ.

Let Eϕ,ψa denote the minimum subset of the effect laws in
Ea such thatS , Eϕ,ψa |=

PDL
ϕ → [a]ψ. In the case where the

theory is modular (Herzig and Varzinczak 2005) (see fur-
ther), interpolation guarantees that such a set always exists.
Moreover, note that there can be more than one such a set,
in which case we denote them(Eϕ,ψa )1, . . . , (Eϕ,ψa )n. Let

E−
a =

⋃

1≤i≤n

(Eϕ,ψa )i

The laws inE−
a will serve as guideline to get rid ofϕ→ [a]ψ

in the theory.

The first thing that we must do is to ensure that action
a still has effectψ (if that was so) in all those contexts in
whichϕ does not hold. This means that we shall weaken the
laws inEϕ,ψa specializing them to¬ϕ.

Second, we need to preserve all old effects in allϕ-worlds
but one. To achieve that, we specialize the above laws to
each possible valuation satisfyingϕ but one. In the leftϕ-
valuation, we must ensure that actiona has either its old
effects or¬ψ as outcome. We achieve that by weakening
theconsequentof the laws inE−

a .



Finally, in order to get minimal change, we must ensure
that all literals in thisϕ-valuation that are not forced to
change in¬ψ-worlds should be preserved. We do this by
stating an effect law of the form(ϕk∧ℓ) → [a](ψ∨ℓ), where
ϕk is the aboveϕ-valuation. The reason why this is needed
is clear: there can be several¬ψ-valuations, and as far as we
want at most one to be reachable fromϕk, we should force
it to be the one whose difference toϕk is minimal.

Again, the result will be a set of theories. Algorithm 2
below gives the operator.

Algorithm 2 Contraction of an effect law
input: T, ϕ → [a]ψ
output: T−

ϕ→[a]ψ /* a set of theories */
if T |=

PDL
ϕ→ [a]ψ then

for all π ∈ IP(S ∧ ϕ) do
for all A ⊆ atm(π) do
ϕA:=

V

pi∈atm(π)
pi∈A

pi ∧
V

pi∈atm(π)
pi /∈A

¬pi

if S 6|=
CPL

(π ∧ ϕA) → ⊥ then
for all π′ ∈ IP(S ∧ ¬ψ) do

T ′:= (T \ E−
a ) ∪

{(ϕi ∧ ¬(π ∧ ϕA)) → [a]ψi : ϕi → [a]ψi ∈ E−
a } ∪

{(ϕi ∧ π ∧ ϕA) → [a](ψi ∨ π
′) : ϕi → [a]ψi ∈ E−

a }

for all L ⊆ Lit do
if S |=

CPL
(π ∧ ϕA) →

V

ℓ∈L ℓ and S 6|=
CPL

(π′ ∧
V

ℓ∈L ℓ) → ⊥ then
for all ℓ ∈ L do

if T 6|=
PDL

(π ∧ ϕA ∧ ℓ) → [a]¬ℓ or ℓ ∈ π′

then
T ′:= T ′ ∪ {(π ∧ϕA ∧ ℓ) → [a](ψ ∨ ℓ)}

T−
ϕ→[a]ψ

:= T−
ϕ→[a]ψ ∪ {T ′}

else
T−
ϕ→[a]ψ

:= {T}

For instance, contracting the effect lawtoken→ [buy]hot
from T will give us three resulting theories, one of them is
T ′

1 =







































coffee→ hot, token→ 〈buy〉⊤,
token→ [buy]¬token, ¬token→ [buy]⊥,

¬token→ [buy]¬token,
(coffee∧ ¬(token∧ coffee∧ hot)) → [buy]coffee,

(hot∧ ¬(token∧ coffee∧ hot)) → [buy]hot,
(¬coffee∧ ¬(token∧ coffee∧ hot)) → [buy]coffee,

(token∧ coffee∧ hot) → [buy](coffee∨ ¬hot),
(token∧ coffee∧ hot) → [buy](hot∨ ¬coffee)







































Contracting Static Laws
Finally, in order to contract a static law from a theory, we can
use any standard contraction/revision operator⊖ for classi-
cal propositional logic to change the set of static lawsS .
Because contracting static laws meansadmittingnew pos-
sible states (cf. the semantics), it may be the case that just
modifyingS is not enough.

Since we in general do not necessarily know the behav-
ior of the actions in a new discovered state of the world, a

careful approach is to change the theory so that all action
laws remain the same in the contexts where the contracted
law is the case. In our example, if when contracting the law
coffee→ hotwe are not sure whetherbuy is still executable
or not, we should weaken our executability laws specializ-
ing them to the contextcoffee→ hot, and then makebuya
priori inexecutable in all¬(coffee→ hot) contexts.

Algorithm 3 below formalizes such an operation.

Algorithm 3 Contraction of a static law
input: T, ϕ
output: T−

ϕ /* a set of theories */
if S |=

CPL
ϕ then

for all S− ∈ S ⊖ ϕ do

T ′:=
((T \ S ) ∪ S−) \ Xa ∪
{(ϕi ∧ ϕ) → 〈a〉⊤ : ϕi → 〈a〉⊤ ∈ Xa} ∪
{¬ϕ → [a]⊥}

T−
ϕ:= T−

ϕ ∪ {T ′}
else
T−
ϕ:= {T}

In our running example, contracting the lawcoffee→ hot
from T produces two theories, one of them is

T ′
1 =



























¬(¬token∧ coffee∧ ¬hot),
(token∧ coffee→ hot) → 〈buy〉⊤,

¬coffee→ [buy]coffee, token→ [buy]¬token,
¬token→ [buy]⊥,¬token→ [buy]¬token,

coffee→ [buy]coffee, hot→ [buy]hot,
(coffee∧ ¬hot) → [buy]⊥



























Observe that the effect laws are not affected by the
change: as far as we do not state executabilities for the new
world, all the effect laws remain true in it.

If the knowledge engineer is not happy with the added in-
executability law(coffee∧¬hot) → [buy]⊥, she can contract
it from the theory using Algorithm 2.

Correctness of the Operators
Here we show that our algorithms are correct w.r.t. our se-
mantics for action theory contraction. Before doing that, we
need a definition.

Definition 14 (Modularity (Herzig and Varzinczak 2005))
An action theoryT is modular if and only if for every
ϕ ∈ Fml, if T |=

PDL
ϕ, thenS |=

CPL
ϕ.

For an example of a non-modular theory, suppose in our
action theoryT we had stated the law〈buy〉⊤ instead of
token→ 〈buy〉⊤. ThenT |=

PDL
tokenandS 6|=

CPL
token.

In (Herzig and Varzinczak 2005) algorithms are given to
check whetherT satisfies the principle of modularity and
also to makeT satisfy it, if that is not the case.

Theorem 3 T is modular if and only if its big model is a
model ofT.



Modular theories have interesting properties. For exam-
ple, if T is modular, then its consistency can be checked by
just checking consistency of the set of static lawsS alone.
Deduction of effect laws does not need the executability
ones and vice versa. Prediction of an effect of a sequence of
actionsa1; . . . ; an does not need the effect laws for actions
other thana1, . . . ,an. This also applies to plan validation
when deciding whether〈a1; . . . ; an〉ϕ is the case. For more
results on modularity, see (Herzig and Varzinczak 2007).

The following theorem (see Appendix A for the proof)
establishes that the semantic contraction of the lawΦ from
the set of models of the action theoryT produces models of
some contracted theory inT−

Φ .

Theorem 4 LetT be modular, andΦ be a law. For allM′ ∈

M−
Φ such that|=

M
T for everyM ∈ M, there isT ′ ∈ T−

Φ

such that|=
M

′

T ′ for everyM ′ ∈ M′.

The next theorem establishes the other way round: models
of theories inT−

Φ are all models of the semantical contraction
of Φ from models ofT. (The proof is in Appendix B.)

Theorem 5 Let T be modular,Φ a law, andT ′ ∈ T−
Φ . For

all M ′ such that|=
M

′

T ′, there isM′ ∈ M−
Φ such that

M ′ ∈ M′ and|=
M
T for everyM ∈ M.

Hence our operators are correct w.r.t. the semantics.

Assessment of Postulates for Change
We now analyze our operator’s behavior w.r.t. Katsuno and
Mendelzon’s classical contraction postulates. (Due to space
limitations, proofs are omitted here. They are all available
at (Varzinczak 2008a).)

Theorem 6 T |=
PDL

T ′, for all T ′ ∈ T−
Φ .

This result means our operators satisfy thePDL-version of
Katsuno and Mendelzon’s (C1) postulate aboutmonotonic-
ity. Such a postulate is not satisfied by the operators given
in (Herzig, Perrussel, and Varzinczak 2006): there, when re-
moving e.g. an executability lawϕ → 〈a〉⊤ one may make
ϕ→ [a]⊥ valid in all models of the resulting theory.

Theorem 7 If T 6|=
PDL

Φ, then|=
PDL

T ↔ T ′, for all T ′ ∈ T−
Φ .

This corresponds to Katsuno and Mendelzon’s (C2) postu-
late aboutpreservation. WheneverT 6|=

PDL
Φ, then the models

of the resulting theory are exactly the models ofT, because
these are the minimal models falsifyingΦ.

Theorem 8 Let T = S ∪ E ∪ X be consistent, andΦ be
an executability or an effect law such thatS 6|=

PDL
Φ. If T is

modular, thenT ′ 6|=
PDL

Φ for everyT ′ ∈ T−
Φ

Thus, under modularity our operators satisfy thesuccess
postulate (C3). Still under modularity and the assumption
that the classical contraction operator satisfies Katsuno and
Mendelzon’s (C4) postulate, our operations also satisfy it:

Theorem 9 Let T1 and T2 be modular. If|=
PDL

T1 ↔ T2

and |=
PDL

Φ1 ↔ Φ2, then for eachT ′
1 ∈ (T1)

−
Φ2

there is

T ′
2 ∈ (T2)

−
Φ1

such that|=
PDL

T ′
1 ↔ T ′

2 , and vice-versa.

Thanks to modularity, our operators also satisfy Katsuno
and Mendelzon’s (C5) postulate,recovery:

Theorem 10 Let T be modular. T ′ ∪ {Φ} |=
PDL

T, for all

T ′ ∈ T−
Φ .

Theorem 11 If T is modular, then everyT ′ ∈ T−
Φ is also

modular.

Besides satisfying all postulates for contraction, our opera-
tors also preserve modularity. This is a nice property, since
it means that modularity can be checked/ensured once for all
during the theory’s evolution.

Related Work
To the best of our knowledge, the first work on updating ac-
tion theories is that by (Li and Pereira 1996) in a narrative-
based action description language (Gelfond and Lifschitz
1993). Contrary to us, however, they investigate the problem
of updating the narrative with new observedfactsand (pos-
sibly) with occurrences of actions that explain those facts.

This amounts to updating a given state/configuration of
the world (in our terms, what is true in a possible world) and
focusing on the models of the narrative in which some ac-
tions took place (in our terms, the models of the action the-
ory with a particular sequence of action executions). Clearly
the models of the action laws remain the same.

(Liberatore 2000) proposes an action language in which
one can express a given semantics for belief update, like
(Winslett 1988) and (Katsuno and Mendelzon 1992). Up-
date operations are then expressed as action laws in a theory.

The main difference between Liberatore’s work and Li
and Pereira’s is that Liberatore’s framework allows for ab-
ductively adding to the action theory new effect propositions
(effect laws, in our terms) that consistently explain the oc-
currence of an event.

The work by (Eiter et al. 2005) is similar to ours in that
they also propose a framework for updating action laws.
They mainly investigate the case where e.g. a new effect law
shall be added to the description. This problem is the dual
of contraction and is then closer torevision.

In Eiter et al.’s approach, action theories are also de-
scribed in a variant of a narrative-based action language.
Like here, the semantics is in terms of transition systems.
Contrary to us, the minimality condition on the outcome of
the update is in terms of inclusion of sets of laws, which
means the approach is more syntax-oriented than ours.

Both their framework and ours can be qualified as
constraint-based update, in that the update is carried out rel-
ative to a set of laws that one wants to hold in the result.
Here for example, all changes in the action laws are relative
to the static laws inS .

One difference between our approach and Eiteret al.’s is
that there it is also possible to update a theory relatively to
e.g. executability laws: when expandingT with a new effect
law, one may want to constrain the change so that the action
under concern is guaranteed to be executable in the result.
This may of course require the withdrawal of some static
law. Hence, in Eiteret al.’s framework, static laws do not
have the same status as in ours.



Concluding Remarks
The contributions of the present work are as follows:

• What is the meaning of removing a lawΦ from an action
theoryT? How to get minimal change, i.e., how to keep
as much knowledge about other laws as possible? We
answered these questions with Definitions 6, 10 and 13.

• How to syntactically contract an action theory so that
its result corresponds to the intended semantics? We
answered this question with Algorithms 1–3 and Theo-
rems 4 and 5.

• Is our method closer to update or revision? Does it
comply with the standard postulates for classical theory
change and what are the differences w.r.t. that? We an-
swered these questions with Theorems 6–11.

We have shown the importance that modularity has in ac-
tion theory change. Under modularity, our operators sat-
isfy all Katsuno and Mendelzon’s postulates for contraction.
This shows that our modularity notion is fruitful. Moreover,
considering future modifications one should perform on the
theory, since modularity is preserved by our operators, it suf-
fices to check/ensure it only once.

Here we presented the case for contraction. We are cur-
rently investigating the definition of the revision counterpart
of action theory change. The first results on this issue are
available in (Varzinczak 2008b).

Our ongoing research is on how to contract not only laws
but any PDL-formula. Definitions 4, 8 and 11 show up to
be important for better understanding the case of general
formulas: the modifications to perform in a given model
in order to falsify a general formula will also comprise re-
moval/addition of arrows and worlds. The definition of a
more general contraction method will thus benefit from our
present constructions.
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Appendix A: Proof of Theorem 4

Lemma 1 T |=
PDL

T ′.

For the proof of this lemma, the reader is invited to
check (Varzinczak 2008a).

Proof of Theorem 4

Let M = {M :|=
M

T}, andM′ ∈ M−
Φ . We show that

there isT ′ ∈ T−
Φ such that|=

M
′

T ′ for everyM ′ ∈ M′.

By definition, eachM ′ ∈ M′ is such that either|=
M

′

T or

6|=
M

′

Φ. BecauseT−
Φ 6= ∅, there must beT ′ ∈ T−

Φ . If |=
M

′

T,

by Lemma 1|=
M

′

T ′ and we are done. Let’s then suppose

that 6|=
M

′

Φ. We analyze each case.

LetΦ have the formϕ → 〈a〉⊤ for someϕ ∈ Fml. Then
M ′ = 〈W′,R′〉, whereW′ = W, R′ = R \ Rϕa , with Rϕa =

{(w,w′) :|=
M

w
ϕ and(w,w′) ∈ Ra}, for someM ∈ M.

Let u ∈ W′ be such that6|=
M

′

u
ϕ → 〈a〉⊤, i.e., |=

M
′

u
ϕ and

R′
a(u) = ∅.
Becauseu 
 ϕ, there must bev ∈ base(ϕ,W′) such that

v ⊆ u. Let π =
∧

ℓ∈v ℓ. Clearlyπ is a prime implicant of
S ∧ ϕ. Let alsoϕA =

∧

ℓ∈u\v ℓ, and consider

T ′ = (T\Xa)∪{(ϕi∧¬(π∧ϕA)) → 〈a〉⊤ : ϕi → 〈a〉⊤ ∈ Xa}

(Clearly,T ′ is a theory produced by Algorithm 1.)

It is enough to show thatM ′ is a model of the new added
laws. Given(ϕi ∧ ¬(π ∧ ϕA)) → 〈a〉⊤ ∈ T ′, for every

w ∈ W′, if |=
M

′

w
ϕi ∧ ¬(π ∧ ϕA), then|=

M
′

w
ϕi, from what it

follows |=
M

w
ϕi. Because|=

M
ϕi → 〈a〉⊤, there isw′ ∈ W

such thatw′ ∈ Ra(w). We need to show that(w,w′) ∈

R′
a. If 6|=

M

w
ϕ, thenRϕa = ∅, and(w,w′) ∈ R′

a. If |=
M

w
ϕ,

eitherw = u, and then from|=
M

′

u
π ∧ ϕA we conclude|=

M
′

u

(ϕi ∧ ¬(π ∧ ϕA)) → 〈a〉⊤, or w 6= u and then we must
have(w,w′) ∈ R′

a, otherwise there isSϕa ⊂ Rϕa such that
R−̇(R\Sϕa ) ⊂ R−̇(R\ Rϕa ), and thenM ′′ = 〈W′,R\ Sϕa 〉 is

such that6|=
M

′′

ϕ→ 〈a〉⊤ andM ′′ �M M ′, a contradiction
becauseM ′ is minimal w.r.t.�M . Thus(w,w′) ∈ R′

a, and

then|=
M

′

w
〈a〉⊤. Hence|=

M
′

T ′.

Now let Φ be of the formϕ → [a]ψ, for ϕ, ψ ∈ Fml.
ThenM ′ = 〈W′,R′〉, whereW′ = W, R′ = R∪Rϕ,¬ψa , with

Rϕ,¬ψa = {(w,w′) : w′ ∈ RelTgt(w,ϕ → [a]ψ,M ,M)}

for someM = 〈W,R〉 ∈ M.

Let u ∈ W′ be such that6|=
M

′

u
ϕ → [a]ψ. Then there is

u′ ∈ W′ such that(u, u′) ∈ R′
a and 6|=

M
′

u′
ψ. Becauseu 
 ϕ,

there isv ∈ base(ϕ,W′) such thatv ⊆ u, and asu′ 
 ¬ψ,
there must bev′ ∈ base(¬ψ,W′) such thatv′ ⊆ u′. Let
π =

∧

ℓ∈v ℓ, ϕA =
∧

ℓ∈u\v ℓ, andπ′ =
∧

ℓ∈v′ ℓ. Clearlyπ
(resp.π′) is a prime implicant ofS ∧ ϕ (resp.S ∧ ¬ψ).

Now letE−
a =

⋃

1≤i≤n(E
ϕ,ψ
a )i and let the theory

T ′ = (T \ E−
a ) ∪

{(ϕi ∧ ¬(π ∧ ϕA)) → [a]ψi : ϕi → [a]ψi ∈ E−
a } ∪

{(ϕi ∧ π ∧ ϕA) → [a](ψi ∨ π
′) : ϕi → [a]ψi ∈ E−

a } ∪






(π ∧ ϕA ∧ ℓ) → [a](ψ ∨ ℓ) : ℓ ∈ L, for L ⊆ Lit s.t.
S 6|=

CPL
(π′ ∧

∧

ℓ∈L ℓ) → ⊥, and
ℓ ∈ π′or T 6|=

PDL
(π ∧ ϕA ∧ ℓ) → [a]¬ℓ







(Clearly,T ′ is a theory produced by Algorithm 2.)

In order to show thatM ′ is a model ofT ′, it is enough to
show that it is a model of the added laws. Given(ϕi∧¬(π∧

ϕA)) → [a]ψi ∈ T ′, for everyw ∈ W′, if |=
M

′

w
ϕi∧¬(π∧ϕA),

then|=
M

′

w
ϕi, and then|=

M

w
ϕi. Because|=

M
ϕi → [a]ψi, |=

M

w′
ψi

for all w′ ∈ W such that(w,w′) ∈ Ra. We need to show

that R′
a(w) = Ra(w). If 6|=

M

w
ϕ, thenRϕ,¬ψa = ∅, and then

R′
a(w) = Ra(w). If |=

M

w
ϕ, then eitherw = u, and from

|=
M

′

u
π ∧ ϕA we conclude|=

M
′

u
(ϕi ∧ ¬(π ∧ ϕA)) → [a]ψi,

or w 6= u, and then we must haveRϕ,¬ψa = ∅, otherwise
there would beSϕ,¬ψa ⊂ Rϕ,¬ψa such thatR−̇(R∪ Sϕ,¬ψa ) ⊂
R−̇(R∪ Rϕ,¬ψa ), and thenM ′′ = 〈W′,R∪ Sϕ,¬ψa 〉 would be

such that6|=
M

′′

ϕ → [a]ψ andM ′′ �M M ′, a contradiction
sinceM ′ is minimal w.r.t.�M . HenceR′

a(w) = Ra(w),

and|=
M

′

w′
ψi for all w′ such that(w,w′) ∈ R′

a.

Now, given(ϕi ∧ π ∧ ϕA) → [a](ψi ∨ π′), for everyw ∈

W′, if |=
M

′

w
ϕi∧π∧ϕA, then|=

M
′

w
ϕi, and then|=

M

w
ϕi. Because,

|=
M
ϕi → [a]ψi, we have|=

M

w′
ψi for all w′ ∈ W such that

(w,w′) ∈ Ra, and then|=
M

′

w′
ψi for everyw′ ∈ W′ such that

(w,w′) ∈ R′
a \Rϕ,¬ψa . Now, given(w,w′) ∈ Rϕ,¬ψa , |=

M
′

w′
π′,

and the result follows.

Now, for each(π∧ϕA∧ℓ) → [a](ψ∨ℓ), for everyw ∈ W′,

if |=
M

′

w
π ∧ ϕA ∧ ℓ, then |=

M
′

w
ϕ, and then|=

M

w
ϕ. Because

|=
M
ϕ → [a]ψ, we have|=

M

w′
ψ for everyw′ ∈ W such that

(w,w′) ∈ Ra, and then|=
M

′

w′
ψ for all w′ ∈ W′ such that

(w,w′) ∈ R′
a \ Rϕ,¬ψa . It remains to show that|=

M
′

w′
ℓ for

everyw′ ∈ W′ such that(w,w′) ∈ Rϕ,¬ψa . SinceM ′ is

minimal, it is enough to show that|=
M

′

u′
ℓ for everyℓ ∈ Lit

such that|=
M

′

u
π ∧ ϕA ∧ ℓ. If ℓ ∈ π′, the result follows.

Otherwise, suppose6|=
M

′

u′
ℓ. Then

• either¬ℓ ∈ π′, thenπ′ andℓ are unsatisfiable, and in this
case Algorithm 2 has not put the law(π ∧ ϕA ∧ ℓ) →
[a](ψ ∨ ℓ) in T ′, a contradiction;

• or¬ℓ ∈ u′\v′. In this case, there is a valuationu′′ = (u′\
{¬ℓ}) ∪ {ℓ} such thatu′′ 6
 ψ. We must haveu′′ ∈ W′,
otherwise there will beL′ = {ℓi : ℓi ∈ u′′} such that



T |=
PDL

(π′ ∧
∧

ℓi∈L′ ℓi) → ⊥, and, becauseT is modular,
S |=

CPL
(π′ ∧

∧

ℓi∈L′ ℓi) → ⊥, and then Algorithm 2 has
not put the law(π ∧ ϕA ∧ ℓ) → [a](ψ ∨ ℓ) in T ′, a con-
tradiction. Thenu′′ ∈ W′, and moreoveru′′ /∈ Rϕ,¬ψa (u),
otherwiseM ′ is not minimal. Asu′′ \u ⊂ u′\u, the only
reason whyu′′ /∈ Rϕ,¬ψa (u) is that there isℓ′ ∈ u ∩ u′′

such that|=
Mi

∧

ℓj∈u
ℓj → [a]¬ℓ′ for everyMi ∈ M

if and only if ℓ′ /∈ v′ for any v′ ∈ base(¬ψ,W ′) such
that v′ ⊆ u′′. Clearly ℓ′ = ℓ, and becauseℓ /∈ π′, we

have|=
Mi

∧

ℓj∈u
ℓj → [a]¬ℓ for everyMi ∈ M. Then

T |=
PDL

(π∧ϕA∧ ℓ) → [a]¬ℓ, and Algorithm 2 has not put
the law(π ∧ ϕA ∧ ℓ) → [a](ψ ∨ ℓ) in T ′, contradiction.

Hence we have|=
M

′

w′
ψ ∨ ℓ for everyw′ ∈ W′ such that

(w,w′) ∈ R′
a.

Putting the above results together, we get|=
M

′

T ′.

Let now Φ be some propositionalϕ. Then M ′ =
〈W′,R′〉, whereW⊆ W′, R′ = R, is minimal w.r.t.�M , i.e.,
W′ is a minimum superset ofW such that there isu ∈ W′

with u 6
 ϕ. Because we have assumed the syntactical clas-
sical contraction operator is correct w.r.t. its semanticsand
is moreover minimal, then there must beS− ∈ S ⊖ ϕ such

thatW′ = val(S−). Hence|=
M

′

S−.
As R′ = R, every effect law ofT remains true inM ′.
Now, let

T ′ =
((T \ S) ∪ S−) \ Xa ∪
{(ϕi ∧ ϕ) → 〈a〉⊤ : ϕi → 〈a〉⊤ ∈ Xa} ∪
{¬ϕ→ [a]⊥}

(Clearly,T ′ is a theory produced by Algorithm 3.)

For every(ϕi ∧ ϕ) → 〈a〉⊤ ∈ T ′ and everyw ∈ W′, if

|=
M

′

w
ϕi ∧ϕ, thenRa(w) 6= ∅, because|=

M

w
ϕi → 〈a〉⊤. Given

¬ϕ → [a]⊥, for everyw ∈ W′, if |=
M

′

w
¬ϕ, thenw = u, and

Ra(w) = ∅.

Putting all these results together, we have|=
M

′

T ′.

Appendix B: Proof of Theorem 5

Lemma 2 LetΦ be a law. IfT is modular, then everyT ′ ∈
T−
Φ is modular.

Proof: LetΦ be nonclassical, and suppose there isT ′ ∈ T−
Φ

such thatT ′ is not modular. Then there is someϕ′ ∈ Fml
such thatT ′ |=

PDL
ϕ′ andS ′ 6|=

CPL
ϕ′, whereS ′ is the set

of static laws inT ′. By Lemma 1,T |=
PDL

T ′, and then we
haveT |=

PDL
ϕ′. BecauseΦ is nonclassical,S ′ = S . Thus

S 6|=
CPL

ϕ′, and henceT is not modular.

Let nowΦ be someϕ ∈ Fml. Then

T ′ =
((T \ S) ∪ S−) \ Xa ∪
{(ϕi ∧ ϕ) → 〈a〉⊤ : ϕi → 〈a〉⊤ ∈ Xa} ∪
{¬ϕ→ [a]⊥}

for someS− ∈ S ⊖ ϕ.

SupposeT is modular, and letϕ′ ∈ Fml be such that
T ′ |=

PDL
ϕ′ andS− 6|=

CPL
ϕ′.

As S− 6|=
CPL

ϕ′, there isv ∈ val(S−) such thatv 6
 ϕ′.
If v ∈ val(S ), thenS 6|=

CPL
ϕ′, and asT is modular,T 6|=

PDL

ϕ′. By Lemma 1,T |=
PDL

T ′, and we haveT ′ 6|=
PDL

ϕ′, a
contradiction. Hencev /∈ val(S ). Moreover, we must have
v 6
 ϕ, otherwise⊖ has not worked as expected.

Let M = 〈W,R〉 be such that|=
M

T ′. (We extendM
to another model ofT ′.) Let M ′ = 〈W′,R′〉 be such that
W′ = W∪ {v} andR′ = R. To show thatM ′ is a model
of T ′, it suffices to show thatv satisfies every law inT ′.

As v ∈ val(S−), |=
M

′

v
S−. Given¬ϕ → [a]⊥ ∈ T ′, as

v 6
 ϕ andR′
a(v) = ∅, |=

M
′

v
¬ϕ → [a]⊥. Now, for every

ϕi → [a]ψi ∈ T ′, if |=
M

′

v
ϕi, then we trivially have|=

M
′

v′
ψi

for everyv′ such that(v, v′) ∈ R′
a. Finally, given(ϕi∧ϕ) →

〈a〉⊤ ∈ T ′, asv 6
 ϕ, the formula trivially holds inv. Hence

|=
M

′

T ′, and because there isv ∈ W′ such that6|=
M

′

v
ϕ′, we

haveT ′ 6|=
PDL

ϕ′, a contradiction. Hence for allϕ′ ∈ Fml

such thatT ′ |=
PDL

ϕ′, S− |=
CPL

ϕ′, and thenT ′ is modular.

For the proof of the following three lemmas, please refer
to (Varzinczak 2008a).

Lemma 3 If Mbig = 〈Wbig,Rbig〉 is a model ofT, then

for everyM = 〈W,R〉 such that|=
M

T there is a mini-
mal (w.r.t. set inclusion) extension R′ ⊆ Rbig \ R such that
M ′ = 〈val(S ),R∪ R′〉 is a model ofT.

Lemma 4 LetT be modular, andΦ be a law. ThenT |=
PDL

Φ

if and only if everyM ′ = 〈val(S ),R′〉 such that|=
〈W,R〉

T
and R⊆ R′ is a model ofΦ.

Lemma 5 Let T be modular,Φ a law, andT ′ ∈ T−
Φ . If

M ′ = 〈val(S ′),R′〉 is a model ofT ′, then there isM =

{M : M = 〈val(S ),R〉 and |=
M

T} such thatM ′ ∈ M′

for someM′ ∈ M−
Φ .

Proof of Theorem 5

From the hypothesis thatT is modular and Lemma 2,T ′

is modular. ThenM ′ = 〈val(S ′),R〉 is a model ofT ′, by
Lemma 4. From this and Lemma 5 the result follows.


